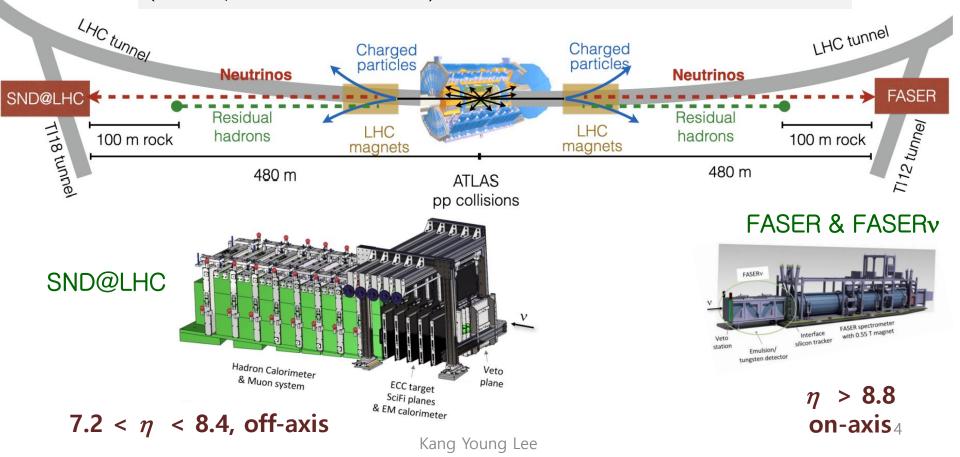


SND@LHC SCATTERING AND NEUTRINO DETECTOR AT LHC

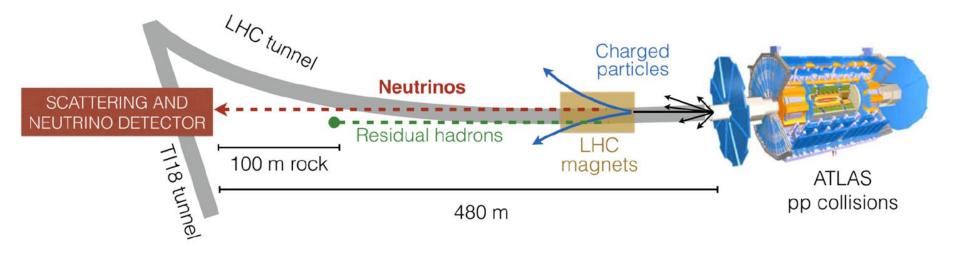
KANG YOUNG LEE
GNU
ON BEHALF OF SND@LHC COLLABORATION

Outline

- Introduction
- SND@LHC
- Analyses & Results
- Conclusion

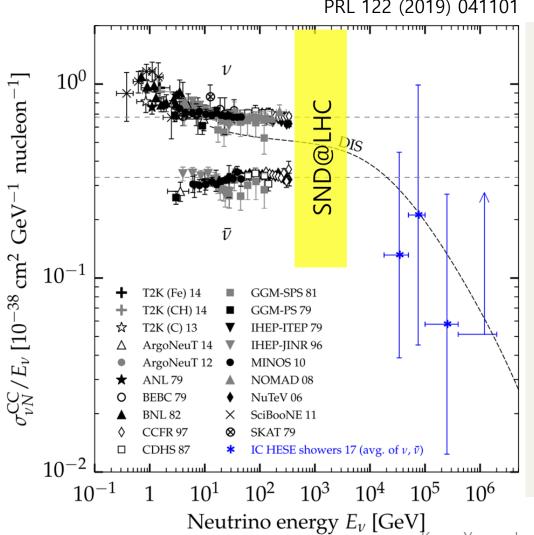

Introduction

Forward Experiments at the LHC


Physics in the Forward Region

 10^{16} inelastic pp scattering events for LHC Run 3 10^{17} π^0 , 10^{16} η , 10^{15} D, 10^{13} B, ... expected for each hemisphere (13 TeV, 150 fb⁻¹ assumed)

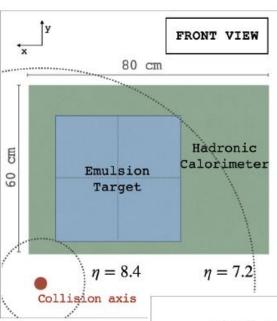
The SND@LHC


- 480 m away from the ATLAS interaction point (IP1)
- Located in the TI18 tunnel, former positron transfer line to LEP
- Shielded by 100 m rock
- LHC magnet deflects charged particles
- Neutrinos and (if exist) feebly interacting particles (FIPs) arrive at the detector

