

THE NEUTRINO IN THE STANDARD MODEL

According to the Standard Model, neutrinos are:

- Three fundamental spin 1/2 fermions (and their antiparticles)
- Neutral:
 - Electric charge (electromagnetism)
 - Color (strong interaction)
- Part of a "weak isospin doublet"
 - Paired to a charged fermion (e, μ, τ) through the weak interaction
- Have a tiny mass

NEUTRINOS IN COSMOLOGY

Afterglow Light
Pattern
380,000 yrs.

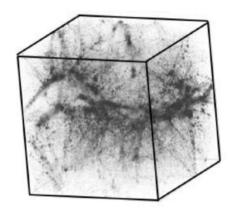
Dark Ages
Development of
Galaxies, Planets, etc.

Inflation

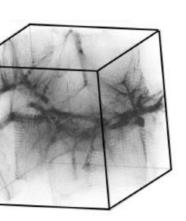
Ouantum
Fluctuations

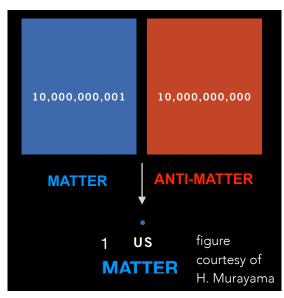
1st Stars
about 400 million yrs.

Big Bang Expansion


13.7 billion years

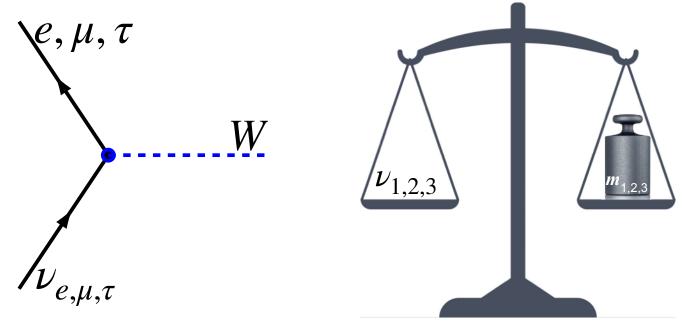
The Particle Physics/Cosmology Ouroboros

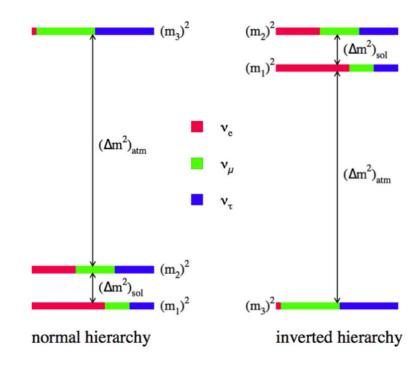

- Dynamics of the early universe are intimately connected to fundamental particles and their interactions
- As a
 - (long-lived) fundamental particle
 - Copiously produced in the early universe and in subsequent processes


It is natural that there is a very strong interplay between studying neutrino properties and their impact on cosmology

