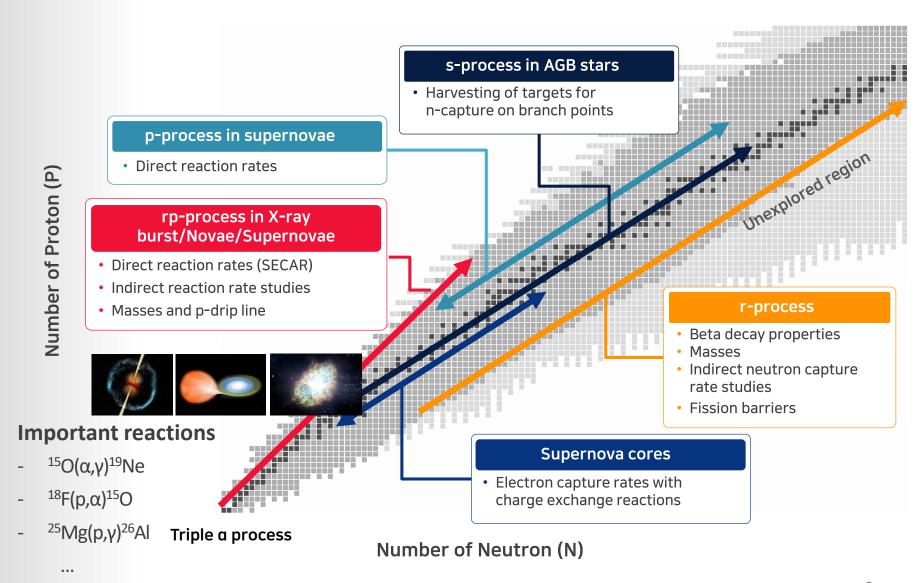
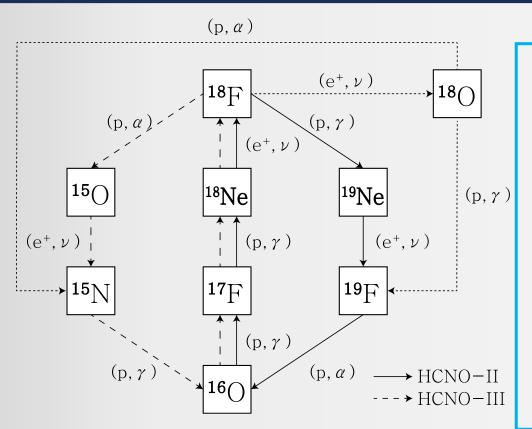
Study of two missing states of ¹⁹Ne affecting the classical novae


2023. 09. 22. NIC conference

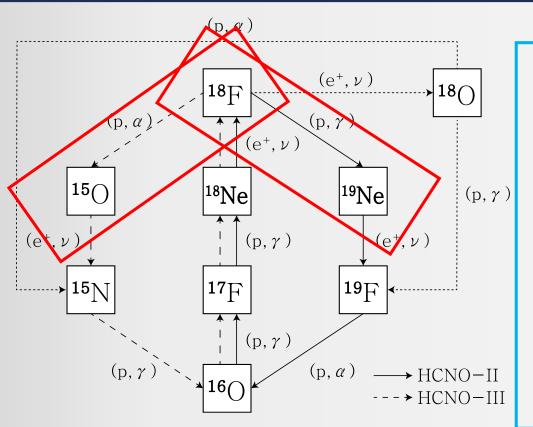
Center for Exotic Nuclear Studies (CENS)

Dahee Kim



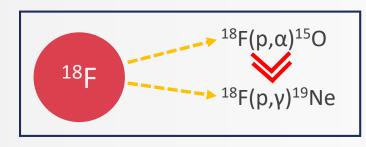
¹⁹Ne: ${}^{18}F(p,\alpha)^{15}O$ reaction in rp-process