Neutrinos at the LHC

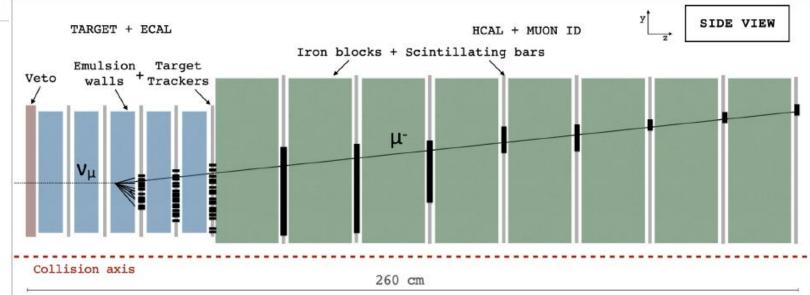
Kang Young Lee

The LHC neutrinos are interesting because...

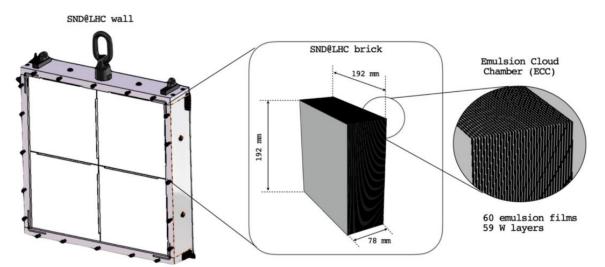

- First observation of the collider neutrinos
- High energy neutrinos of not explored region, 300 GeV ~ a few TeV
- Large fluxes in the forward region
- All the 3 flavour neutrinos can be observed.

SND@LHC

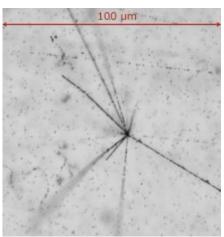
The SND@LHC Detector



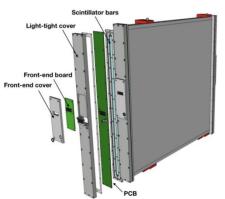
Hybrid detector optimised for the identification of all three neutrino flavours and the FIPs


- Veto plane
- Vertex detector and EM calorimeter (\sim 40 X_0): ECC and SciFi
- Hadron calorimeter and muon system (\sim 10 λ)

Detector paper: arXiv 2210.02784 to appear on JINST



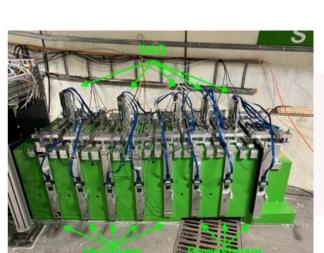
Emulsion Cloud Chamber


Emulsion target

- Emulsion cloud chamber (ECC) brick consists of 60 emulsion films interleaved with 59 tungsten plates
- Total tungsten mass 830 kg
- 5 walls x 4 bricks x 60 emulsion films
- Replaced every 20 fb⁻¹

Kang Young Lee

Other Detector Components



Veto system

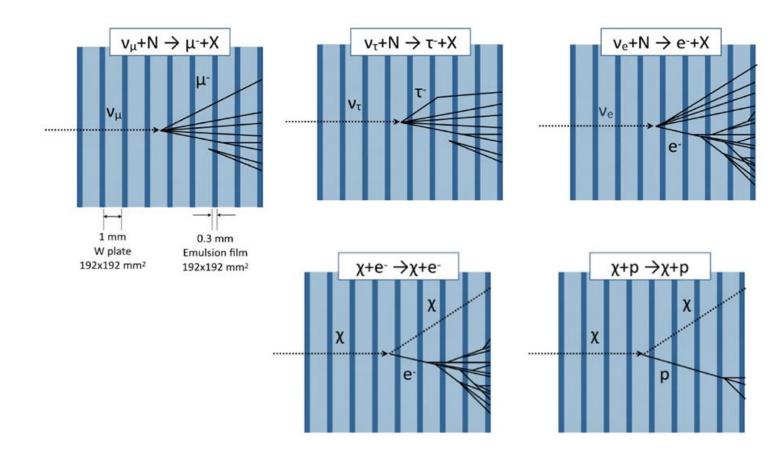
- Tags incoming charged particles and consists of 2 planes with 7 Sci bars

