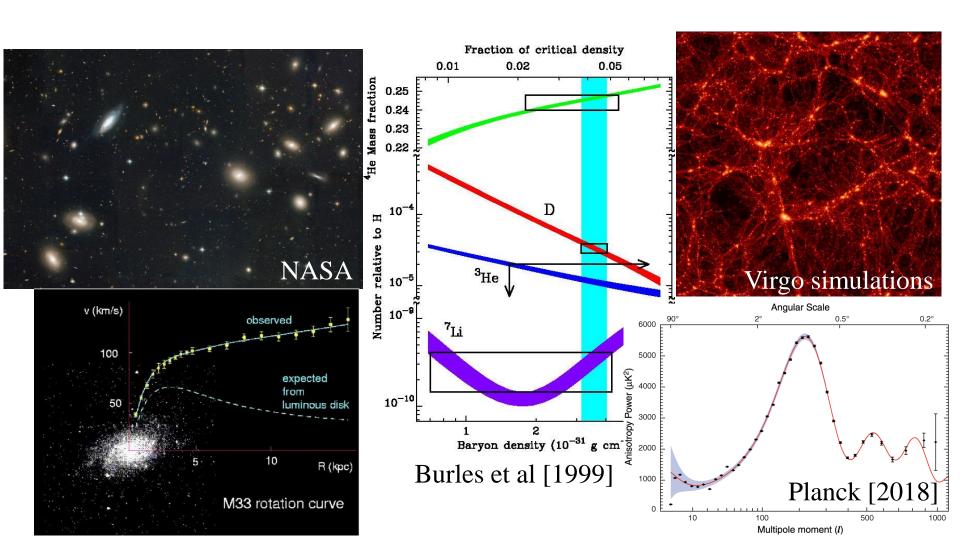
Gauged B-L interacting sterile neutrino dark matter revisited

Osamu Seto (Hokkaido University)

With Shintaro Eijima (ICRR, U. of Tokyo) and Takashi Shimomura (Miyazaki U.)

Ref PRD 106 103513 (2022)


Contents

- Introduction
- SM + RH neutrinos
- Freeze in production of DM
- Sterile neutrino DM in feeble gauged U(1) extended model
- Summary