Standard cosmology

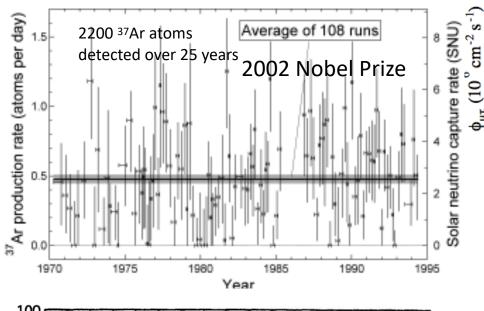
Massive neutrinos

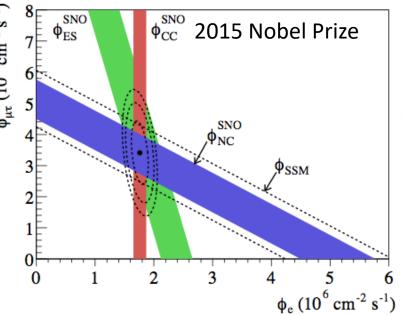


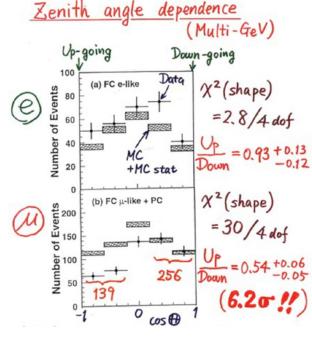

PPC 202 Daejeon, South Korea

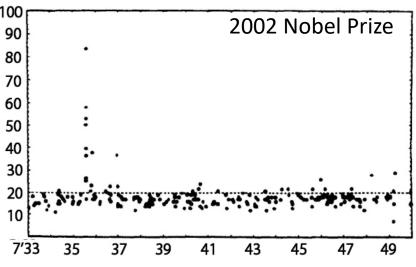
NEUTRINO OSCILLATIONS

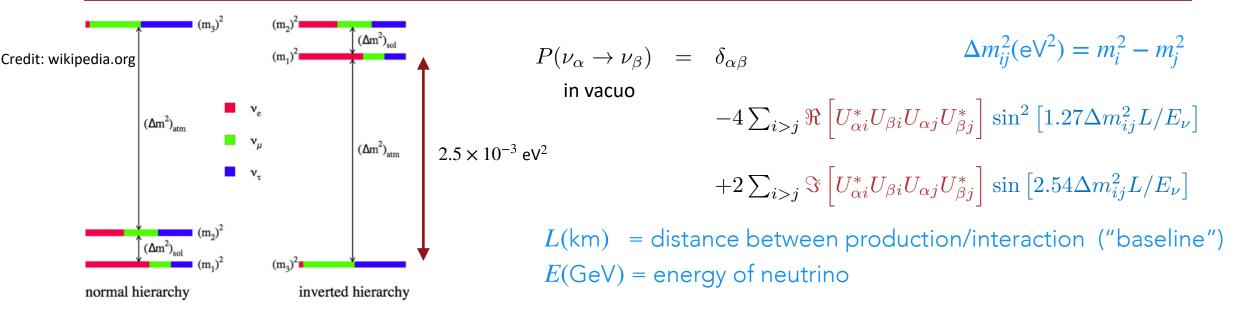
- Neutrinos are identified via their weak interaction properties
 - three weak eigenstates: $\nu_e \rightarrow e^-, \nu_\mu \rightarrow \mu^-, \nu_\tau \rightarrow \tau^-$
 - three "antineutrinos": $\bar{\nu}_e \to e^+, \bar{\nu}_\mu \to \mu^+, \bar{\nu}_\tau \to \tau^+$
- Neutrinos can also be identified by their mass
 - three neutrino mass eigenstates $\nu_1 \to m_1, \nu_2 \to m_2, \nu_3 \to m_3$
- Flavor, mass states can "mix" via unitary transformation
 - Allows precession of the flavor content of the neutrino with time


$$|\nu_e\rangle = U_{e1}|\nu_1\rangle + U_{e2}|\nu_2\rangle + U_{e3}|\nu_3\rangle$$
$$|\nu_\alpha\rangle = \sum_i U_{\alpha i}|\nu_i\rangle$$




Credit: wikipedia.org


NEUTRINO ASTRONOMY/ASTROPHYSICS



PPC 202 Daejeon, South Korea

- Detection of solar neutrinos:
 - Deficit leads to inquiry into nature of the neutrino, solar model
 - Later confirmed as neutrino flavor change, solar model confirmed
 - ullet Meanwhile neutrino flavor change also explains deficits in atmospheric u_{μ}
- Detection of neutrinos from core-collapse supernova (1987a)
 - Start of a new field: implications still unfolding
- Two-way window between universe and the neutrino
 - Story plays out over decades

"LONG-BASELINE" NEUTRINO EXPERIMENTS

- Neutrinos are **produced /interact** as **flavor eigenstates** but **propagate** as **mass (energy) eigenstates**
- Flavor precesses sinusoidally as a function of L/E (proper times)
 - Amplitudes: set by mixing matrix U
 - Frequency: L/E given by **difference in mass-squared eigenvalues** Δm_{ij}^2
- "Long baseline": observe neutrinos when kinematic phase is $\sim \pi/2$ for $\Delta m_{atm}^2 \sim 2.5 \times 10^{-3} \text{ eV}^2$
 - $L/E \sim 500 \text{ km/GeV} \rightarrow L \sim \mathcal{O}(10^{2-3}) \text{ km for ~1 GeV neutrinos}$
 - Observations at shorter baselines are probing non-standard oscillations (next talks)

