

17th International Symposium on Nuclei in the Cosmos (NIC XVII)

New determination of ${}^{17}O+\alpha$ reaction rates and impact on the s-process in metal-poor rotating massive stars

> Faïrouz Hammache Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab) fairouz.hammache@ijclab.in2p3.fr

16-22 September, 17th-22th 2023, Daejeon (South-Corea)

s-process in rotating metal-poor massive stars

²²Ne(α ,n)²⁵Mg

- *s*-process nucleosynthesis \rightarrow half of the abundance of heavy elements in Universe
- 60 < A < 90 (weak s-process component) \rightarrow massive stars M>8M_{\odot}

Core He burning $(T \sim 3.10^8 \text{ K}, N_n = 10^6 \text{ cm}^{-3})$ & shell Carbon burning (T~ 10^9 K, N_n = 10^{11} cm⁻³)

- Metal-poor massive stars \rightarrow negligible *s*-process production (low ²²Ne & Fe seed abundance)

With fast rotation induced mixing \longrightarrow ²²Ne production in He core strongly enhanced Nishimura+16, Choplin+18

large production of *s*-elements between Strontium & Barium 90 < A < 140

- Enhanced weak s-process (es-process) Frischknecht+16
- \rightarrow Important impact on chemical enrichment in early galaxies.

 \rightarrow Source of heavy elements such as Barium in the early universe? Barbuy+14

s-process in rotating metal-poor massive stars

But the final abundances of the enhanced weak *s*-process strongly depends on: ${}^{16}O(n,\gamma){}^{17}O$ neutron poison effect & ${}^{17}O(\alpha,n)/{}^{17}O(\alpha,\gamma)$ reaction rate ratio

 \rightarrow neutron recycling efficiency

Calculation with ¹⁷O(α ,n)²⁰Ne Nacre adopted rate & ¹⁷O(α , γ)²²Ne CF88 rate

Present status on ¹⁷O(α ,n)²⁰Ne and ¹⁷O(α , γ)²¹Ne

- Core He burning: T ~0.2-0.3 GK \rightarrow E_{c.m}~ 0.297-0.646 MeV \rightarrow E_x=7.64-8.00 in ²¹Ne
- Shell Carbon burning: T~1 GK \rightarrow E_{c.m}~ 0.783-1.5 MeV \rightarrow E_x=8.13-8.85 in ²¹Ne

$\frac{17O(\alpha,n)^{20}Ne \& 17O(\alpha,\gamma)^{21}Ne \text{ direct measurements}}{17O(\alpha,\gamma)^{21}Ne \text{ direct measurements}}$

- Denker+1994, Best+2013 $\rightarrow 0.63 \le E_{cm} \le 1.8 MeV$
- Best +2011, Taggart+2019
- Williams+2022

0.63≤E_{cm}≤1.33MeV

- No direct measurements @ $E_{cm} < 0.63$ MeV (Core He burning)
- Spectroscopy of ²¹Ne: E_x , S_α or Γ_α , J^π , $\Gamma_\gamma/\Gamma_{tot}$, Γ_n ... $\stackrel{\text{(a)}}{\Rightarrow}$ ¹⁷O(α ,n) and ¹⁷O(α , γ) rates (core He burning)

→ Unknown or poorly known $S_{\alpha}(\Gamma_{\alpha})$ & Γ_n , $\Gamma_{\gamma}/\Gamma_{tot}$ → Few have spin-parity assignments

• Neutron transfer reaction $\rightarrow S_n \rightarrow \Gamma_n$ Frost-Schenk+MNRAS2022 • α -transfer reaction $\rightarrow S_n \rightarrow \Gamma_n$ (present work/MLL-exp)

 ΔE_{G} 7.820 7.740 $7/2^{+}$ 7.655 ~ 200MK 7.619 $3/2^{-}$ 7.602 (5/2-,7/2-,7/2+,9/2+ 7.559 $(1/2^{-},3/2^{-})$ 2,42+ 7,470 7.420 $11/2^{-1}$ 7.348 $^{17}O+\alpha$ ²¹Ne

~ 300MK

 E_x (MeV)

8.069

(11/2)

 $\frac{3/2}{5/2^+}$

 $3/2^{-1}$

 $3/2^{+}$

 $(7/2, 11/2)^+$

measurements

rect

Di

<u>6.760</u> ²⁰Ne+n

Study of ²¹Ne states via ¹⁷O(⁷Li,t)²¹Ne α-transfer reaction

Q3D spectrometer (MLL) Dipol 2 MLL • **Beam** ⁷Li: E=28 MeV I=100 nAe Dipol ' Dipol 3 • Targets: $W^{17}O_3$ (41 µg/cm²) enriched at 35% on ^{nat}C $W^{nat}O_3$ (39 µg/cm²) on ^{nat}C Fokalebene Quadrupol • 2 proportional gas • Solid angle: 6 to 12.4 msr Target Vertikale Fokussierung counters: **Pos**, ΔE_1 , ΔE_2 roße Spreizung orragende Energie-Auflösun plastic scintillator: E • Energy resolution $\Delta E/E \sim 2 \times 10^{-4}$ Beam န္န 4000 ၂ 800 $d\sigma/d\Omega$ measurements: tritons AG 3500 700 ₃₀₀₀ آ 600 - 9 angles $\theta_{lab} = 6^{\circ} - 36^{\circ} \Rightarrow \theta_{cm} \rightarrow 7.5^{\circ} - 45^{\circ}$ 500 400