§ Introduction

Dark matter

Convincing evidences

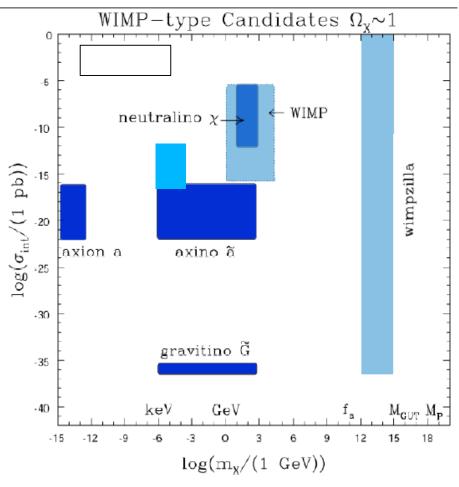
Dark matter candidates

Hypothetical candidates

Sterile neutrino

•
$$\nu_s \cong \theta \nu_L + \nu_R^C$$

Almost RH


•
$$\theta = {^{m_D}/_{M_M}} \ll 1$$

Tiny active-sterile mixing

Axion

WIMP

etc

modified L. Roszkowski's diagram

§ SM + RH neutrinos

Adding RH neutrinos

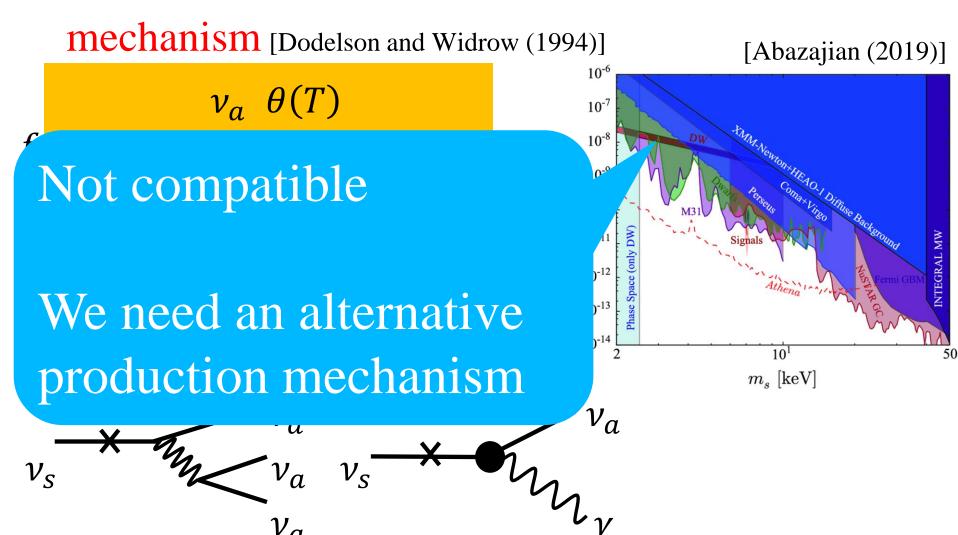
Adding RH neutrinos

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{i}{2} \overline{\nu_R} \not \partial \nu_R - y \, \overline{L} \Phi \nu_R - \frac{1}{2} \overline{\nu_R} M_M \nu_R + h.c.$$

• If Dirac masses Majorana masses, seesaw mechanism works [Minkowski (1977), Yanagida (1979), Gell-Mann et al (1979)]

$$\begin{pmatrix}
0 & m_D \\
m_D & M_M
\end{pmatrix} \rightarrow \begin{pmatrix}
-m_D^T \frac{1}{M_M} m_D & 0 \\
0 & M_M
\end{pmatrix}$$

- $v_a \cong U_{MNS}v_L + \theta v_R^C$ Neutrino oscillation
- $v_s \cong \theta v_L + v_R^C$ Sterile neutrino, almost RH
- $\theta = {m_D}/{M_M} \ll 1$: active-sterile mixing

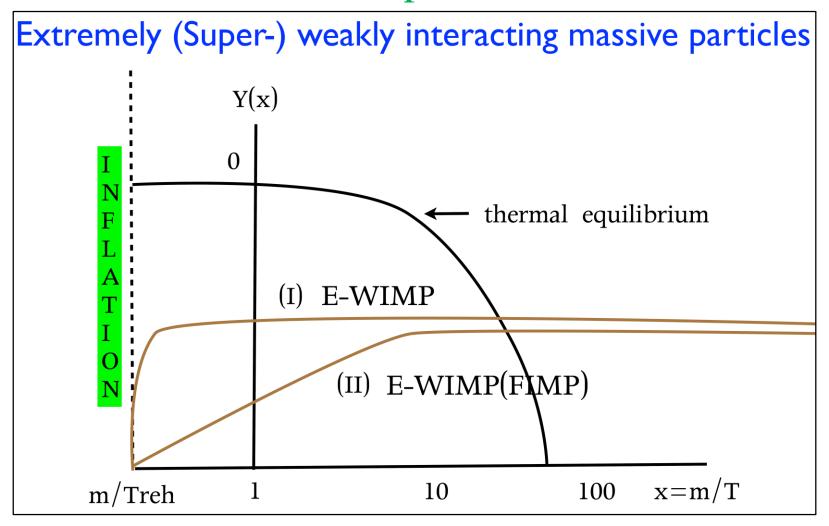

Sterile neutrino is decaying DM

Production: Dodelson-Widrow

mechanism [Dodelson and Widrow (1994)] [Abazajian (2019)] 10^{-6} 10^{-7} 10^{-9} 10^{-10} 10^{-11} 10⁻¹² 10^{-13} Decay [Pal and Wolfenstein (1982)] 10^{1} m_s [keV]