PARAMETERS AND PHENOMENOLOGY

$$s_{ij} = \sin \theta_{ij} \quad c_{ij} = \cos \theta_{ij}$$

- Assuming unitarity, U is parametrized by
 - 3 "mixing angles" (θ_{12} , θ_{13} , θ_{23})
 - complex phase (δ)

•
$$P(\nu_{\mu} \rightarrow \nu_{\mu})$$

- Amplitude: $\sin^2 2\theta_{23}$
- Frequency measures Δm_{atm}^2
- $P(\nu_{\mu} \rightarrow \nu_{\mu})$ vs. $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu})$ tests CPT symmetry

•
$$P(\nu_{\mu} \rightarrow \nu_{e})$$
 and $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$

- Equivalently impacted by $\sin^2 2\theta_{13}$, $\sin^2 \theta_{23}$ (note "octant")
- "Oppositely" impacted by:
 - Mass ordering via matter effects: sign of x, Δm_{32}^2
 - Complex phase: $\delta \rightarrow \mathsf{CP}$ violation

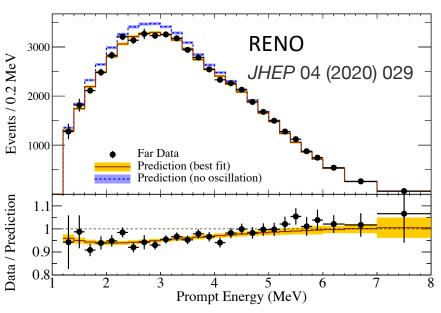
•
$$P(\bar{\nu}_e \rightarrow \bar{\nu}_e)$$

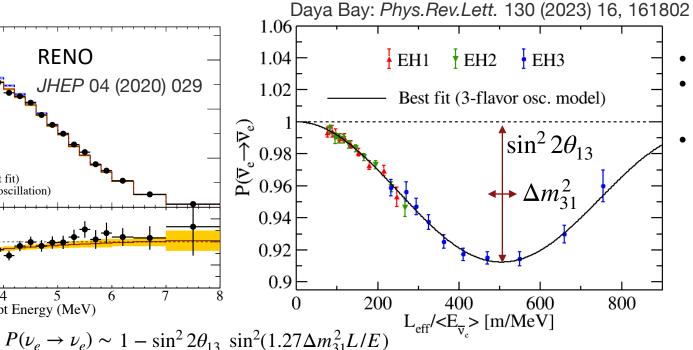
• Measures $\sin^2 2\theta_{13}$ and Δm_{31}^2

$$P(\nu_{\mu} \to \nu_{\mu}) \sim 1 - (\cos^4 \theta_{13} \sin^2 2\theta_{23} + \sin^2 2\theta_{13} \sin^2 \theta_{23})$$

 $\times \sin^2 (1.27 \Delta m_{32}^2 L/E)$

$$P(\nu_{\mu} \to \nu_{e}) \sim \frac{\sin^{2} 2\theta_{13}}{-\alpha \sin \delta} \times \sin^{2} \theta_{23} \times \sin^{2} \theta_{23} \times \frac{\sin^{2}[(1-x)\Delta]}{(1-x)^{2}} \times \sin^{2} \theta_{13} \sin^{2} \theta_{23} \times \sin \Delta \frac{\sin[x\Delta]}{x} \frac{\sin[(1-x)\Delta]}{(1-x)} + \alpha \cos \delta \times \sin^{2} \theta_{12} \sin^{2} \theta_{13} \sin^{2} \theta_{23} \times \cos \Delta \frac{\sin[x\Delta]}{x} \frac{\sin[(1-x)\Delta]}{(1-x)} + \mathcal{O}(\alpha^{2})$$