¹⁹Ne: Nucleosynthesis of ¹⁸F in classical nova

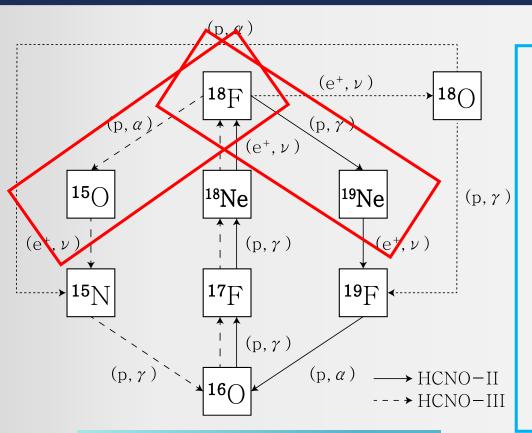


Production of ¹⁸F in classical nova

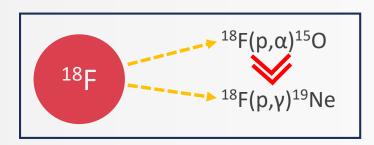
$${}^{16}\mathrm{O}(p,\gamma){}^{17}\mathrm{F}(\beta^{+}){}^{17}\mathrm{O}(p,\gamma){}^{18}\mathrm{F}$$
$${}^{16}\mathrm{O}(p,\gamma){}^{17}\mathrm{F}(p,\gamma){}^{18}\mathrm{Ne}(\beta^{+}){}^{18}\mathrm{F}$$


¹⁹Ne: Nucleosynthesis of ¹⁸F in classical nova

Production of ¹⁸F in classical nova


¹⁶O(
$$p, \gamma$$
)¹⁷F(β^+)¹⁷O(p, γ)¹⁸F
¹⁶O(p, γ)¹⁷F(p, γ)¹⁸Ne(β^+)¹⁸F

Destructive reactions of ¹⁸F


¹⁹Ne: Nucleosynthesis of ¹⁸F in classical nova

Production of ¹⁸F in classical nova

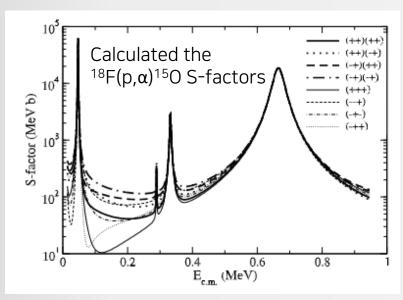
$${}^{16}\mathrm{O}(p,\gamma){}^{17}\mathrm{F}(\beta^{+}){}^{17}\mathrm{O}(p,\gamma){}^{18}\mathrm{F}$$
$${}^{16}\mathrm{O}(p,\gamma){}^{17}\mathrm{F}(p,\gamma){}^{18}\mathrm{Ne}(\beta^{+}){}^{18}\mathrm{F}$$

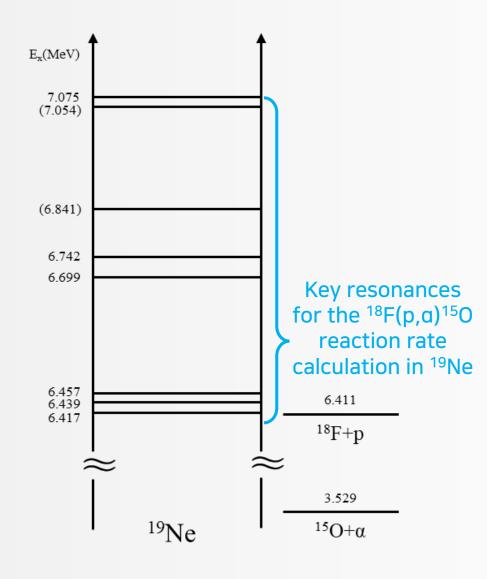
Destructive reactions of ¹⁸F

Reaction rate calculation

$$\langle \sigma v \rangle = \left(\frac{2\pi}{\mu kT}\right)^{3/2} \hbar^2 (\omega \gamma)_R exp\left(-\frac{E}{kT}\right),$$
$$(\omega \gamma)_R = \frac{2J+1}{(2J_a+1)(2J_b+1)} \frac{\Gamma_a \Gamma_b}{\Gamma}.$$

Study ¹⁹Ne level structure is a key role for the ¹⁸F(p,α)¹⁵O reaction which determines the abundance of ¹⁸F in classical nova!

