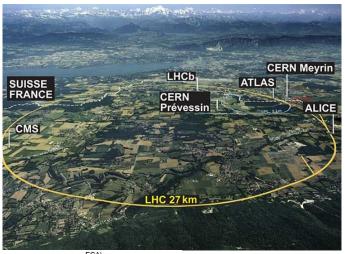
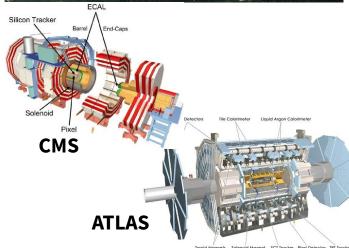


BSM Higgs, DM, & W' Searches at the LHC

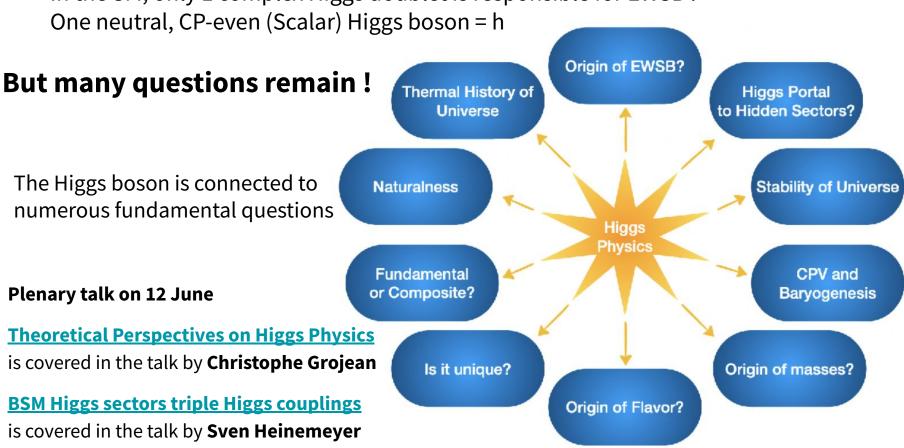
<u>JeongEun Lee</u> on behalf of ATLAS and CMS
Seoul National University


PPC 2023, IBS Daejeon, Korea 2023/June/12-16



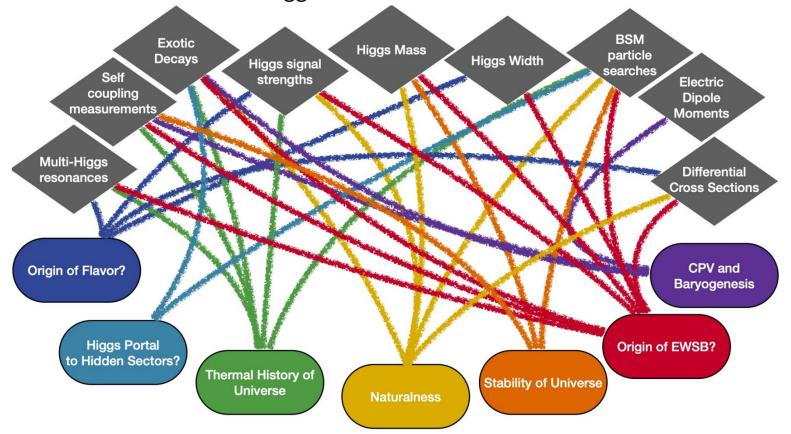
Testing BSM Physics at the LHC

- **LHC** is world's most powerful discovery machine
 - Hope to find hints of BSM physics in direct searches and measurements as well
- Program driven by BSM and experimental results
 - Explaining unresolved mysteries in SM
 - Hierarchy problem, Unification, Dark matter, neutrino mass, Matter-antimatter asymmetry ...
 - Strong hints from measurements
 - μ g-2, B-anomalies, direct detection of DM, cosmological constraints, neutrino oscillation ...
- Program driven by signatures in detector
 - Trigger and reconstruction algorithm are important
 - Improving techniques (ML) to explore more exotic world
 - Allow us to test new signature, more sensitivity



Higgs Physics @ LHC

In the SM, only 1 complex Higgs doublet is responsible for EWSB:



BSM Higgs @ LHC

 Examples of the interplay between experimental observables and fundamental questions connected to the Higgs boson

BSM Higgs Models @ LHC

- There are many interesting BSM models to guide us at the LHC:
 Higgs Singlet, 2HDMs, 2HDM+a, Composite Higgs, Higgs portal to Dark matter, FCNC ...
- Two Higgs Doublet Model (2HDM) extends BSM Higgs sector to include 2 complex H doublets (CP-even) h, H, (CP-odd) A, H⁺, H⁻
 - \circ Parameter: mass, tan β (ratio of vev, v2/v1), α (mixing angle between the h, H)
 - Type 1 : One doublet couples to V(fermiophobic), one to fermions
 - Type 2: MSSM like model, one doublet couples to up-type quark, one to down-type quarks
 - Type 3: Lepton-specific model, same coupling to quarks as Type 1 & to lepton as Type 2
 - **Type 4**: Flipped model, same coupling to quarks as Type 2 & to lepton as Type 1
- **2HDM+S:** This model is an extension of 2HDM with an **additional EWK scalar singlet**.
- Minimal Super Symmetry SM (MSSM) provides an elegant solution to the hierarchy problem, and potential Dark matter candidate
 - More specific MSSM model Mh¹²⁵ fully determined at tree-level by m_Δ and tanβ
 - The NMSSM is a particular case of 2HDM+S Type 2.
- In MSSM/2HDM Type 2, the couplings to **b-quarks** and **τ-leptons** are enhanced at high tanβ

How to Search for BSM Higgs @ LHC

- At the LHC, large group of BSM Higgs searches being covered with full Run-2
 - Only a few instructive and very recent results will be showing.

BSM particle searches Exotic

Additional Higgs, neutral H, A Charged H^{+/-} H⁺⁺

ATLAS-CONF-2023-035 CMS-PAS-HIG-20-002 ATLAS-PHYS-PUB-2022-043 CMS public Higgs Summary Plot

ATLAS HDBS-2020-12 ATLAS-CONF-2023-034 The width of the observed resonance is very narrow, small coupling to BSM particles can lead to observable exotic decays of the Higgs boson at the LHC

LFV, h→ ll'

arxiv:2302.05225v1 CMS-PAS-HIG-22-002

Light pseudoscalar h→aa

CMS-PAS-HIG-22-007 ATLAS HDBS-2020-12 arxiv:2208.01469

arxiv:2209.06197

h→Invisible, h→ dark photons arxiv:2301.10731

arxiv:2303.01214

ATLAS HDBS-2019-13 ATLAS-CONF-2023-016

Multi-Higgs resonances

Decays

X → HH Searches ATLAS-CONF-2021-052

CMS public Higgs Summary Results

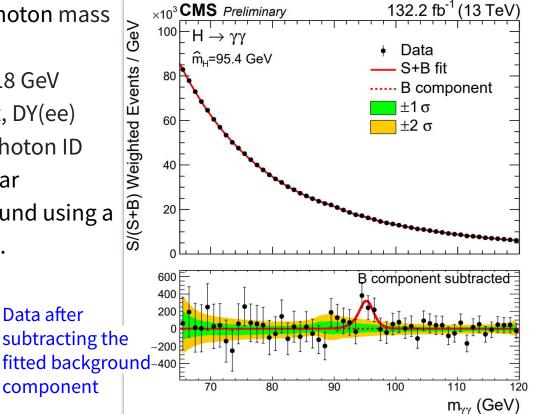
X → HY Searches ATLAS-CONF-2023-031

Many other list can be found in

ATLAS Publication List CMS Publication List

Low mass SM-like H → yy Search

Is the 125 GeV Higgs the lightest Higgs?