SciFi detector

- Scintillating Fiber detectors interface emulsion with electronic detectors for position prediction and timing of outgoing particles.
- Electromagnetic calorimetry

Hadronic calorimeter and muon system

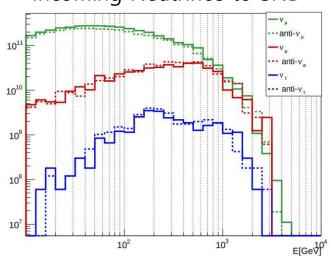
- Upstream : 5 stations of Fe blocks with 10 Sci bars for hadronic calorimetry
- Downstream : 3 stations with 60 horizontal and 60 vertical Sci bars for muon tagging



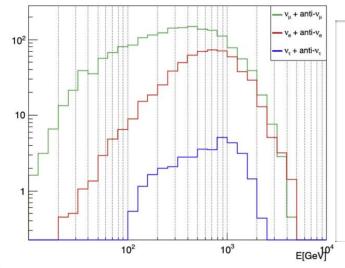
Physics Cases

- Measurement of the ν production cross section
- Measurement of the forward charm production
- Neutrino induced charm production
- Lepton flavor universality test in neutrino interactions
- Measurement of the NC/CC ratio
- Direct search for FIP through their scattering

Physics Cases – Event Topology


Identification of all three neutrino flavours and FIPs by event topologies in the ECC brick 12

Kang Young Lee



Physics Cases – Neutrino Production

Incoming Neutrinos to SND

Neutrino interactions in SND

Measurement of $\sigma(pp \rightarrow \nu X)$

 $\circ v_{\mu} + \overline{v_{\mu}}$ charged-current: 1447

 \circ $v_e + \overline{v_e}$ charged-current: 450

 \circ $v_{+}+\overline{v_{+}}$ charged-current: 34

Estimated from 290 fb⁻¹ in LHC Run 3 Angular acceptance $7.2 < \eta < 8.4$

	Neutrinos in acceptance		CC neutrino interactions		NC neutrino interactions	
Flavour	$\langle E \rangle [GeV]$	Yield	$\langle E \rangle [GeV]$	Yield	$\langle E \rangle [GeV]$	Yield
$ u_{\mu}$	120	3.4×10^{12}	450	1028	480	310
$egin{aligned} u_{\mu} \end{aligned}$	125	3.0×10^{12}	480	419	480	157
$ u_e$	300	4.0×10^{11}	760	292	720	88
$ar{ u}_e$	230	4.4×10^{11}	680	158	720	58
$ u_{ au}$	400	2.8×10^{10}	740	23	740	8
$ar{ u}_{ au}$	380	3.1×10^{10}	740	11	740	5
TOT		7.3×10^{12}		1930		625
						1.0

Kang Young Lee

_13

Timeline

Διια	27 th	2020	1

Letter of Intent

Jan. 22nd, 2021

Technical Proposal

March, 2021

Approval by CERN RB

August, 2021

Infrastructure

Oct.13th, 2021

Detector construction completion

December, 2021

Detector installation in TI18

Apr. 7th, 2022

Installation of the first emulsion films

July, 5th, 2022

First 13.6 TeV collisions

July, 26th, 2022

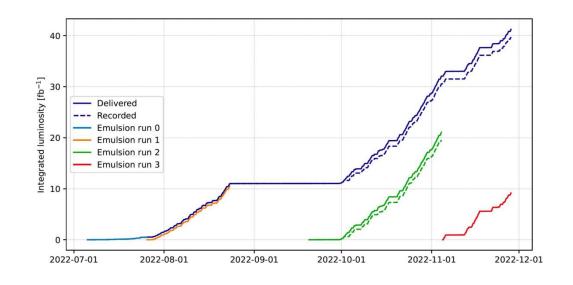
Full target installation

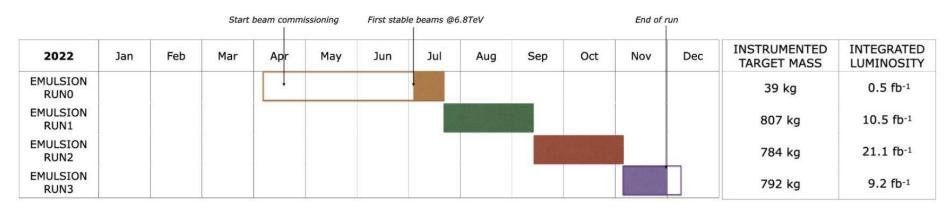
Scattering and Neutrino Detector at the LHC