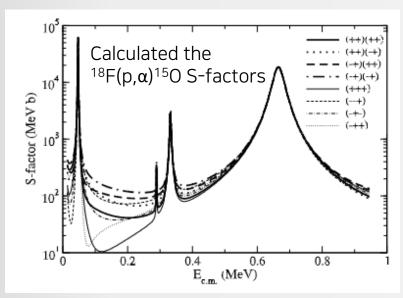


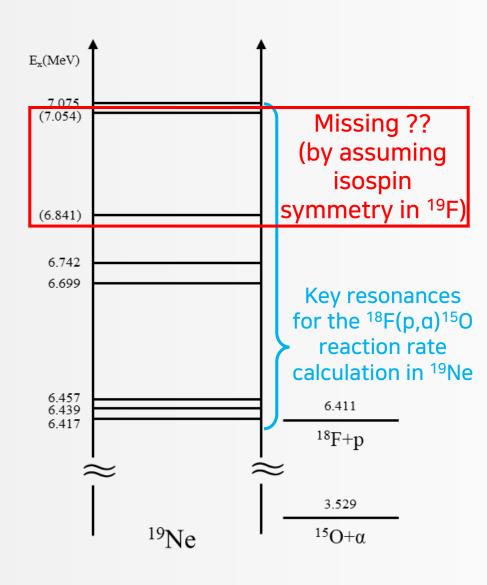

Motivation: Missing states in ¹⁹Ne

Known resonances in 19 Ne for the 18 F(p, α) 15 O reaction

E _x (MeV)	$Γ_α$ (keV)	Γ _p (keV) or ANC(fm ^{1/2})	J≖
6.286(3)	11.6	83.5	3/2-
6.417(3)	<0.5	1.6E-41	3/2-
6.439(3)	220	3.8E-19	1/2-
6.457(3)	1.3	2.1E-13	3/2+
6.699(3)	1.2	2.4E-05	5/2+
6.742(2)	5.2	2.2E-03	3/2-
7.075(17)	23.8	15.2	3/2+

D. Bardayan et al., PLB 751, 311 (2015)

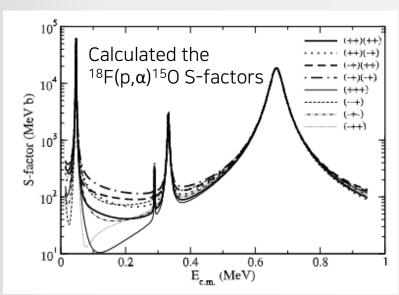


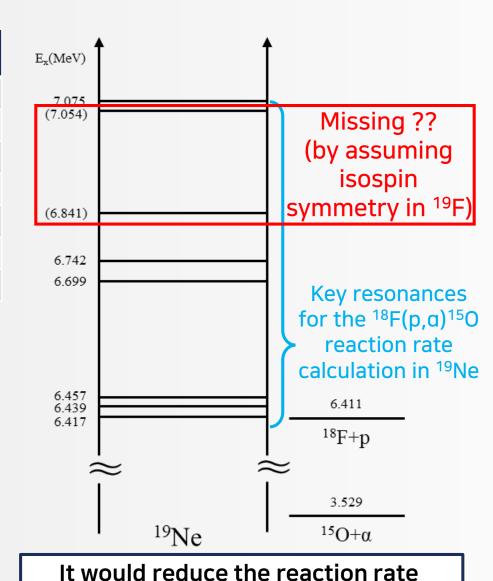

Motivation: Missing states in ¹⁹Ne

Known resonances in ¹⁹Ne for the ¹⁸F(p, α)¹⁵O reaction

E _x (MeV)	Γ _α (keV)	Γ _p (keV) or ANC(fm ^{1/2})	J¤
6.286(3)	11.6	83.5	3/2-
6.417(3)	<0.5	1.6E-41	3/2-
6.439(3)	220	3.8E-19	1/2-
6.457(3)	1.3	2.1E-13	3/2+
6.699(3)	1.2	2.4E-05	5/2+
6.742(2)	5.2	2.2E-03	3/2-
7.075(17)	23.8	15.2	3/2+