300 200

100

2200 Position

600

800

1000 1200 1400

1600

- on $W^{17}O_3$ & on $W^{nat}O_3$ for calibration & background evaluation

- At 3 different times at 6° to check the stability of the target

Excitation energy spectrum of ²¹Ne

• Fit with multiple skewed gaussians with common width & exponential factor

Experimental energy resolution (FWHM) : ~ 30 keV (6°) - 71 keV (36°)

FR-DWBA calculations

• Good description of the data by DWBA → Direct transfer mechanism

- <u>Triplet 8.160/8.155/8.146</u>: Fit with 3 components $\rightarrow S_{\alpha}$ of 8.146 & 8.160 MeV derived from Γ_{α} Best+2013 $\Rightarrow S_{\alpha}(8.155 \text{ MeV})=0.15$ (present work)
- <u>Doublet 7.980/7.982 MeV</u>: Fit with 2 components $\rightarrow S_{\alpha}$ of 7.98 MeV deduced using $\omega\gamma(\alpha, n)$ Denker+94 $\Rightarrow S_{\alpha}(7.982 \text{ MeV})=0.005 \text{ (present work)}$

• <u>7.820 MeV</u>

→ Best
$$\chi^2$$
 for $L_{\alpha}=0,1$ & good for $L_{\alpha}=2$
→ $L_{\alpha}=0$ → $S_{\alpha}=0.61$ (unlikely)

$$C^{2}S_{\alpha} \rightarrow \Gamma_{\alpha} = 2P_{l} \frac{\hbar^{2}R}{2\mu} C^{2}S_{\alpha} |\varphi(R)|^{2} @ R = 7.5 fm$$

• Γ_{α} uncertainty: 3-40% (stat), **35%** (optical pot)

¹⁷O(α ,n) & ¹⁷O(α , γ) reaction rates & (α ,n)/(α , γ) rate ratio

Rates calculations:

RateMC code Longland+2013

□ For Er < 721 keV (except 632 keV) & Er=807 keV: → Γ_{α} (present work)

 $\Gamma_{\alpha}(7.82 \text{MeV}) \text{ for } \mathbf{L}_{\alpha} = \mathbf{1} \quad (\mathbf{L}_{\alpha} = 0 \text{ in } \text{Best} + 2013)$ $\Gamma_{\alpha}(7.74 \text{ MeV}) \text{ for } \mathbf{L}_{\alpha} = \mathbf{0} \quad (\text{as in } \text{Best} + 2013)$

 $\rightarrow \Gamma_n$ Frost-Schenk+2022

□ For Er≥ 721 keV : $\rightarrow \Gamma_{\alpha} \& \Gamma_{n}$ (Best+2013 direct measurement)

 \Box Γ_{γ} from:

→ systematics of $\langle \tau \rangle_{meas}$ (Rolfs+72) → when no $\Gamma_n \rightarrow \Gamma_{\gamma} / \Gamma_n$ Best+2013

→ Better neutron efficiency recycling with a factor of about 20 with the present rates than Best+2013 rates

Resonances contribution to the rates

Resonances contribution to the rates

Impact on the s-process in rotating poor-metal massive stars

• One-zone nucleosynthesis calculation mimicking the core He-burning phase of a low metallicity rotating massive star $(Z=0.001, M=25 M_{\odot})$

 \rightarrow Large enhancement (>1.5 dex (>1.3 dex)) of elements 40 < Z < 60 with the present new rates in comparison to Best+13 rates

 \rightarrow Two order of magnitude (~1.5 dex (case2)) on Barium : largest effect

Conclusion

First measurement via ¹⁷O(⁷Li,t) transfer reaction of the α-spectroscopic factors & α-widths of ²¹Ne states within the Gamow window for He-core burning massive stars.

> Present ¹⁷O (α ,n)/¹⁷O(α , γ) reaction rate ratio is **larger** by a factor of ~20 than Best+13 ratio at T=0.2-0.3 GK

Large enhancement (more than 1.5 dex) of the weak s-process between 40<Z<60 rotating poor-metal massive stars</p>

The spin-parity of the two key resonances at Ex=7.74 & 7.82 MeV need to be measured in the future

Collaboration

S. Harrouz, N. de Séréville, A. Meyer IJCLab-Orsay

P. Adsley (Ithemba)

L. Lamia, M. La Cognata, G. Pizzone, S. Romano, A.Tumino LNS, Catania

> A. Choplin (**ULB-Brussels**)

R. Hirschi (Keele-University)

B. Bastin, F. De Oliveira, C. Fougères (GANIL-Caen)

T. Faestermann, H.F Wirth, R. Hertenberger (MLL)

S. Palmerini (**Perugia-university**)

Collaboration

S. Harrouz, N. de Séréville, A. Meyer IJCLab-Orsay

S. Palmerini (**Perugia-university**)