Letter of Intent

TECHNICAL PROPOSAL

SND@LHC

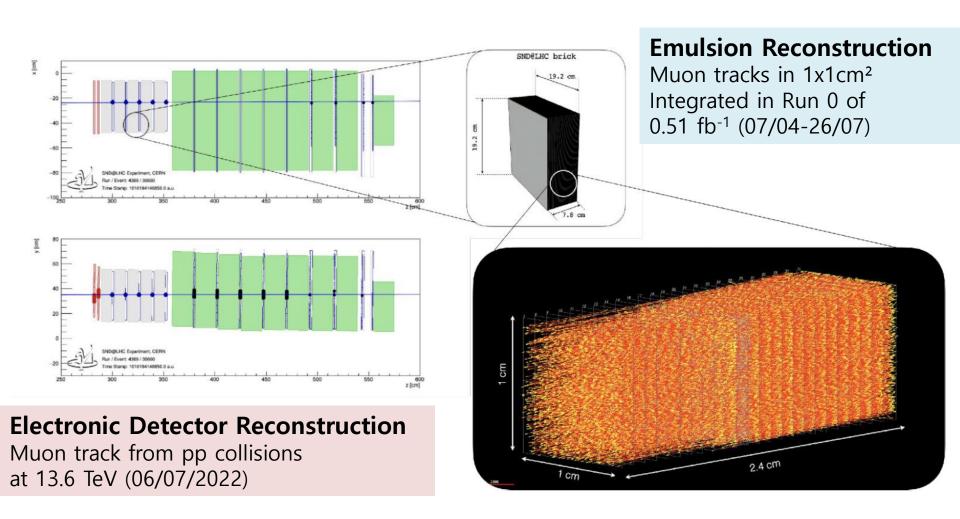

Analyses & Results



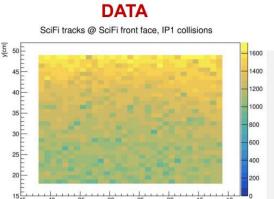
Data taking in 2022

Run3 in 2022

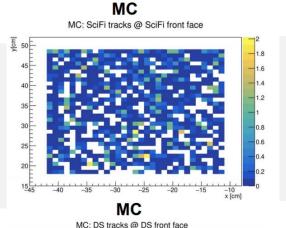
41.25 fb⁻¹ delivered 39.74 fb⁻¹ recorded (96%)



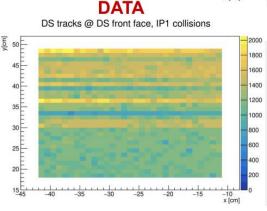
Emulsion Development & Scanning



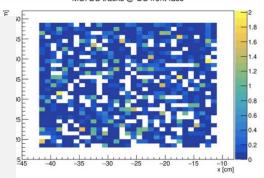
Muon Track Reconstruction



Data/MC Comparison


Measured muon track rate in SciFi (31x31 cm²):

 $(1.60\pm0.01_{stat})x10^4$ fb/cm²


Expected muon track rate in SciFi (31x31 cm²):

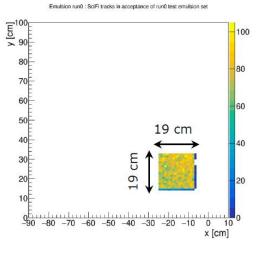
 $(1.57\pm0.10_{stat})x10^4$ fb/cm²

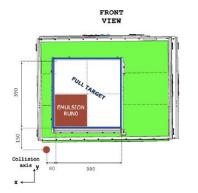
Measured muon track rate in Muon system (31x31 cm²):

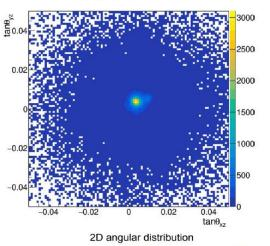
 $(1.67\pm0.01_{stat})x10^4$ fb/cm²

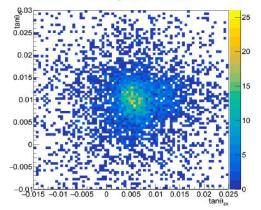
Expected muon track rate in Muon system (31x31 cm²):