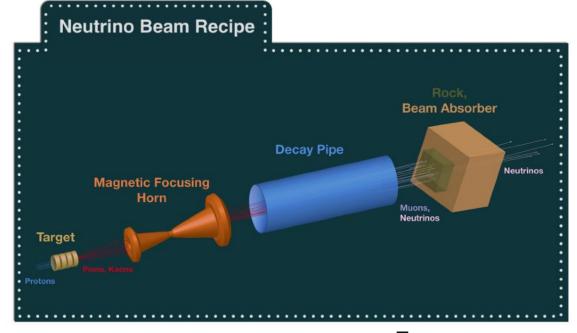

$$\alpha = \left| \frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}} \right| \sim \frac{1}{30} \quad \Delta \equiv \frac{\Delta m_{31}^{2} L}{4E} \quad x = \pm \frac{2\sqrt{2}G_{F}N_{e}E_{\nu}}{\Delta m_{31}^{2}}$$


$$P(\nu_e \to \nu_e) \sim 1 - \sin^2 2\theta_{13} \sin^2(1.27\Delta m_{31}^2 L/E)$$

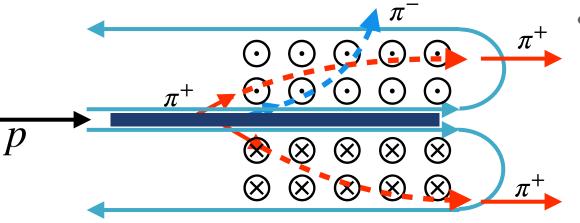
 $-\sin^2 2\theta_{12} \sin^2(1.27\Delta m_{21}^2 L/E)$

θ_{13} : DOUBLE-CHOOZ, RENO, DAYA BAY

- β decay from fission products produce O(MeV) antineutrinos
 - $n \rightarrow p + e^- + \bar{\nu}_{\rho}$
 - ~GW reactors produce O(10²⁰) $\bar{\nu}_{\rho}$ /sec with O(MeV) energy
- Detectors ~1 km from reactor observe oscillations driven by Δm^2_{atm} with L/E ~ 0.5 km/MeV

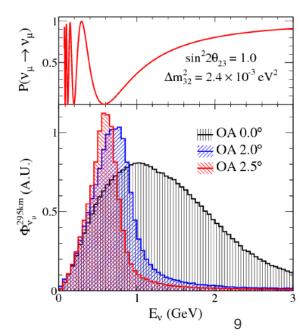

- $\sin^2 2\theta_{13} = 0.0851 \pm 0.024$
- For normal ordering:
 - $\Delta m_{32}^2 = (2.466 \pm 0.060) \times 10^{-3} \text{ eV}^2$
- For inverted ordering
 - $\Delta m_{32}^2 = -(2.571 \pm 0.060) \times 10^{-3} \text{ eV}^2$

Next generation experiment:

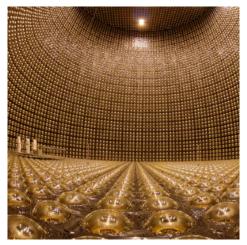

- JUNO: "extra long baseline" 60 km
- observe oscillations driven by both $\Delta m_{31}^2, \Delta m_{21}^2$

See I. Morton-Blake from Monday ν parallel session

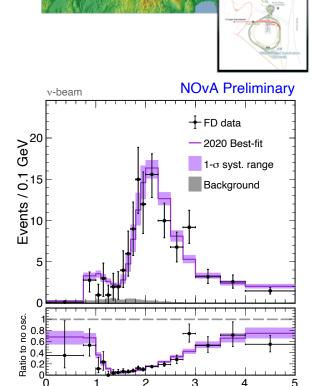
REACTORS AND ACCELERATORS



- Pion production from high energy protons
 - $\mathcal{O}(10^{12-14})$ protons per pulse
- Pions can be magnetically sign selected to produce
 - $\pi^+ \rightarrow \mu^+ + \nu_\mu$ beam
 - $\pi^- \rightarrow \mu^- + \bar{\nu}_{\mu}$ beam
 - $\mathcal{O}(10^{5-6})$ A to produce ~1 T field