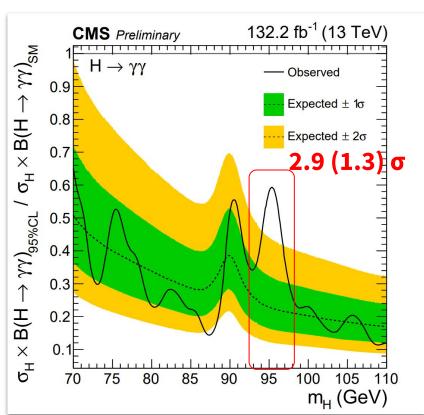

- Search for SM-like Higgs in di-photon mass spectrum, **70 - 110 GeV**
- Diphoton triggers with $p_{T} > 30$, 18 GeV
- Background : SM $\gamma\gamma$, dijet, γ +jet, DY(ee)
- Event selection based on BDT photon ID
- Event classes with extra jet & year
- Extract Signal from the Background using a parametric fit to diphoton mass.

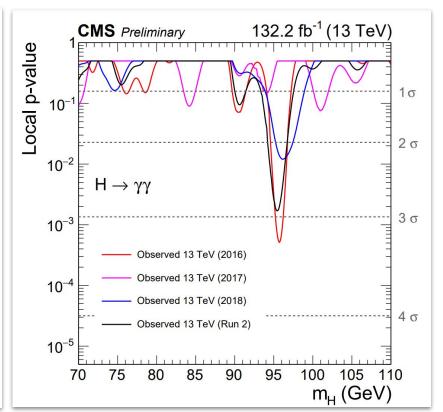
A previous CMS result at 8+13 TeV Local (global) significance of 2.8σ (1.3σ) @ 95.3 GeV.

Phys. Lett. B 793 (2019) 320

mass hypothesis of 95.4GeV

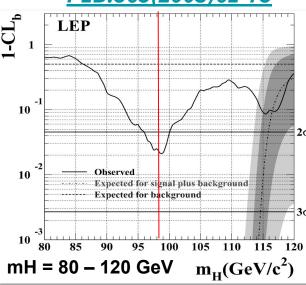
Result of a fit of the S+B model under a


Data after



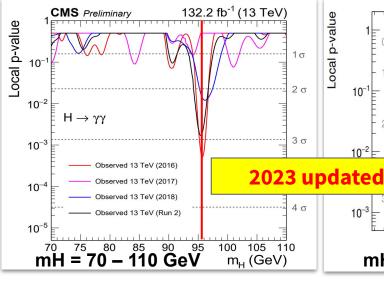
Low mass SM-like H → yy Search

Maximum observed excess for a mass hypothesis of 95.4 GeV with local (global) significance of 2.9σ (1.3σ).
 first result using full Run-2


Low mass H → yy Search

Observed

LEP experiment (2003 July)


PLB.565(2003)61-75

2461 pb⁻¹ of e⁺e⁻ collision data @ c.o.m energy = 189-209 GeV local 2.3 σ @ m н ≈ 98 GeV

CMS experiment (2023 March) **CMS-PAS-HIG-20-002**

132.2 fb⁻¹ of pp collision data @ c.o.m energy = 13 TeV local 2.9 σ @ m_H ≈ 95.4 GeV

140 fb⁻¹ of pp collision data @ c.o.m energy = 13 TeV local 1.7 σ @ m_H ≈ 95.4 GeV

mH = 66 - 110 GeV

ATLAS experiment

(2023 June)!!

ATLAS-CONF-2023-035

ATLAS Preliminary

√s=13 TeV, 140 fb⁻¹

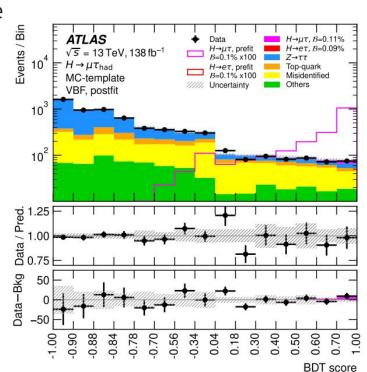
No significant excess with respect to the background-only hypothesis is observed.

m_H [GeV]

LFV H $\rightarrow e^{\pm} \tau^{\mp} / \mu^{\pm} \tau^{\mp}$ Search

 $\tau \rightarrow hadrons + v$

- Search for the **Lepton Flavor Violating** decays of 125 GeV Higgs (eτ, μτ).
- In the SM, Higgs couplings are diagonal Y_{ii}
- The discovery of LFV would suggest a Flavor Structure

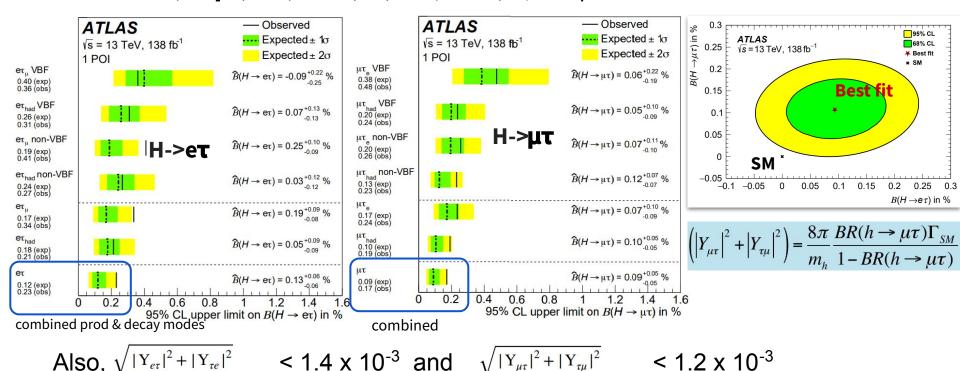

LFV Decay widths

$$\Gamma(\mathrm{H}
ightarrow \ell^{lpha}\ell^{eta}) = rac{m_{\mathrm{H}}}{8\pi}(|Y_{\ell^{lpha}\ell^{eta}}|^2 + |Y_{\ell^{eta}\ell^{lpha}}|^2)$$

Branching ratios

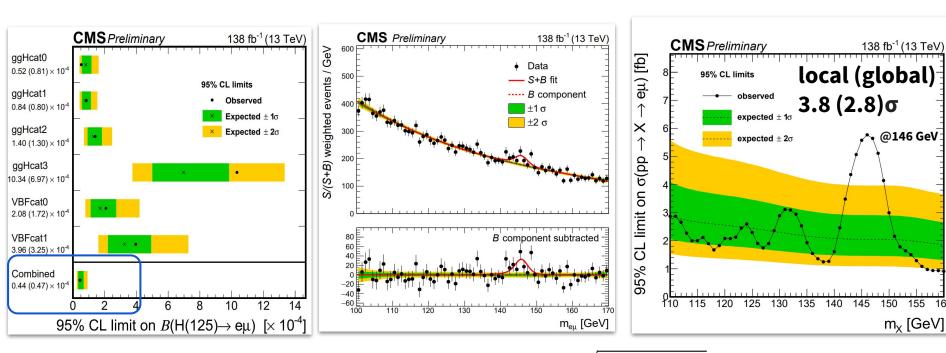
$$\mathcal{B}(H \to \ell^\alpha \ell^\beta) = \frac{\Gamma(H \to \ell^\alpha \ell^\beta)}{\Gamma(H \to \ell^\alpha \ell^\beta) + \Gamma_{SM}}$$

 Multivariate techniques like BDT and DNN are employed to achieve maximum separation between signal and background to enhance sensitivity