D. Bardayan et al., PLB 751, 311 (2015)

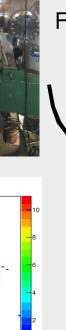


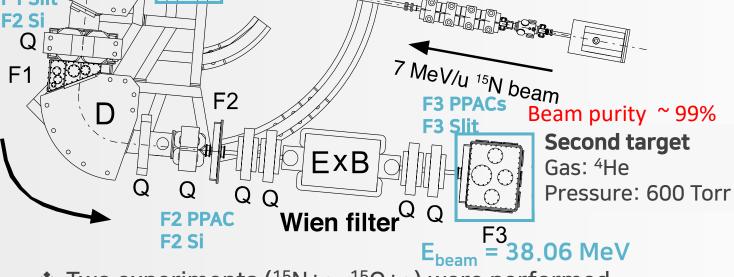

Motivation: Missing states in ¹⁹Ne

Known resonances in ¹⁹Ne for the ¹⁸F(p, α)¹⁵O reaction

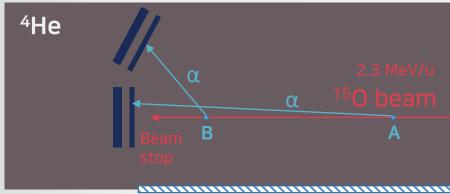
E _x (MeV)	Γ _α (keV)	Γ _p (keV) or ANC(fm ^{1/2})	J™
6.286(3)	11.6	83.5	3/2-
6.417(3)	<0.5	1.6E-41	3/2-
6.439(3)	220	3.8E-19	1/2-
6.457(3)	1.3	2.1E-13	3/2+
6.699(3)	1.2	2.4E-05	5/2+
6.742(2)	5.2	2.2E-03	3/2-
7.075(17)	23.8	15.2	3/2+

D. Bardayan et al., PLB 751, 311 (2015)

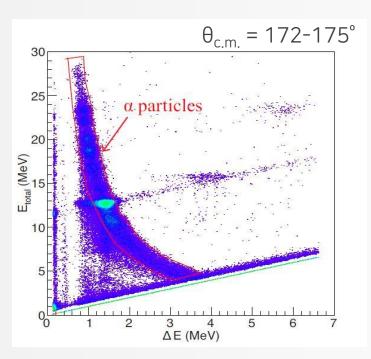



uncertainties at the nova temperature!

CRIB facility



- ❖ Two experiments ($^{15}N+\alpha$, $^{15}O+\alpha$) were performed.
- ¹⁵N+α scattering:
 Providing indirect information and constraining on ¹⁹Ne resonance parameters



Experimental set-up

Thick target inverse kinematics (TTIK)

Particle identification with △E-E telescope

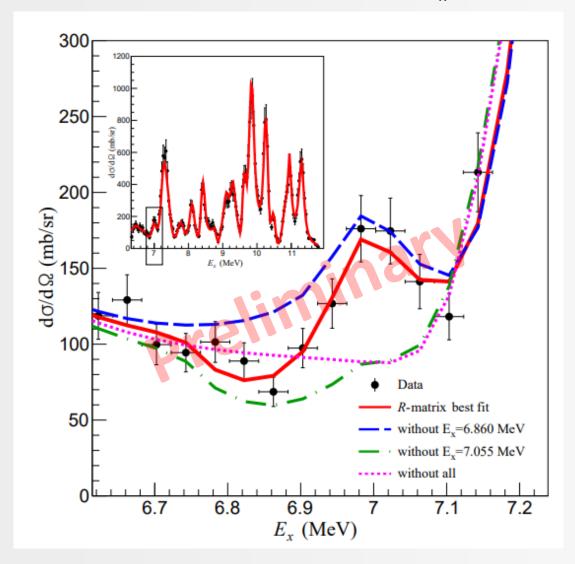
- Two ΔE-E telescopes were installed for the particle identification.
 - Resolution: $E_{c.m.} = 40 \text{ keV}$
 - Thickness: ΔE ~ 20 μm, E ~ 480 μm
 - Angle coverage: $\theta_{c.m.} = 133-180^{\circ}$