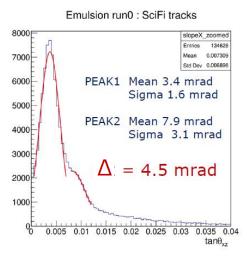
 $(1.59\pm0.10_{stat})x10^4$ fb/cm²

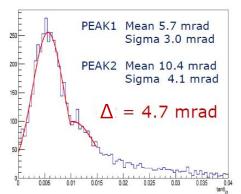

Muon flux from FLUKA F. Cerutti, M.S. Gilarte CERN-SY/STI




SciFi/Emulsion Comparison


Measured rates on BRICK1 surface 1.6x10⁴ fb/cm²

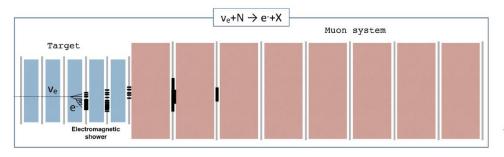


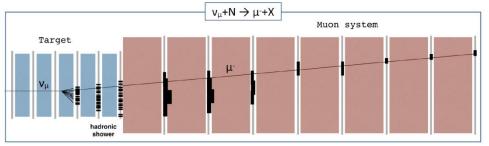


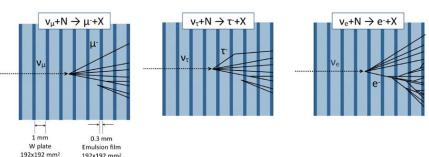
Emulsion run0 : SciFi tracks

EMULSIONS

Measured rates in BRICK1
1.5x10⁴ fb/cm²

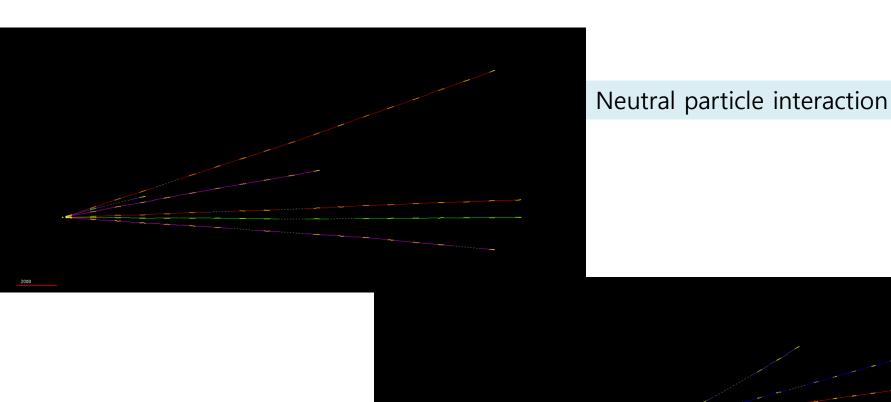

Neutrino Identification Strategy


First Stage


- Identify the neutrino candidates in electronic detector data
- Tag muons in the muon system
- Measure electronic and hadronic energies in calorimeters

Second Stage

- Identify the neutrino candidates in emulsion data
- Tag electromagnetic showers
- Match events to electronic detector data
- Identify neutrinos of all flavours!



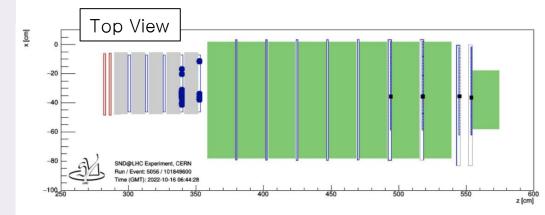
Vertex Reconstruction in Emulsion

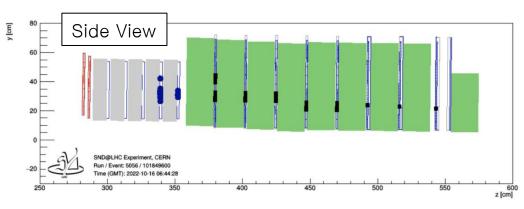
Charged particle interaction

Kang Young Lee

22

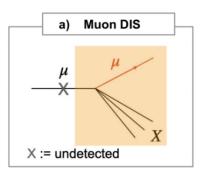
Neutrino Identification with Electronic Detectors

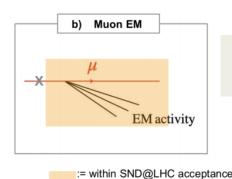

Neutrino selection criteria for electronic detectors

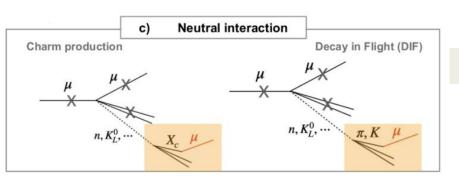

▶ Fiducial volume cuts

- Require an event from a neutral vertex, located in the 3rd or 4th wall
- Select fiducial cross-sectional area to reject entering backgrounds