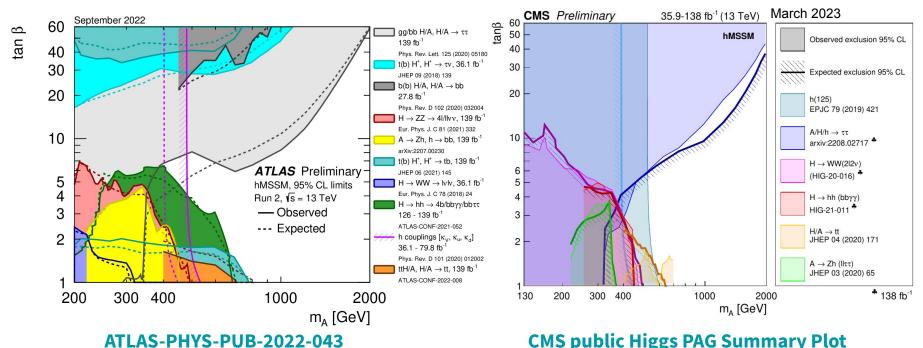
LFV H → e[±]τ[∓] / μ[±] τ[∓] Search

- Observed (expected) limits at 95% CL:
 BR(H->eτ)< 0.23 % (0.12 %) & BR(H->μτ) < 0.17 % (0.09 %)
- Best-fit BR(\mathbf{H} -> $\mu \mathbf{T}$)-BR(\mathbf{H} ->e \mathbf{T}) = (0.2 +/- 0.12)%, compatible with zero within 2.5 σ



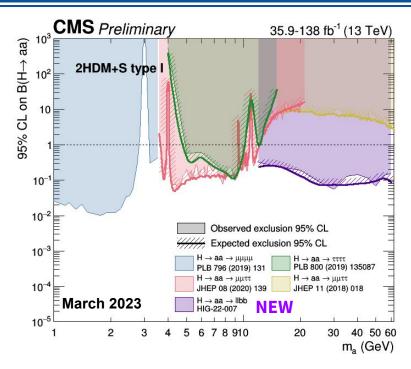
LFV H, X → e[±]µ[∓] Search

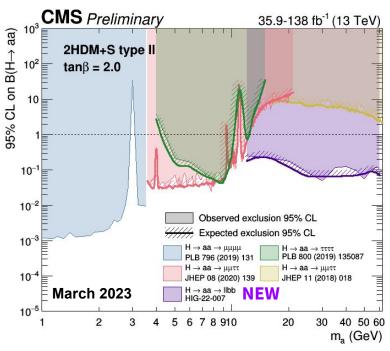
- Search for 'both' SM and BSM Higgs boson H, X→eµ, where 110 < m_x < 160 GeV, following a bump hunt strategy.
- Obs (exp) BR: BR($\mathbf{H}_{125} \rightarrow \mathbf{e}\mu$) < 0.0044 % (0.0047 %)


Also, set obs. upper limits on LFV Yukawa coupling: $\sqrt{|Y_{e\mu}|^2 + |Y_{\mu e}|^2} < 1.9 \times 10^{-4}$

Combining into hMSSM

Results for MSSM Higgs Boson Search : h_{125} interpreted as lower mass Higgs boson Regions of the $[m_{\Delta}, \tan \beta]$ plane excluded in the hMSSM via direct searches for heavy Higgs boson

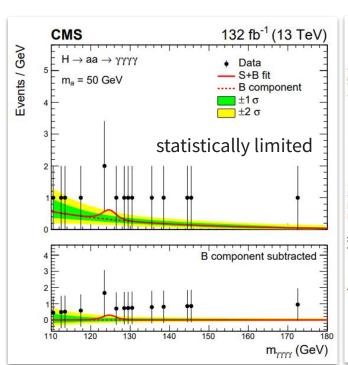


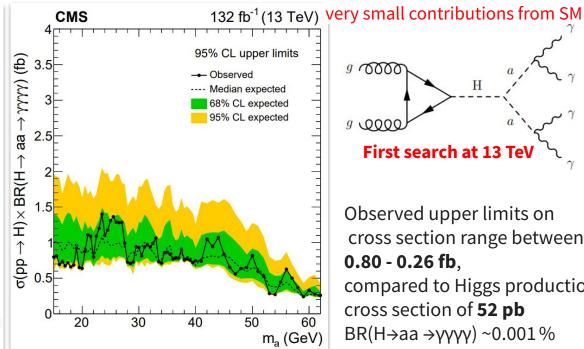

CMS public Higgs PAG Summary Plot

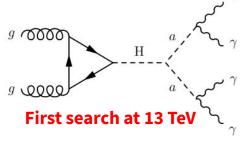
H→aa combining into 2HDM+S

- BR(H→aa) depend on the Types and model parameters.
- Typically searched **light Ma < MH/2**
- Assuming the S has no direct Yukawa couplings, coupling to fermions are a result of mixing with the Higgs sector.

Exotic decay mode:


SM H → aa search can constraint 2HDM+S that conserve observed features of the SM.




$H \rightarrow aa \rightarrow 4\gamma$ Search

- Search for SM-like $H\rightarrow aa \rightarrow \gamma\gamma\gamma\gamma$: well isolated four photons (resolved):
- $\Delta R(\gamma, \gamma)$ or $\Delta R(\gamma\gamma, \gamma\gamma) > 0.2 \Rightarrow$ Probes the pseudoscalar mass range **15 < m(a) < 62 GeV**
- To improve sensitivity, train a 4 photon event classifier using variables uncorrelated to m(4y) and look for a 125 GeV resonance in the m(4y) spectrum of the signal-like events.

Observed upper limits on cross section range between 0.80 - 0.26 fb. compared to Higgs production cross section of 52 pb

BR($H \rightarrow aa \rightarrow yyyy$) ~0.001%

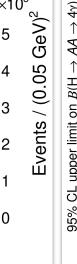
$H \rightarrow aa \rightarrow 4\gamma$ (Merged) Search

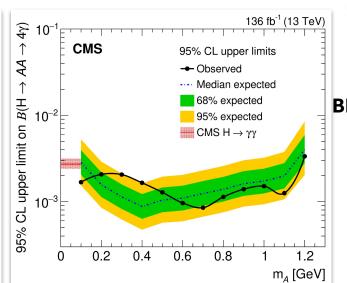
merged reco Γ

merged reco Γ

- Search for very low mass pseudoscalars decaying promptly to a merged di-photon
- Probes the pseudoscalar mass range m(a) < 1.2 GeV
- Probe merge Γ candidates in the SM H→γγ final state using novel photon reconstruction

technique of end-to-end deep learning


Fit 2D distribution of invariant masses $m(\Gamma_1)$ and $m(\Gamma_2)$


* First search in this topology 1.2 **CMS** 136 fb⁻¹ (13 TeV) $\times 10^3$ $m_A = 0.4 \text{ GeV}, 75\%$ $m_{A} = 0.4 \text{ GeV}, 50\%$

8.0

 $m_{\Gamma_{i}}$ [GeV]

0.4

H

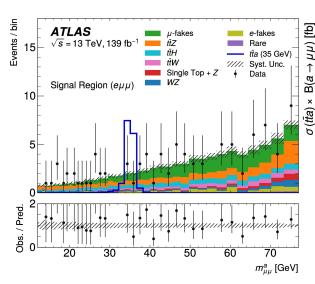
BR($H \rightarrow aa \rightarrow 4\gamma$) < (0.09-0.33) %

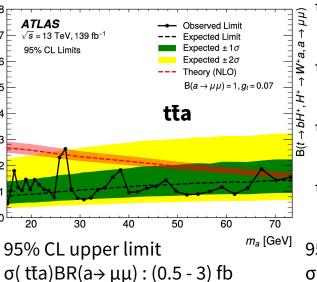
Best constraints for this decay mode in very low mass (0.1 < m < 1.2 GeV)