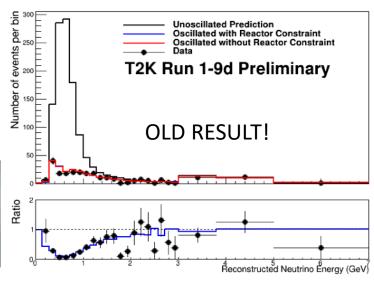

Off-axis neutrino beam

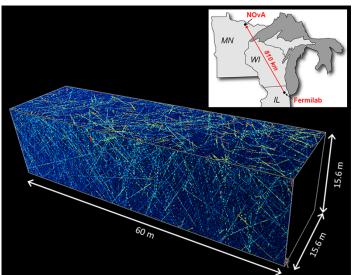
- Direct beam at a non-zero angle to the detector
- Neutrino flux narrows and moves to lower energy due to pion decay kinematics



NOVA AND T2K

- O(1 GeV) ν_{μ} , $\bar{\nu}_{\mu}$ neutrinos are sent hundreds of km to large "far" detectors:
 - T2K: ~0.6 GeV $\nu_{\mu}/\bar{\nu}_{\mu}$ 295 km (smaller matter effect)
 - 50 kt Super-Kamiokande detector
 - NOvA: ~2 GeV $\nu_{\mu}/\bar{\nu}_{\mu}$ 810 km (larger matter effect)
 - 14 kt scintillator tracking detector
- Observe oscillation of $\nu_{\mu}/\bar{\nu}_{\mu}$ to other flavors at
 - ~500 km/GeV for $\Delta m^2_{atm} \sim 2.5 \times 10^{-5} \text{ eV}^2$

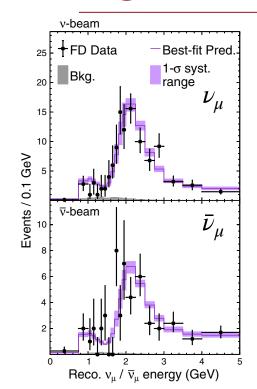


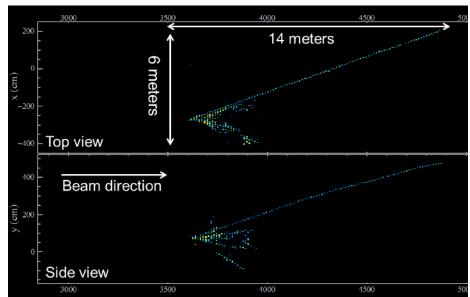


Reconstructed neutrino energy (GeV)

295 km

KAMIOKA





Improved measurement of neutrino oscillation parameters by the NOvA experiment

NOVA: FAR DETECTOR EVENTS

- ullet u_{μ} charged current interactions
 - muon exiting the interaction
 - Neutrino energy by adding muon and hadron energy
 - Strong "disappearance" observed for both ν_{μ} , $\bar{\nu}_{\mu}$ beams

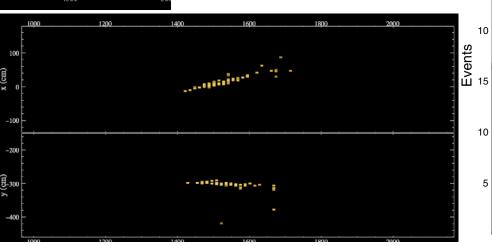
v-beam

FD Data

WS bkg.

Beam

bkg. Cosmic bkg.

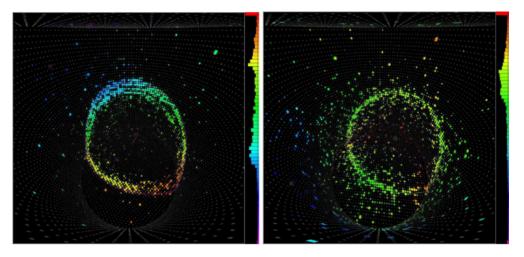

⊽-beam

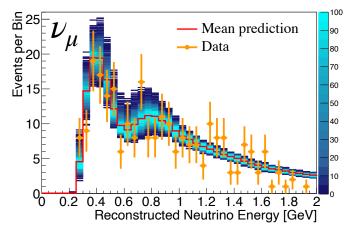
ow CNN_{evt} High CNN_{evt}

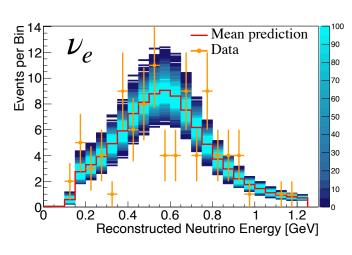

Best-fit

1- σ syst.