▶ Neutrino ID cuts


- Require large EM activity in SciFi and hadronic activity in the HCAL
- Require timing for event produced upstream
- Muon reconstructed and isolated in the muon system

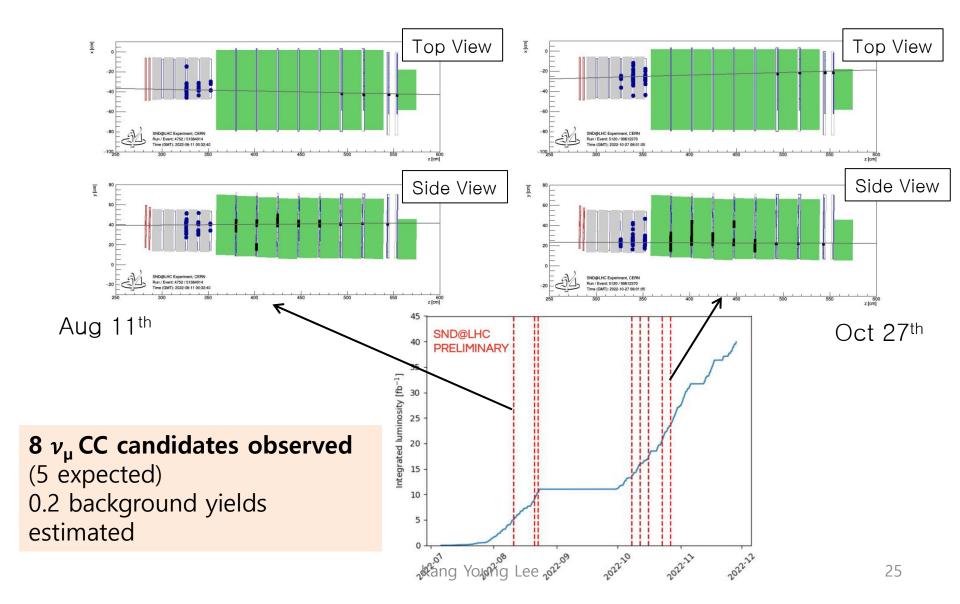



Background Estimation

Muon induced DIS and EM backgrounds Number of undetected muons entering the target

$$N_u^{bkg} = N_u \times (1 - \epsilon_{Veto}) \times (1 - \epsilon_{SciFi1}) \times (1 - \epsilon_{SciFi2}) \sim 10^{-2}$$

SND@LHC PRELIMINARY


Muon induced neutral interaction backgrounds

$$N_{\rm neutrals}^{\rm bkg} = N_{\rm neutrals} \times P_{\rm inel} \times \epsilon_{\rm sel} \sim 0.2$$

Systematic uncertainty study is ongoing.