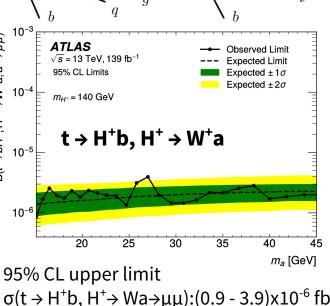
Physics Briefing

0.6

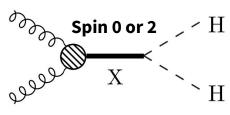
0.4


0.2

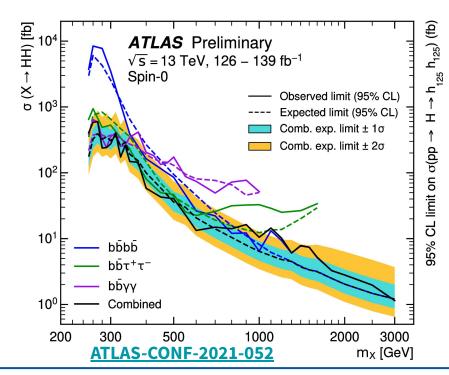


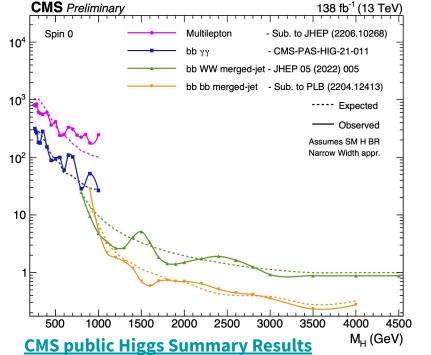

Light pseudoscalar a→µµ with tt

- Search for a **pseudoscalar a** produced with tt, where a decays $t \rightarrow H^+b$, $H^+ \rightarrow W^+a$
- into clean di-muon (high mass resolution)
- Focus on two direct productions: **tta**, tt with $\mathbf{t} \to \mathbf{H}^+ \to \mathbf{W}^+ \mathbf{a}^g$
- Predicted in 2HDM+S, NMSSM, Explain excess of galactic gamma-ray emission.
- **15 < m₂ <72 GeV** and **120 ≤ m**_{H±}≤**160 GeV**
- Mild excess at m_a =27 GeV: 2.4σ (local) ⇒ Run-3 data



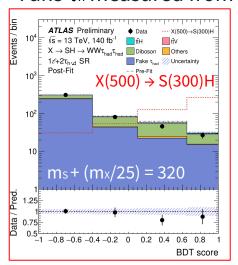
Summaries of resonant HH Search

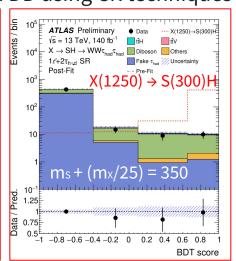


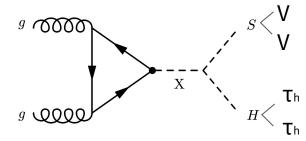

Higgs pair searches (full Run 2):

- **bbbb** (ATLAS, CMS), **bbWW** (CMS)
- **bbττ** (ATLAS), **bbγγ** (ATLAS, CMS)
- WWWW, WWTT, TTTT (CMS)

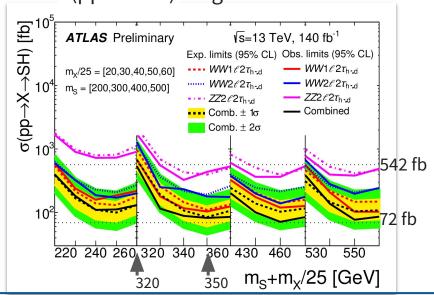
← Branching Ratio of HH → xxyy

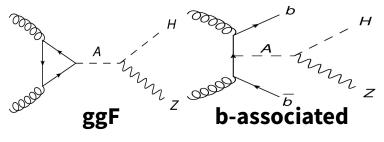

X → SH_{SM} → VVThTh Search

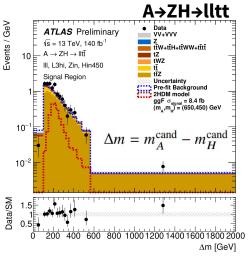


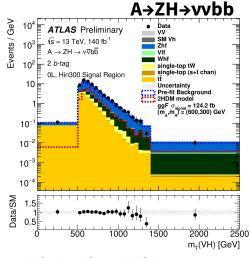

- Search for heavy scalar X → singlet (S)+ SM Higgs
- Appearing in 2HDM+X, NMSSM
- Mx: 500 1500 GeV, Ms: 200 500 GeV
- Require:

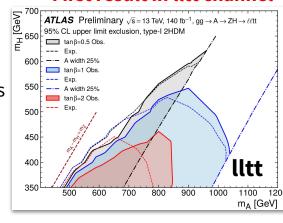
 $H \rightarrow \tau_h \tau_h$, S \rightarrow VV \rightarrow 1 or 2 leptons(= e, μ) WW \rightarrow lvqq' (1l), WW \rightarrow lvlv (2l), ZZ \rightarrow llqq, llvv (2l)


- Utilizes BDT discriminant parameterized over Mx
- Fake τ_h measured from DD using CR techniques

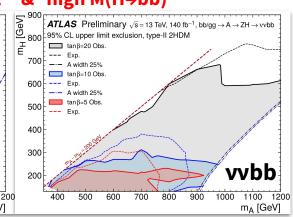

Resulting upper limits @ 95% CL : $\sigma(pp \rightarrow X \rightarrow SH)$ range : 72 - 542 fb




Aheavy → ZHheavy → lltt, vvbb Search

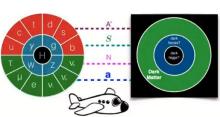


- 2HDM, baryogenesis: CP-odd M_A > M_H
- Consider mass ranges:
 MA > 800 GeV, MH > 350 GeV (2 x Mtop)
- **lltt Channel** : $Z \rightarrow ll$, $H \rightarrow tt$ (semi-L)
 - 3 leptons : eee, eeμ, eμμ, μμμ
 - ≧ 4 jets and exactly 2 b-tagged
- vvbb Channel: $Z \rightarrow vv$, $H \rightarrow bb$
 - \circ p_T^{miss} > 150 GeV, no charged leptons
 - ≥ 2 jets, exactly 2 b-tagged (ggF)
 or > 2 b-tagged (b-associated)
- Max. local significance of 2.85 σ at (M_A, M_H) = (650, 450) GeV for **lltt**

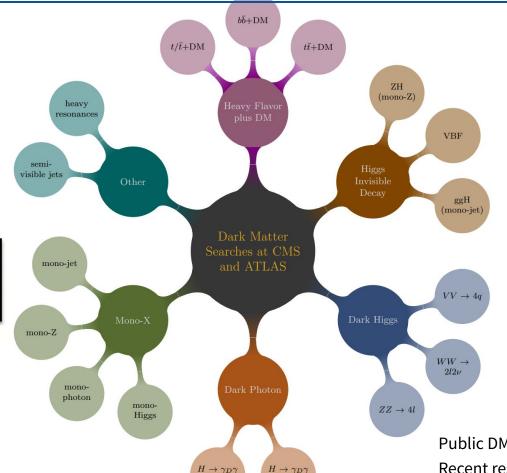


First result in lltt channel

& high M(H→bb)



Dark matter Search @ LHC


To extend our searches to unreached scale, we need to add additional particles on the top of dark matter.

Dark sector portals

- * dark photon $\epsilon B^{\mu\nu} A'_{\mu\nu}$ * dark scalar H $\kappa |H|^2 |S|^2$
- * sterile neutrino yHLN
- st ALP $g_{a\gamma}a ilde{F}_{\mu
 u}F^{\mu
 u}$

Stefania Gori *dark photon (A', γ_d...) *dark higgs (s, h_d...)