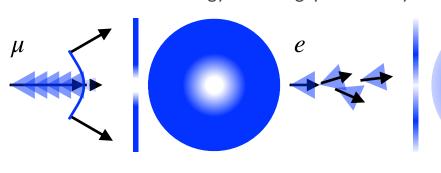
pred.

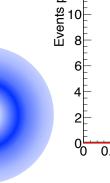


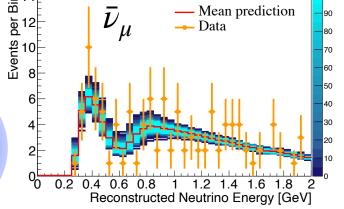

- ν_e charged current interactions
 - O(GeV) electromagnetic shower
 - Interactions from both $\, \nu_{\mu}
 ightarrow \, \nu_{e}, \bar{\nu}_{\mu}
 ightarrow \, \bar{\nu}_{e} \, {
 m observed} \, \overline{\ell}_{e} \,$

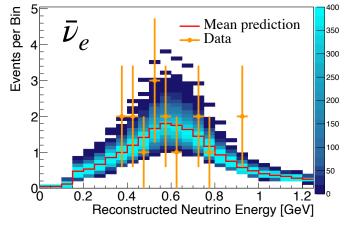


Reco. v_e / \overline{v}_e energy (GeV)

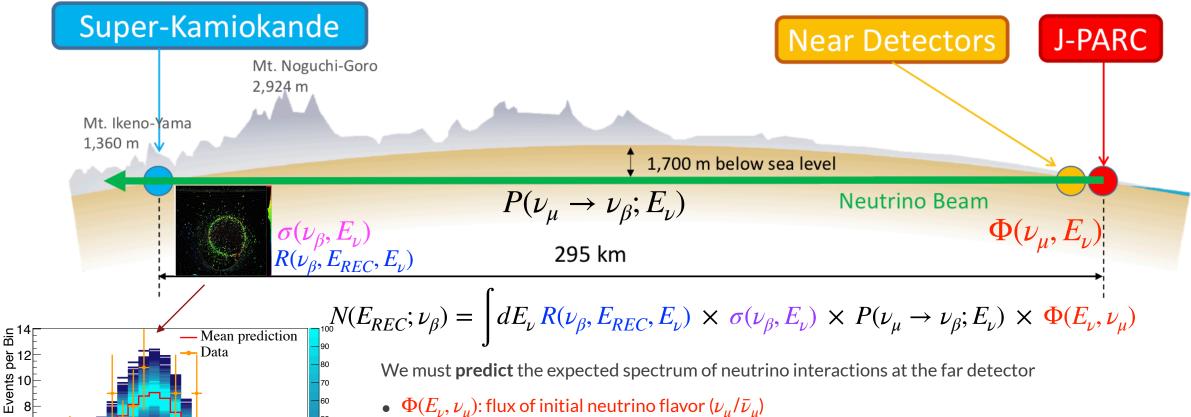

T2K







- ν_{μ} vs. ν_{e} identification via projected Cherenkov ring profile
 - Muons from ν_{μ} produce "clean" profiles
 - Electrons from ν_{e} produced "fuzzy" profiles
 - Neutrino energy assuming quasi 2-body kinematics



n.b. "neutrino" vs. "antineutrino" determined by the beam configuration, not the detector

NEAR DETECTOR

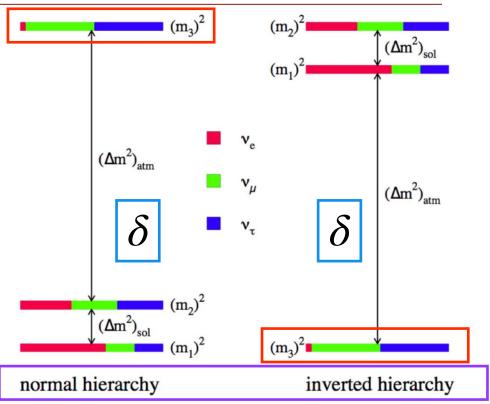
- $\Phi(E_{\nu}, \nu_{\mu})$: flux of initial neutrino flavor $(\nu_{\mu}/\bar{\nu}_{\mu})$
- $\sigma(\nu_{\beta}, E_{\nu})$: modelling of neutrino interaction on target nucleus (16 O, 37 Ar)
- $R(
 u_{eta}, E_{REC}, E_{
 u})$: detector response modelling

in order to **extract** the oscillation probability $P(\nu_{\mu} \rightarrow \nu_{\beta}; E_{\nu})$