Sterile neutrino is decaying DM

• Production: Dodelson-Widrow


§ Freeze-in production of DM

Freeze in Production

- UV (in)dependence
 - Depends on Reheating temperature T_R
 - E.g., Gravitino, Axino, ...
 - Does not depends on T_R
 - Renormalizable Op, very weak (feeble) interaction, light mediators
 - Most effective at $T \sim DM$ mass
 - Depends on the cross section only c.f., WIMP
 - E.g., Singlet scalar DM [McDonald (2002)] RH sneutrino DM [Asaka, Ishiwata and Moroi (2006)]
 - Catchy name "Feebly Interacting massive Particle, FIMP" came later [Hall et al (2010)]

§ Freeze in Production

A kind of non-thermal production

By courtesy of K.Y. Choi

Freeze in Production

With equations

•
$$\frac{d n_{\nu_S}}{dt} + 3H n_{\nu_S} = \langle \sigma \nu (i\bar{\iota} \rightarrow \nu_S \nu_S) \rangle n_i n_{\bar{\iota}}$$

•
$$\langle \sigma v(i\bar{\iota} \to \nu_S \nu_S) \rangle \sim \frac{g^4}{T^2}$$

•
$$Y := \frac{n_{\nu_S}}{s} = \int_{T_0}^{T_R} \frac{\langle \sigma v(i\bar{\iota} \to \nu_S \nu_S) \rangle n_i n_{\bar{\iota}}}{s H T} dT$$

$$\sim \int_{T_0}^{T_R} \frac{M_P g^4}{s T^2 T} dT \sim \frac{M_P g^4}{m_{\nu_S}}$$

•
$$\Omega_{\nu_s} h^2 \propto m_{\nu_s} Y \sim M_P g^4$$

§ Sterile neutrino DM in feeble gauged U(1) extended model

Extension of the model

- SM+ RH neutrinos
 - Difficulty in Sterile neutrino DM production
 - The number of generation of RH neutrinos?
- Gauged U(1) extension
 - New gauge interactions provide DM production
 - Anomaly free condition
 - $U(1)_{B-L}$: +1 for baryon, -1 for lepton [Davidson (1979), Mohapatra and Marshak (1980), ...]
 - $U(1)_R$: +1(-1) for RH, 0 for left-handed [Jung et al (2010), Ko, Omura and Yu (2014), ...]
 - Various dark photon search in "lifetime frontier"

Model

- Sterile neutrino DM in feeble gauged U(1) extended model
- Gauged U(1) extension
 - $U(1)_{B-L}$: +1 for baryon, -1 for lepton [Davidson (1979), Mohapatra and Marshak (1980), ...]
 - Particle content

	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	$U(1)_{B-L}$
Q^i	3	2	$\frac{1}{6}$	$\frac{1}{3}$
u_R^i	3	1	$\frac{2}{3}$	$\frac{1}{3}$
d_R^i	3	1	$-\frac{1}{3}$	$\frac{1}{3}$
L^i	1	2	$-\frac{1}{2}$	-1
e_R^i	1	1	-1	-1
$ u_R^i$	1	1	0	-1
Φ_H	1	2	$\frac{1}{2}$	0
Φ_{B-L}	1	1	0	2