2HDM+a combination ATLAS-EXOT-2018-064

Summary of Higgs Invisible decay ATLAS <u>arxiv:2301.10731</u> CMS <u>arxiv:2303.01214</u>

mono-Higgs
ATLAS arxiv:2305.12938

dark higgs (WW+MET) CMS-PAS-EXO-21-012

dark photon(ZH→llγA')

ATLAS HDBS-2019-13

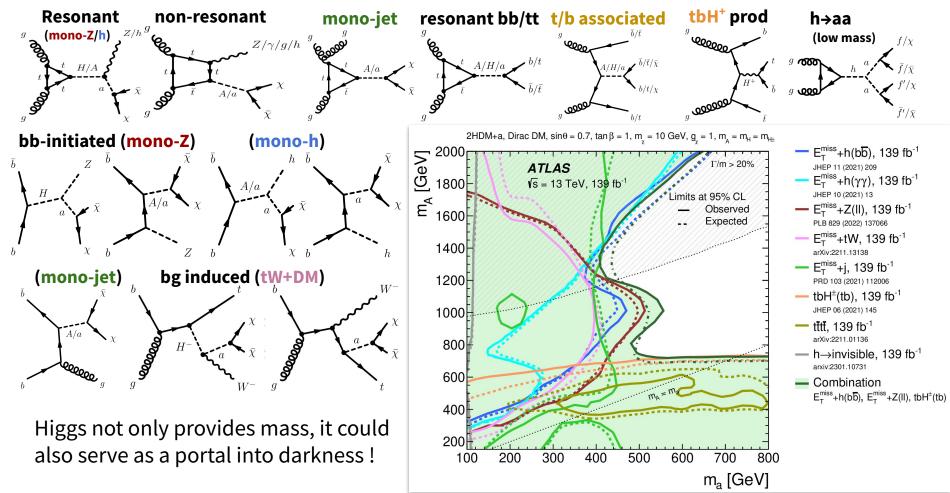
dark higgs dark photon (Z→h₀A')

ATLAS-CONF-2023-016

Public DM Results : <u>ATLAS</u>, <u>CMS</u>

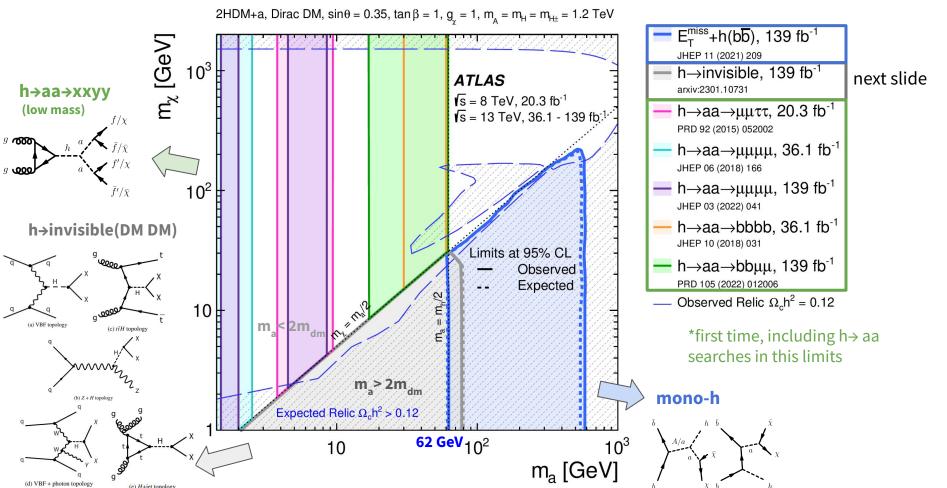
Recent results of Dark Sector @ LHCb

LHCb-TALK-2023-060


(ZH)

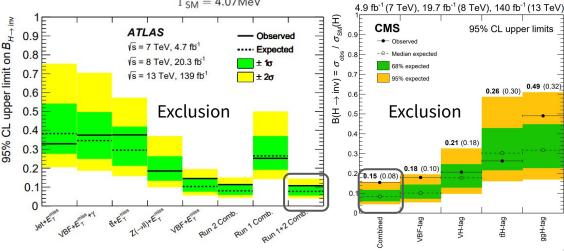
(VBF)

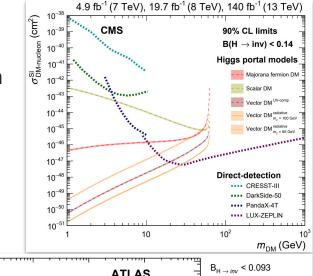
Combination of 2HDM+a DM Searches

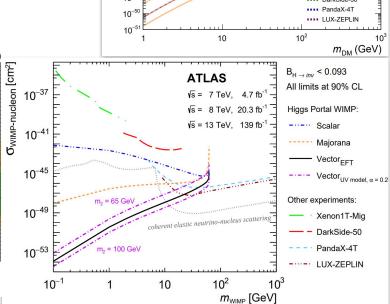


Combination of 2HDM+a DM Searches

Invisible Higgs decays

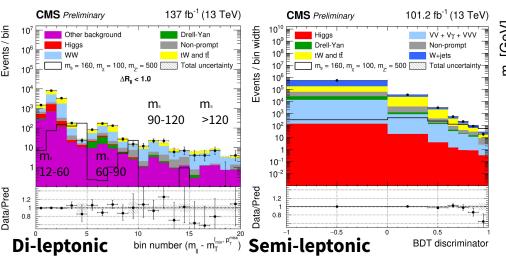

- Search for possible Higgs decay in Dark Matter
- SM expectation BR($H\rightarrow inv$) ~ 0.1 % (given by $ZZ^* \rightarrow 4v$)
 - ⇒ Enhanced decay in models, where m_{DM} < m_H/2 light enough
- Combination between all the signatures in Run 1+2

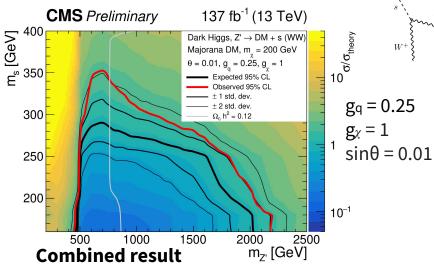

ATLAS: **BR(H→inv) < 10.7%** (7.7 % expected) @ 95% CL


CMS : **BR(H→inv) < 15%** (8 % expected) @ 95% CL

$$B(H \rightarrow inv) = \frac{\Gamma_{inv}}{\Gamma_{SM} + \Gamma_{inv}}$$

$$\Gamma_{SM} = 4.07 MeV$$

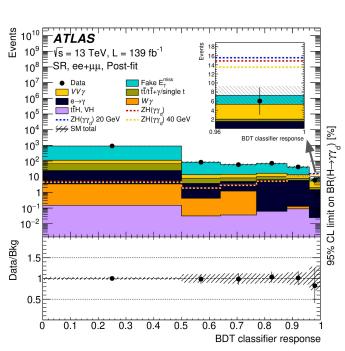


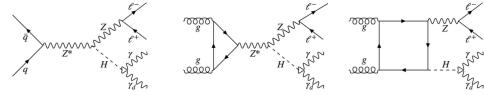


Dark higgs $(Z' \rightarrow s\chi\chi, s \rightarrow W^+W^-)$

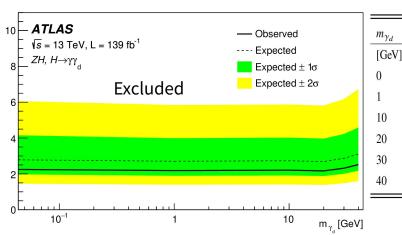
- CMS
- Search for Dark matter and dark higgs in **WW** (decay of dark Higgs singlet **s**) +**p**_T^{miss}
- m_{χ} : 100 300 GeV, $m_{Z'}$: 200–2500 GeV, m_{s} : 160 –400 GeV (WW highest BR)
- 2 final states : Di-leptonic ($\mu e, e\mu$) , Semi-leptonic(1 lep+ \geqq 2jets)
- Discriminators: (m_T of subleading lepton and p_T^{miss}- m_{II}) in di-leptonic channel ues BDT in semi-leptonic channel