Observed Neutrino Candidates

Paper Released

Observation of collider muon neutrinos with the SND@LHC experiment

```
R. Albanese , A. Alexandrov , T. Alicante , A. Anokhina , T. Asada , T. Asada , T. Asada , T. Asada
     A. Bay , <sup>6</sup> C. Betancourt , <sup>7</sup> A. Blanco Castro , <sup>8</sup> M. Bogomilov , <sup>9</sup> D. Bonacorsi , <sup>4,5</sup> W.M. Bonivento , <sup>10</sup>
        P. Bordalo , A. Boyarsky , I. S. Buontempo , M. Campanelli , T. Camporesi , V. Canale , V. Canale
                A. Castro , 4,5 D. Centanni , 1,15 F. Cerutti , M. Chernyavskiy , K.-Y. Choi , 5 S. Cholak , Cholak , Chernyavskiy
         F. Cindolo , M. Climescu , T. A.P. Conaboy , S. G.M. Dallavalle , D. Davino , T. P.T. de Bryas , 6
                      G. De Lellis , A. De Magistris , A. De Roeck , A. De Rújula , M. De Serio , 20, 21
                D. De Simone , A. Di Crescenzo , R. Donà , A. Di Crescenzo , E. Fabbri , F. Fedotovs , 13
M. Ferrillo , M. Ferro-Luzzi , A. Fini , A. Fini , A. Fini , R. Fiorillo , R. F. Fresa , R. Fresa , R. Fresa , R. Funk , A. Golovatiuk , A. Golovatiuk , R. Fini , R. Fresa , R.
        A. Golutvin ^{\circ}, ^{24} E. Graverini ^{\circ}, ^{6} A.M. Guler ^{\circ}, ^{22} V. Guliaeva ^{\circ}, ^{3} G.J. Haefeli ^{\circ}, ^{6} J.C. Helo Herrera ^{\circ}, ^{25}, ^{26}
               E. van Herwijnen , <sup>24</sup> P. Iengo , <sup>1</sup> S. Ilieva , <sup>1</sup>, <sup>2</sup>, <sup>9</sup> A. Infantino , <sup>14</sup> A. Iuliano , <sup>1,2</sup> R. Jacobsson , <sup>14</sup>
C. Kamiscioglu , <sup>22, 27</sup> A.M. Kauniskangas , <sup>6</sup> E. Khalikov , <sup>3</sup> S.H. Kim , <sup>28</sup> Y.G. Kim , <sup>29</sup> G. Klioutchnikov , <sup>14</sup>
     M. Komatsu ^{\circ}, N. Konovalova ^{\circ}, S. Kovalenko ^{\circ}, S. Kuleshov ^{\circ}, A. Kuleshov ^{\circ}, H.M. Lacker ^{\circ}, N. Lacker ^{\circ}, A. Lacker ^{\circ}, A. Lacker ^{\circ}, S. Kuleshov ^{\circ}, A. Kuleshov ^{\circ}, A. Lacker ^
               F. Lasagni Manghi , A. Lauria , X.Y. Lee , X.Y. Lee , X.S. Lee , S. Lo Meo , V.P. Loschiavo , 1,19
        S. Marcellini , <sup>4</sup> A. Margiotta , <sup>5</sup> A. Mascellani , <sup>6</sup> A. Miano , <sup>1</sup> A. Mikulenko , <sup>11</sup> M.C. Montesi , <sup>1</sup> A.
                F.L. Navarria , A. S. Ogawa , N. Okateva , M. Ovchynnikov , T. G. Paggi , A. B.D. Park , B.D. Park
                   A. Pastore , A. Perrotta , A. Podgrudkov , N. Polukhina , A. Prota , A. Quercia , A. Quercia
               S. Ramos o, A. Reghunath o, 18 T. Roganova o, F. Ronchetti o, T. Rovelli o, 4, 5 O. Ruchayskiy o, 34
           T. Ruf , <sup>14</sup> M. Sabate Gilarte , <sup>14</sup> M. Samoilov , <sup>3</sup> V. Scalera , <sup>1</sup> O. Schneider , <sup>6</sup> G. Sekhniaidze
         N. Serra , M. Shaposhnikov , V. Shevchenko , T. Shchedrina , L. Shchutska , H. Shibuya , 33, 35
               S. Simone , <sup>20, 21</sup> G.P. Siroli , <sup>4, 5</sup> G. Sirri , <sup>4</sup> G. Soares , <sup>8</sup> O.J. Soto Sandoval , <sup>25, 26</sup> M. Spurio , <sup>4, 5</sup>
                     N. Starkov , <sup>3</sup> I. Timiryasov , <sup>34</sup> V. Tioukov , <sup>1</sup> C. Trippl , <sup>6</sup> E. Ursov , <sup>8</sup> A. Ustyuzhanin , <sup>1,36</sup>
           G. Vankova-Kirilova , Verguilov , N. Viegas Guerreiro Leonardo , C. Vilela , C. Visone , C. Visone
                R. Wanke ^{\circ}, T. E. Yaman ^{\circ}, 22 C. Yazici ^{\circ}, 22 C.S. Yoon ^{\circ}, 28 E. Zaffaroni ^{\circ}, and J. Zamora Saa ^{\circ}, 25, 26
                                                                                                                            (SND@LHC Collaboration)
```

Beyond Run 3

Advanced SND@LHC

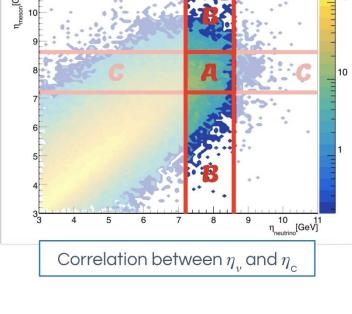
- Future project at HL-LHC era
- Upgrade of SND@LHC during LS 4
- Extension of the physics case
- New technologies and detector layout
- AdvSND-Near: 4<η<5 Two detectors: AdvSND-Far (7.2 < η < 8.4) Possible location: Forward Physics Facility AdvSND-Near $(4 < \eta < 5)$ Possible locations: Existing caverns close to IP AdvSND-Far: 7.2<η<8.4 Muon filter Vertex det Had Cal EM Cal Tracking Stations 27 Kang Young Lee