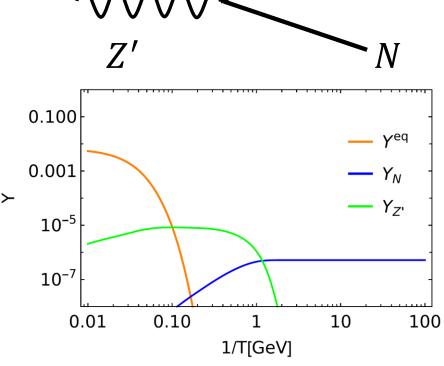
Masses

•
$$m_{Z'}^2 = 4g_{B-L}^2 v_{B-L}^2$$

• $m_{v_R^i} = \frac{y_{v_R^i}}{\sqrt{2}} v_{B-L}$

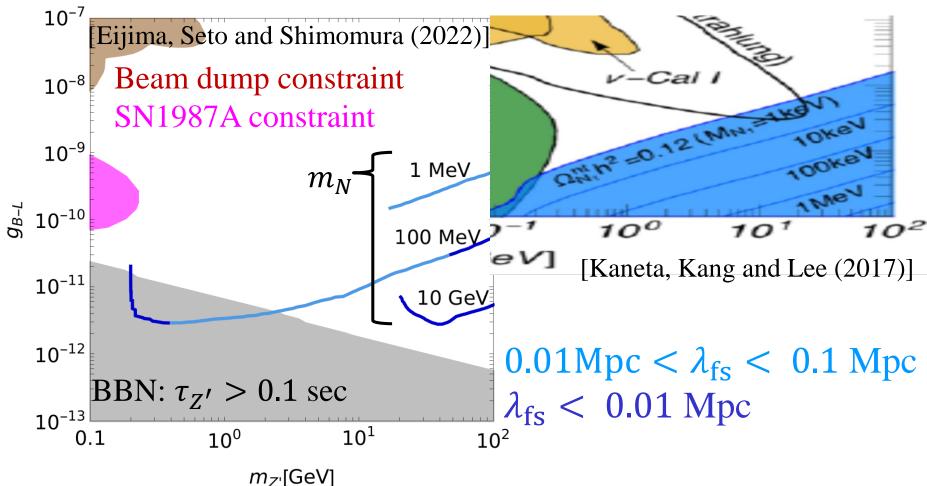
- Singlet-like ϕ
- SM-like *h*
 - The $h \phi$ mixing α

Mass spectrum


- Dark matter phenomenology depends on the mass spectrum (hereafter $N = v_s$)
- $2m_N < m_{Z'}$
 - Decay $Z' \rightarrow NN$ is possible
- $1 \text{MeV} < m_{Z'} < 2 m_N$
 - Decay $Z' \rightarrow NN$ is not possible
 - Z' is non-relativistic at BBN
- $m_{Z'} < 1 \text{MeV} < 2 m_N$
 - Z' and v from Z' are relativistic for BBN and CMB, stellar (RG, HB) constraints [Redondo and Raffelt (2013)], SN1987A constraints [Croon et al (2021), Shin et al (2022),...]

§ § Heavy $Z' : 2m_N < m_{Z'}$

- Z' are not thermalized
- Main production mode : $f\bar{f} \to Z' + Z' \to 2N$

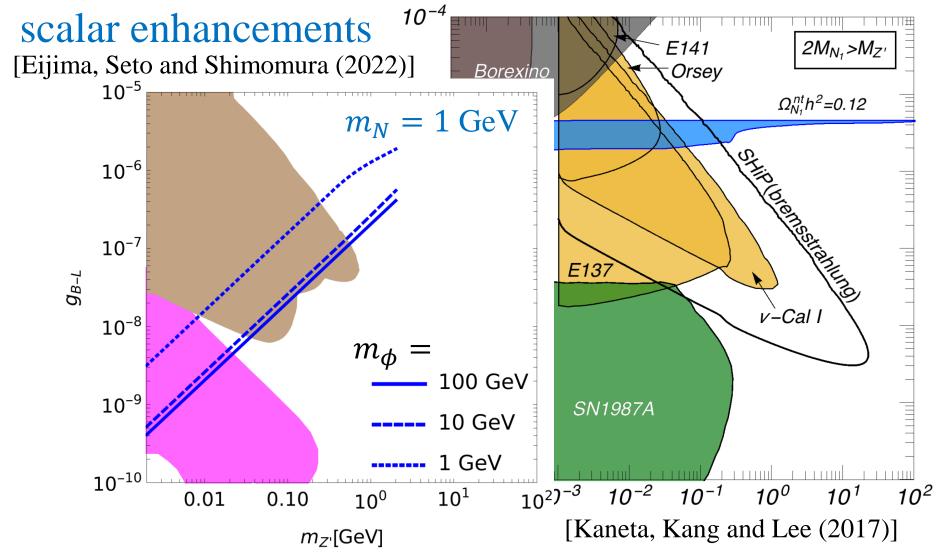

$$f$$
 f
 Z'