Most stringent limit for m_{DM} = 200 GeV: m_s < 350 GeV exclude at m_{Z^t} = 700 GeV m_{Z^t} < 2200 GeV excludes at m_s = 160 GeV





Dark photons Search (ZH→llyy₁)



- Search for SM Higgs boson decaying into dark photon γ_d in VH production topology. (leptonic)
- Considering the signal with massless/massive γ_d
- A BDT has been used to distinguish signal events from the SM background
- Set constraint on BR (H→ γγ_d) ~ 2 %

95% CL exclusion limits on BR(H $\rightarrow \gamma \gamma_d$) for m γ_d

 $3.11^{+1.48}_{-0.93}$

 $BR(H \to \gamma \gamma_d)_{\rm exp}^{95\%}$

[%]

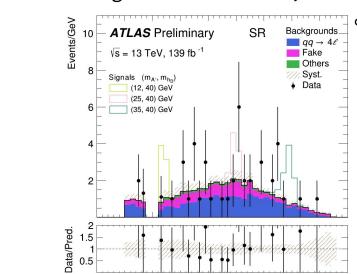
 $BR(H \to \gamma \gamma_d)_{obs}^{95\% CL}$

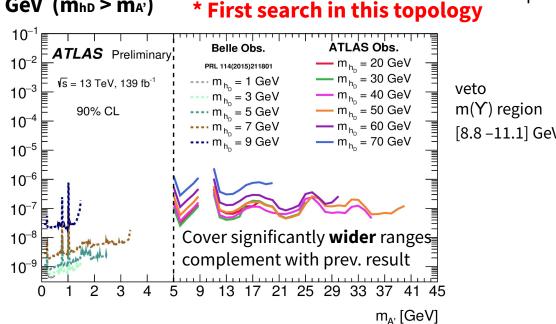
[%]

2.19

2.21

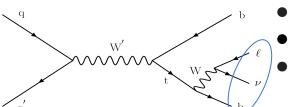
2.17


2.52

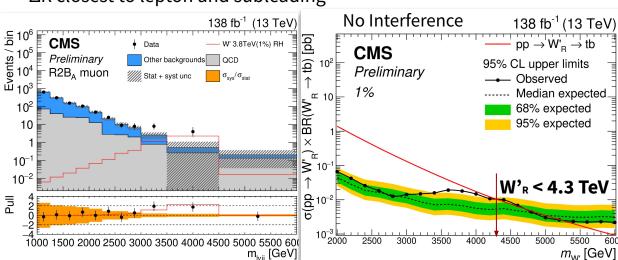

Dark photons Search (Z → A' hp, hp→ A'A'*)

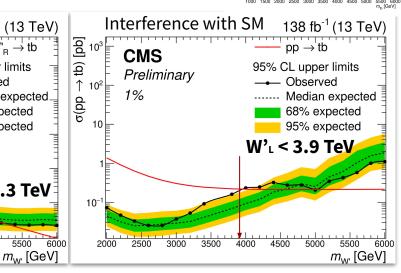
- A search for the dark photon A' produced in association with the dark Higgs boson h_□ via rare SM Z decays.
- **Higgs strahlung**: sensitive to coupling A'-SM (ε) and A'-h_D (α _D)
- In final state: at least two A's decay into pairs of leptons
- in final state . at least two As decay into **pairs of teptons**
- Discriminator: average dilepton mass $[\bar{m}_{\ell\ell} = (m_{\ell_1\ell_2} + m_{\ell_3\ell_4})/2]$

Focusing on $m_{A'}$: 5 -40 GeV, m_{HD} : 70 GeV ($m_{HD} > m_{A'}$)


[GeV]

W' → tb Search

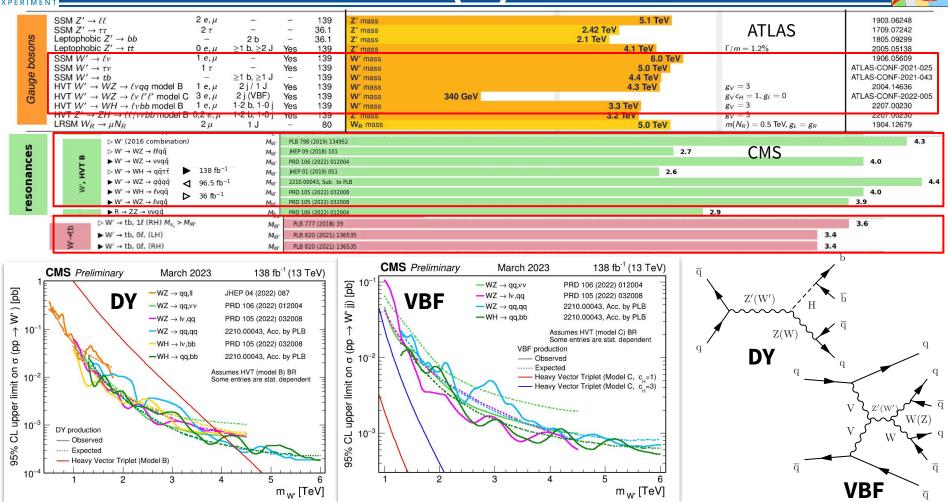

Selecting jet from top decay
M(lvj) closest to top mass
ΔR closest to lepton and subleading



Probe different width scenarios(Γw/Mw): 1, 10, 20, 30%

Categorization based on N_b and b-tagging condition of top jet and W' jet

Largest local (global) excess around W'@3.8 TeV for 1 % width with significance : 2.6 σ (2.0 σ)



W' → WZ(H) Search

Conclusion

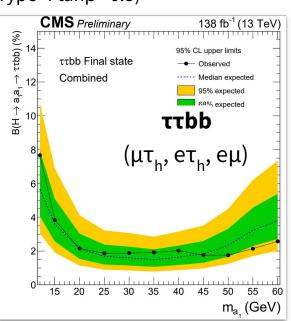
- A lot of progress in BSM Higgs, W', and DM searches have made with LHC Run-2 datasets with excellent ATLAS and CMS detectors.
- Some of mild excesses worth keeping an eye on, but no convincing sign of BSM physics have shown up yet.
- A special role will be covered by the Higgs boson
- LHC data will be 2 times in size for Run 3 (2022-2025), and up to 10 times in size for the high-luminosity LHC (expected 2029 -)
- Run 3 will provide a significant boost in statistics to search for New Physics.

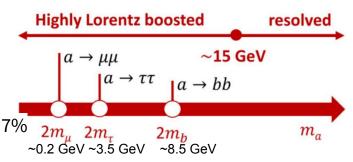
Stay tuned for many more interesting results with Run-2 & Run-3!!!