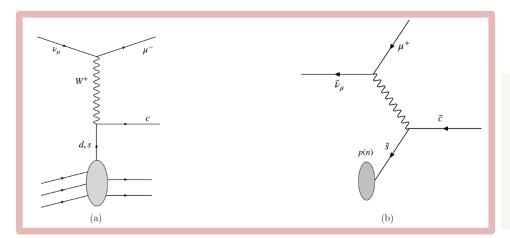
Conclusion

- SND@LHC starts running to perform measurements of ν and search for FIP in the forward region of the LHC.
- SND@LHC collected 39 fb⁻¹ data at the LHC Run 3.
- Measurement of muon flux with emulsions and electronic detectors shows good agreements with MC calculation.
- 8 ν_{μ} CC candidates are identified with the electronic detectors while the estimated backgrounds are 0.2. Systematic uncertainty is under evaluation to expect significance ~5 σ .
- Emulsion scanning & analysis is ongoing. Stay tuned!

Thank you!

Backup Slides




Physics Cases – Charm Physics

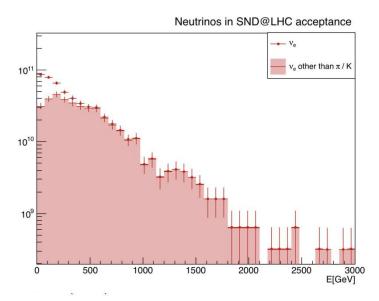
Neutrino production from charm decays

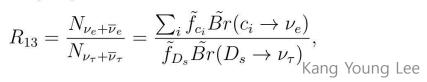
90% of $\nu_{\rm e}$ production is expected to be charm decays.

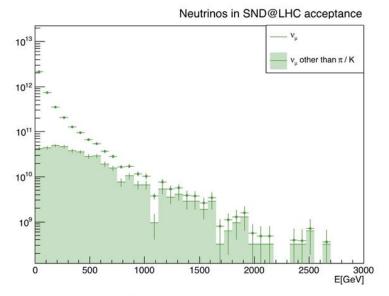
- → as a probe of charm production
- \rightarrow impact on the gluon PDF at very small x

Charm production in neutrino CC interactions

High energy neutrino can produce charm quark via DIS

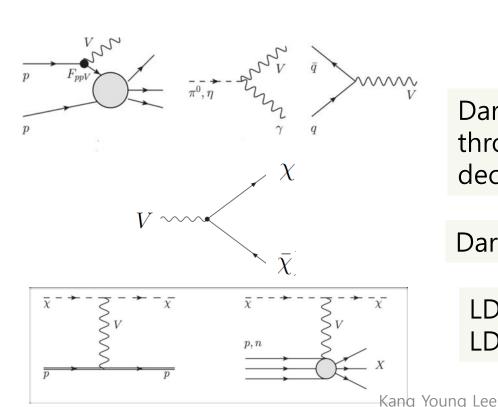

LHC Scattering and Neutrino Detector at the LHC

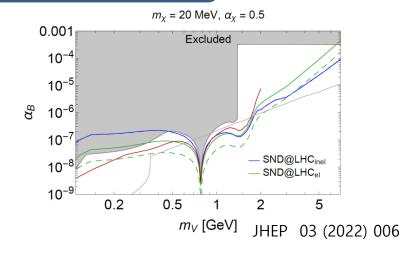

Physics Cases – Lepton Universality Test


- All 3 flavors of neutrinos can be identified.
- Unique opportunity to test lepton flavour universality with neutrinos
- $v_{\rm e}/v_{\rm \tau}$ and $v_{\rm e}/v_{\rm \mu}$ ratios

Expected uncertainties

- $v_{\rm e}/v_{\rm e}$
 - Statistical: 30%
 - Systematic: 20%
- $v_{\rm e}/v_{\rm e}$
 - o Statistical: 10%
 - Systematic: 10%


$$R_{12} = \frac{N_{\nu_e + \overline{\nu}_e}}{N_{\nu_\mu + \overline{\nu}_\mu}} = \frac{1}{1 + \omega_{\pi/k}}.$$



Physics Cases – FIP search

Direct search for FIP through scattering in the detector

e.g. leptophobic dark photon and light DM

Dark photon can be produced at IP1 through p bremsstrahlung, meson decays, Drell-Yann process etc..

Dark photon decays into LDM.

LDM scatterings in the detector LDM decays in the detector