The **near detector** is a critical element in bringing systematic errors in each part under control

0.4

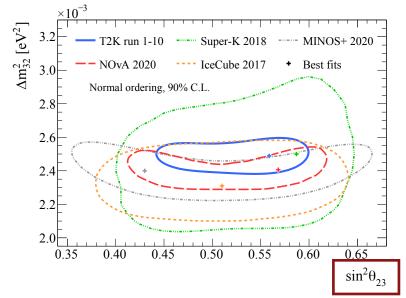
0.6

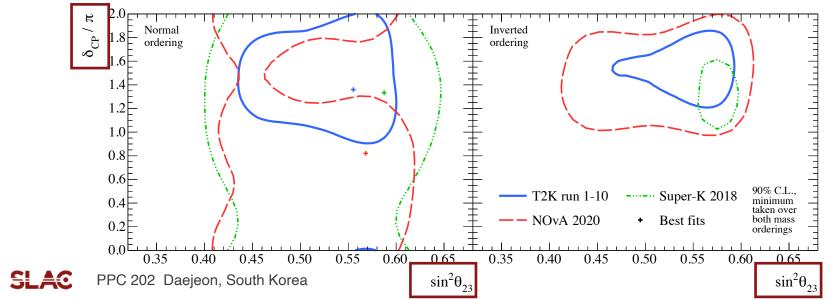

0.8

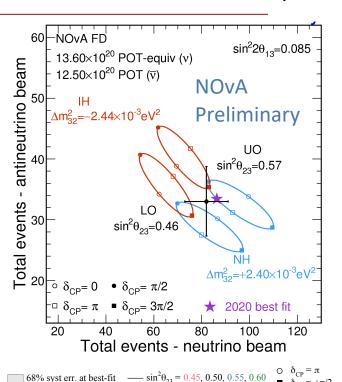
Reconstructed Neutrino Energy [GeV]

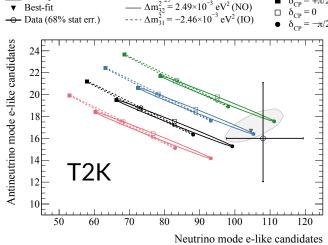
$u_{\mu} ightarrow u_{e} \, { m AND} \, ar{ u}_{\mu} ightarrow ar{ u}_{e}$

Credit: wikipedia.org

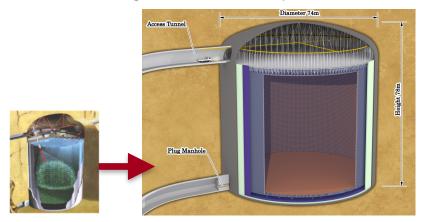

- This channel can tell us:
 - Do ν and $\bar{\nu}$ oscillate different in vacuum?
 - "CP violation" induced by a complex phase (" δ ") in mixing
 - Continuous anticorrelation of ν vs. $\bar{\nu}$ oscillation probabilities
 - Is $m_3 > m_{2,1}$ or $m_3 < m_{2,1}$
 - The "ordering/hierarchy" of the mass states
 - Neutrinos traveling through matter have additional energy term
 - More $\nu_{\mu}
 ightarrow \nu_{e}$, less $\bar{\nu}_{\mu}
 ightarrow \bar{\nu}_{e}$ if ordering is "normal"
 - Less $\nu_{\mu}
 ightarrow \nu_{e}$, more $\bar{\nu}_{\mu}
 ightarrow \bar{\nu}_{e}$ if ordering is "inverted"
 - Discrete anti-correlation of ν vs. $\bar{\nu}$ oscillation probabilities
 - Is ν_3 more ν_μ or ν_τ (or equal parts of each)?
 - " θ_{23} octant": note $P(\nu_{\mu} \rightarrow \nu_{\mu})$ sensitive to $2\theta_{23}$
 - More $\nu_{\mu}
 ightarrow \nu_{e}$ and $\bar{\nu}_{\mu}
 ightarrow \bar{\nu}_{e}$ if $\, \nu_{3}$ is more ν_{μ}
 - Continuous "common mode" scaling of $\nu, \bar{\nu}$ oscillation probabilities