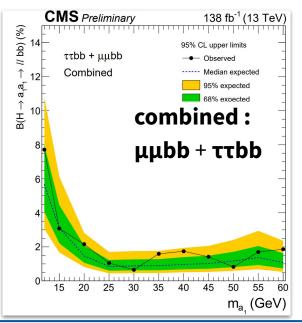
Backup

Thank you for your attention




$H \rightarrow aa \rightarrow \mu\mu bb$, $\tau\tau bb$ Search




- Covers range **15,12 < m(a) < 62 GeV** (Resolved)
- Type-independent limits on BR($H \rightarrow aa \rightarrow llbb$) in **2HDM+S** are derived combining μμbb + ττbb as a function of **m**
- **μμbb** + **ττbb** combination : BR($H\rightarrow aa$) values excluded above 23% (Typ-2 tan $\beta > 1$),

 $(Type-3 tan\beta = 2.0)$, and 15 % $(Type-4 tan\beta = 0.5)$

LFV H $\rightarrow e^{\pm} \tau^{\mp} / \mu^{\pm} \tau^{\mp}$ Search

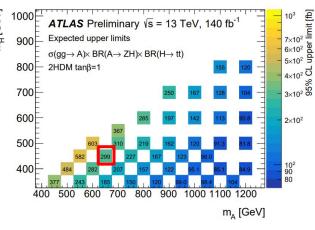
- Background
- The top-quark processes :34%–54% of the total background, $Z \rightarrow \tau\tau$: 23% (11%) of the total background in the non-VBF (VBF) SR
- Diboson:19%–32% of the total background, $Z \rightarrow \mu\mu$: 2% (sizable on $\mu\tau$)
- Misidentified : A data-driven method is used → contribution from events having at least one light lepton <u>originating from heavy-flavour decays, photon conversion, a jet</u> or a <u>th</u> misidentified as a light lepton

Selection	$\ell au_{\ell'}$	$\ell au_{ m had}$				
	exactly $1e$ and 1μ , OS	exactly 1ℓ and $1\tau_{\text{had-vis}}$, OS				
	$ au_{ m had}$ -veto	$ au_{ m had}$ Tight ID				
Danalina		Medium eBDT ($e\tau_{\rm had}$)				
Baseline	b-veto	b-veto				
	$p_{\rm T}^{\ell_1} > 45 (35) {\rm GeV MC\text{-}template (Symmetry method)}$	$p_{\rm T}^{\ell} > 27.3 {\rm GeV}$				
	$p_{\rm T}^{\ell_2} > 15 {\rm GeV}$	$p_{\mathrm{T}}^{\tau_{\mathrm{had}\text{-vis}}} > 25 \mathrm{GeV}, \eta^{\tau_{\mathrm{had}\text{-vis}}} < 2.4$				
	$30 \text{GeV} < m_{\ell_1 \ell_2} < 150 \text{GeV}$	$\sum \cos \Delta \phi(i, E_{\rm T}^{\rm miss}) > -0.35$				
	4.1	$i=\ell, \overline{\tau_{\text{had-vis}}}$				
	$0.2 < p_{\rm T}^{\rm track}(\ell_2 = e)/p_{\rm T}^{\rm cluster}(\ell_2 = e) < 1.25 \text{ (MC-template)}$	$ \Delta \eta(\ell, \tau_{\text{had-vis}}) < 2$				
	track d_0 significance requirement (see text)					
	$ z_0\sin\theta <0.5\mathrm{mm}$					
	Baseline					
VBF	$\geq 2 \text{ jets}, p_{\rm T}^{\rm j_1} > 40 {\rm GeV}, p_{\rm T}^{\rm j_2} > 30 {\rm GeV}$					
	$ \Delta \eta_{\rm jj} > 3$, $m_{\rm jj} > 400{\rm GeV}$					
	Baseline plus fail VBF categorisation					
non-VBF	<u> </u>	veto events if				
	-	$90 < m_{\rm vis}(e, \tau_{\rm had-vis}) < 100 {\rm GeV}$				

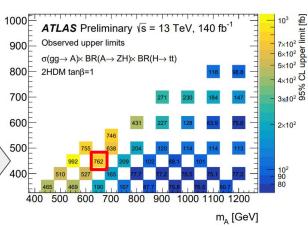
Systematic unvertainties

1 POI	Impact on observed [10 ⁻⁴]			
Source of uncertainty	$\hat{\mathcal{B}}(H \to e\tau)$	$\hat{\mathcal{B}}(H \to \mu \tau)$		
Flavour tagging	0.6	0.4		
Misidentified background ($\ell \tau_{had}$)	2.1	1.5		
Misidentified background $(\ell \tau_{\ell'})$	2.9	1.6		
Jet and $E_{\mathrm{T}}^{\mathrm{miss}}$	1.1	1.1		
Electrons and muons	0.2	0.5		
Luminosity	0.6	0.5		
Hadronic τ decays	0.9	1.0		
Theory (signal)	0.9	0.7		
Theory $(Z + jets processes)$	1.0	1.2		
Theory (top-quark processes)	0.3	0.3		
Theory (diboson processes)	0.4	0.7		
$Z \to \ell \ell$ normalisation	0.2	0.7		
Symmetric background estimate	0.2	0.1		
Background sample size	4.2	2.4		
Total systematic uncertainty	5.3	3.9		
Data sample size	2.9	2.7		
Total	6.1	4.7		

Heavy A → ZH_{heavy} → lltt, vvbb


Table 2: Event selection for the $\ell^+\ell^-t\bar{t}$ channel. SR, CR and VR next to the region name indicate that this region is $\frac{1}{2}$

Cut	Regions						
Cut	ss (CR)	L3hi_Zout (VR)	Hlo/Hhi(CR)	Hin (SR)	L3lo_Zin (VR)
N leptons				3			
$p_{\mathrm{T}}\left(\ell_{1} ight)$				> 27 GeV			
N jets	≥ 4						
N b-jets	2						
$\left \eta_{H ext{-cand}}^{ ext{ZH-r.fr.}} ight $	$< 2.2 + 0.0004 \cdot m_H^{\text{cand}} - 0.0011 \cdot m_A^{\text{cand}}$						
$p_{\mathrm{T}}\left(\ell_{3}\right)$	> 13 GeV		,	> 7 GeV & < 13 GeV			
Lepton flavour	ееµ/µµе		еее/ееµ/µµе/µµµ				
OSSF lepton pairs	0	≥ 1					
$ m_Z^{\mathrm{cand}} - m_Z $	< 20 GeV	> 10 GeV & <	20 GeV		< 10	GeV	
$m_H^{\text{cand}} - m_H^{\text{hypo}} \mid \begin{array}{c} m_H^{\text{hypo}} < 500 \text{ GeV} \\ m_H^{\text{hypo}} > 500 \text{ GeV} \end{array}$		·-		$> 0.32 \cdot m_H^{\text{hypo}}$	$< 0.32 \cdot m$		_
$\frac{1}{H} - m_H + \frac{1}{m_{\text{hypo}}} > 500 \text{ GeV}$				$> 0.24 \cdot m_H^{\text{hypo}}$	$< 0.24 \cdot m^{\rm l}$	hypo	**


Table 3: Event selection for the $v\bar{v}b\bar{b}$ channel. SR, CR and VR next to the region name indicate that this region is m_H [GeV] used as a signal, control or validation region in the fit, respectively.

A>ZH>vvbb

Cut	Regions						
Cut	2L (CR)	eμ (CR)	1L (VR)	Hlo/Hh	ni (CR)	Hin (SR)	
N jets			2-5		١ .		
N b-jets	> 2		2				
$m_H^{\rm cand}$	> 50 GeV		GeV				
N hadronically decaying τ-leptons			0				
$p_{\mathrm{T}}(V)$		> 150 GeV					
$\min_i \Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \vec{p}_i^{\mathrm{jet}})$			$> \pi/10$				
5 353			< 3.3 (2 <i>b</i> -jets)				
$\Delta R(b_1,b_2)$			< 3.5 (≥				
N leptons	2		1		0		
Lepton flavour	ее/µµ	еμ	e/µ		-		
$p_{\mathrm{T}}(\ell_1)$	> 27 GeV				-		
$ m_Z^{\text{cand}} - m_Z $	< 10 GeV			-			
$S_{ m MET}$	< 5		> 3		> 1	0	
$m_{\mathrm{top}}^{\mathrm{near}}$	-				> 180 GeV		
m far top					> 200	GeV	
$ m_{II}^{\rm cand} - m_{II}^{\rm hypo} $		(2)		> 0.2	m hypo	$< 0.2 \cdot m_{H}^{\text{hyp}}$	