- At the production
 - $p_N \cong \frac{1}{2} m_{Z'}$ could be relativistic.
 - Warm DM?

§ § Heavy $Z' : 2m_N < m_{Z'}$

- Production by decay: $Z' \rightarrow 2N$ (hereafter $N = \nu_s$)
- The free streaming length λ_{fs} bound [Irsic et al (2017)]

§ § Light Z': 1MeV < $m_{Z'}$ < 2 m_N

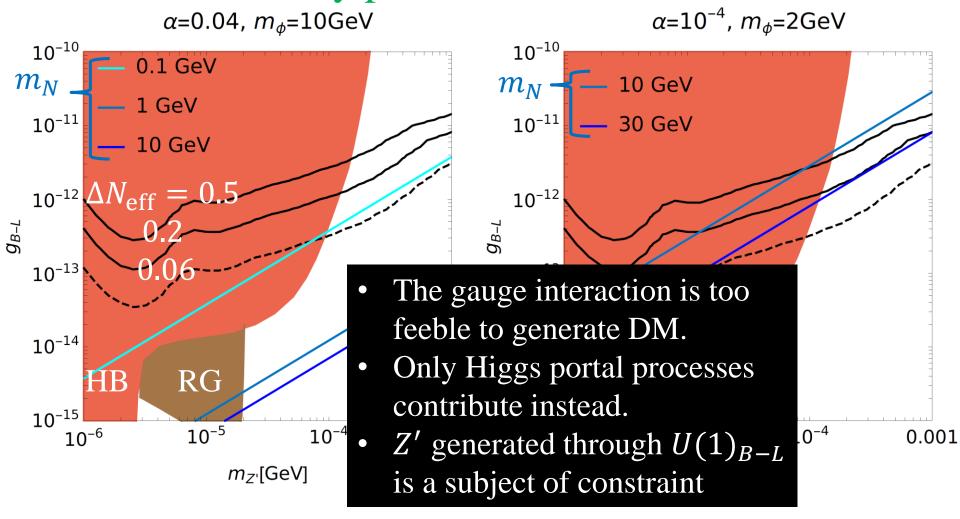

• Z' can be thermalized by the decay and the inverse decay

$$z'$$
 \sim f

• The dominant production mode from Z'

§ § Light Z': 1MeV $< m_{Z'} < 2m_N$

longitudinal mode and


§ § Very light Z': $m_{Z'} < 1 \text{MeV} < 2 m_N$

- Little Z' could be produced.
 - If not, too much dark radiation
 - Gauge coupling must be very small
- Main production mode : $f\bar{f} \to (\phi, h) \to 2N$
 - Though Higgs mixing, not gauge interaction

$$f$$
 f
 ϕ, h
 N

§ § Very light Z': $m_{Z'} < 1 \text{MeV} < 2 m_N$

• Z' and the decay products become dark radiation

§ Summary

- We reinvestigated sterile neutrino DM in gauged B-L model
- Production
 - \triangleright Heavy Z': free streaming constraints
 - \triangleright Light Z': longitudinal mode and scalar enhancements
 - \triangleright Very light Z': only Higgs portal viable
- Mass
 - \gt $\gtrsim 1 \, \text{MeV}$
 - $\triangleright \nu_s \rightarrow \nu_a l \overline{l}$, hadronic modes
 - ✓ c.f. X-ray from radiative decay for keV ν_s