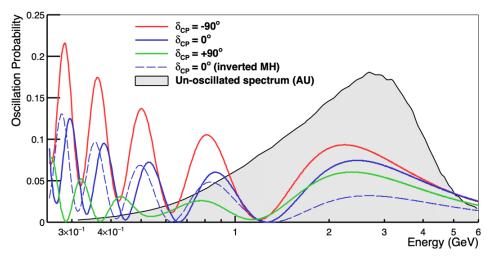

- It's complicated! Disentangle with:
 - Neutrino ($u_{\mu}
 ightarrow
 u_{e}$) vs. antineutrino ($ar{
 u}_{\mu}
 ightarrow ar{
 u}_{e}$)
 - Spectrum information
 - "Baseline" and matter effects
 - ν_{μ} disappearance

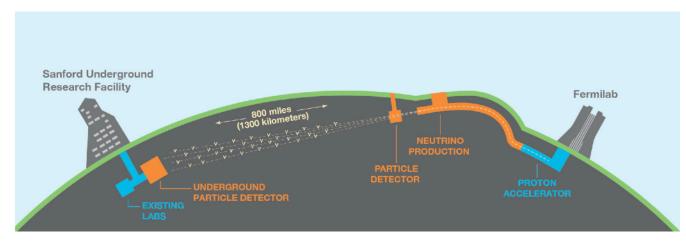

T2K AND NOVA RESULTS


For illustration only

- T2K, NOvA: very large, possibly maximal mixing in θ_{23} :
 - $\sin^2 \theta_{23} \sim 0.5$
- - Prefers $\delta \sim -\pi/2$ in both mass orderings
- NOvA: less asymmetry
 - Effectively all values of δ for normal ordering
 - $\delta \sim -\pi/2$ for inverted ordering






MOVING FORWARD

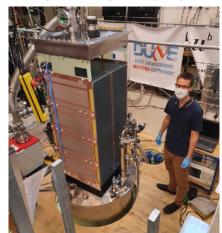
- NOvA and T2K will continue to take data through the decade
- A new generation of experiments will have a leap in capability, statistics, and configuration

- Hyper-Kamiokande:
 - "Upgrade" to Super-Kamiokande with 8.4 x greater volume (217 vs. 32 kton)
 - Upgraded 0.6 GeV $\nu_{\mu}/\bar{\nu}_{\mu}$ beam from J-PARC 295 km away.
- DUNE:
 - Long baseline (1285 km) with large matter effects to resolve mass ordering
 - Broad-band neutrino beam (0.5-5 GeV) to observe large range of L/E
 - Large O(10 kt) LArTPC detectors optimized for higher energy neutrino events.

DIGGING AND BUILDING FOR THE FUTURE

Tunnel for Hyper-Kamiokande

Start of cavern excavation for Hyper-K


Warm structure for **DUNE** cryostat

Anode wire system for **DUNE Far Detector**

Prototype module for **DUNE Near Detector**

New photosensors for Hyper-K

PPC 202 Daejeon, South Korea

SUMMARY

- Neutrinos: exemplar of connections between smallest and largest scales of the universe
 - Particle physics and cosmology
- Neutrino oscillations probe fundamental properties of the neutrino
 - Essential in understanding many issues in physics from understanding particle interactions to cosmology
 - Essential questions about mass ordering and CP violation are still unresolved
- We still have fundamental questions to understand about neutrinos:
 - What are the full implications of their mass/mixing?
 - What determines the value of neutrino mixing parameters and masses?

Grojean, Day 1

- I was told that neutrino physics is "entering the golden era" 20 years ago
 - It seems the golden era will continue for at least a few more decades!
 - A new generation of ambitious experiments are under construction!