(a) $\ell^+\ell^-t\bar{t}$, $\tan\beta = 1$, expected

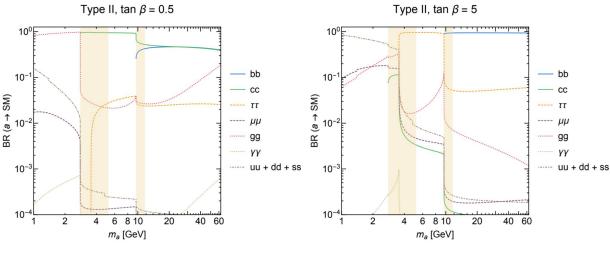
(b) $\ell^+\ell^-t\bar{t}$, $\tan\beta = 1$, observed

Max. local

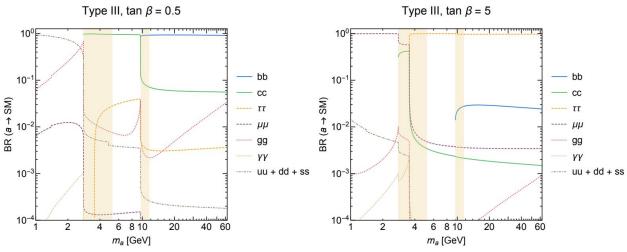
 2.85σ

for **lltt**

significance of


at (MA, MH) =

(650, 450) GeV


BR(h→aa) in 2HDM+S

Predicted BR of a→SM

Decays to quarkonia likely invalidate our simple calculations in the shaded regions.

Phys. Rev. D 90 (2014) 075004

Jeongeun Lee (SNU), 15 June 2023

End-to-end DL to reconstruct merging

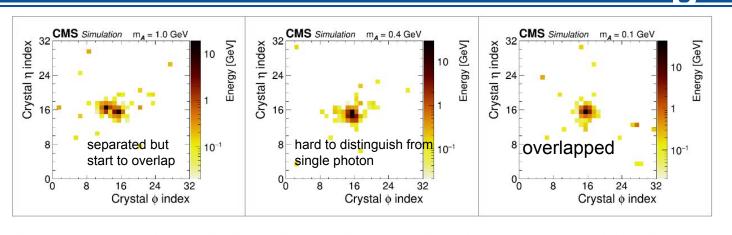
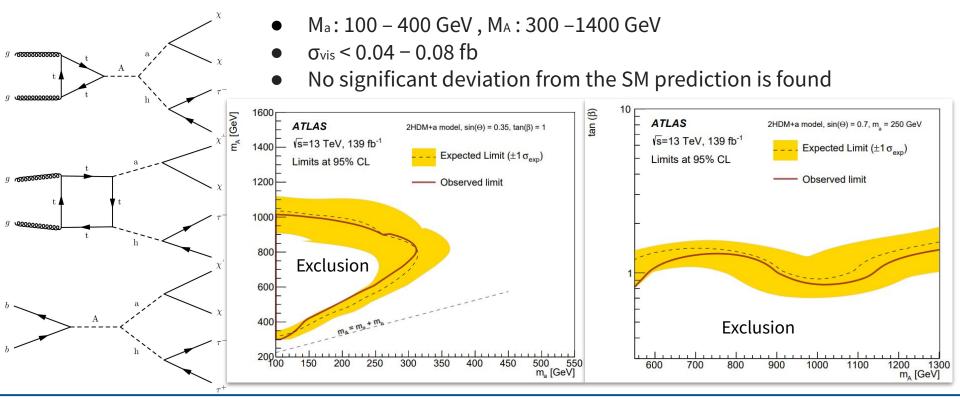
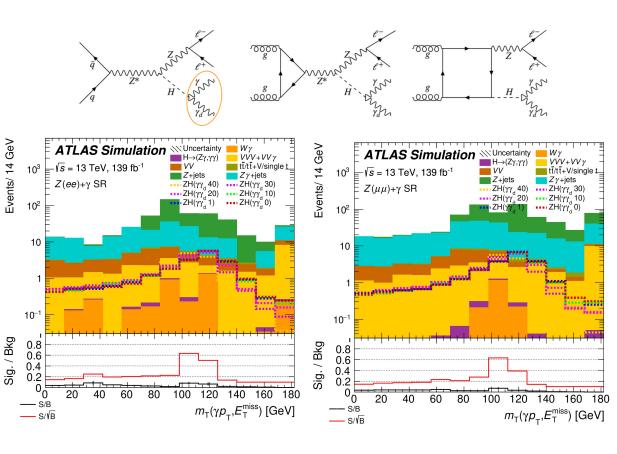


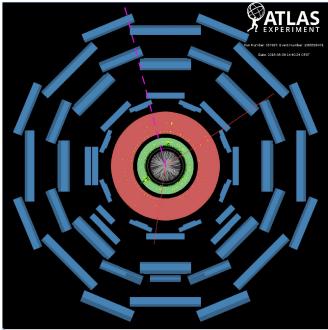
Fig 1. The energy signature of a single $A \rightarrow \gamma \gamma$ decay as it would be seen by the CMS ECAL. The energy deposits are indexed by their positions in azimuth (ϕ) and pseudorapidity (η). For ALP masses of mA = 1.0 GeV (left), the two photon clusters are separated but begin to overlap. This merging makes it difficult to distinguish the $A \rightarrow \gamma \gamma$ energy pattern from that of a single photon. For mA = 0.4 GeV (middle), the overlap is even stronger, though distinct cluster maxima remain visible. At mA = 0.1 GeV (right), the merging is such that the two photons land in the same crystal. These fully overlapping energy clusters are impossible to distinguish from the cluster of a single photon, except through the use of Al.

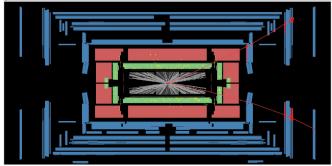
End-to-end deep learning: the technique bypasses existing rule-based particle reconstruction methods typically used in high energy physics analyses. It uses minimally processed detector data as input and directly outputs particle properties of interest.


Using inputs that are as unfiltered and informationally rich as possible!

Mono-Higgs Search (A→Ha →ττ χχ)


- Search for dark matter (DM) appears as p_{τ}^{miss} in association with a SM Higgs boson
- In 2HDM+a, pseudoscalar singlet 'a' could be a mediator between SM and DM
- First exploration of mono-H \rightarrow $\tau\tau$ signature with hadronically decaying τ h





Dark photons Search (ZH→llγγ₀)

BSM Higgs Model

Model	Higgs spectrum	Possible H pair mode from resonant			
SM+Real Singlet (RxSM)	dark phase : hsм, DM , broken phase : hsм, S	DM DM, hsm hsm, S S			
SM+2Real Singlet (TRSM)	broken phase : hsm, H1, H2	hsм hsм, H1 H1, H2 H2, H1 H2, hsм H1			
SM+Complex Singlet (CxSM)	dark phase: hsm, S, DM, broken phase: hsm, H1, H2	hsм hsм, S S, DM DM, H1 H1, H2 H2, H1 H2, hsм H1			
2 Higgs Doublets (2HDM)	CP conserving: hsm,H,A	hsм hsм, Н Н			
2 Higgs Doublets , SUSY (MSSM)	CP conserving: hsm,H,A	hsм hsм, not H H (due to constraints)			
2 Doublets, 3 Higgses Mix (C2HDM)	CP violating: hsm, H1, H2	hsм hsм, H1 H1 , H2 H2 , H1 H2 ,hsм H1			
2 Doublets, 1 Real Singlet (N2HDM)	hsм, H1, H2, A	hsм hsм, H1 H1, H2 H2, H1 H2, hsм H1			
2 Doublets+1 Complex Singlet (2HDM+S)	hsм, H1, H2, A1, A2	hsм hsм, H1 H1, H2 H2, H1 H2, hsм H1, hsм A1, A1H1, A1H2			
2 Doublets+1 Complex Singlet, SUSY (NMSSM)	hsм, H1, H2, A1, A2	hsm hsm, H1 H1, hsm H1, hsm A1, A1H1 (not H2 H2, A1H2, H1 H2, due to constraints)			