Results: ¹⁹Ne (extracted resonance parameters)

Resonances which affect the $^{18}F(p,\alpha)^{15}O$ reaction rate

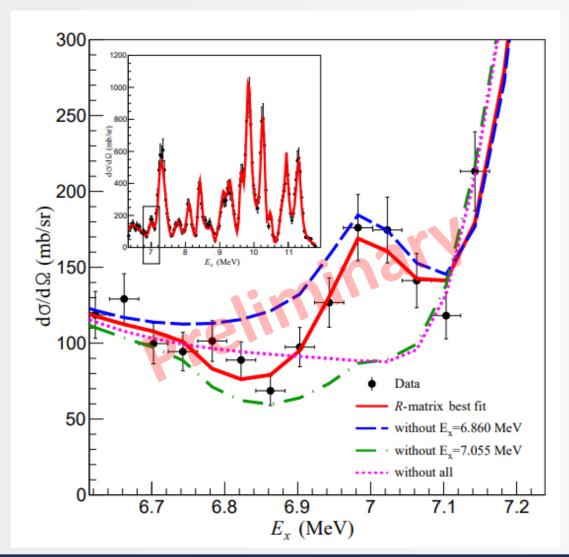
	This com	onimont		ı	Duouiouo	own oning onto	
	This exp		42			experiments	TO 0
$E_x(MeV)$	$\Gamma_{\alpha}(\text{keV})$	J^{π}	θ_{α}^{2}	$E_x(MeV)$	$\Gamma_{\alpha}(\text{keV})$	J^{π}	Ref.
5.652(20)	59(3)	1/2-	0.87		-	-	
6.220(4)	65(2)	5/2-	0.86	6.289(10)	-	-	[18, 19]
6.340(12)	182(9)	1/2+	0.69	-			
6.426(4)	250(15)	1/2-	0.51	6.437	220(20)	1/2-	
6.860(8)	58(4)	(3/2-)	0.20	(6.841)	25(18)	(3/2-)	[14, 18–20]
7.055(4)	25(2)	(7/2+)	0.20	(7.054)	29(25)	(5/2+, 7/2+)	[9, 21]
7.165(15)	51(8)	(3/2+)	0.05	7.203(31)	35(12)	(3/2+)	
7.320(4)	130(3)	(7/2+)	0.67	7.326(15)		-	
				7.335		-	
7.420(11)	196(4)	(5/2+)	0.89	7.378(7)	121(9)	(7/2+)	
7.790(4)	205(6)	(5/2-)	0.21	7.775(10)	-	-	
7.850(4)	81(7)	(1/2+)	0.05	7.863(39)	292(107)	(1/2+)	[22, 23]
8.120(4)	114(3)	(7/2-)	0.74	8.063(15)		E_x (MeV)	
8.400(4)	86(3)	(9/2-)	0.39	8.442(9)	7	8 9	10 11
8.840(7)	110(5)	(5/2-)	0.05	8.810(25)	1200		T
9.150(4)	49(15)	(5/2-)	0.02	-	Data		I
9.250(8)	648(11)	(5/2+)	0.47	9.240(20)	1000		₹
9.310(4)	254(6)	(7/2+)	0.18	-	R-m	atrix best fit	# 1 I
9.590(4)	49(5)	(5/2+)	0.03	-	800		<u> </u>
9.610(4)	32(2)	(11/2-)	0.90	-	/sr)		[] [
9.830(8)	120(3)	(11/2+)	0.49	-	do/dΩ (mb/sr)	Ţ	I II
9.880(8)	133(5)	(9/2+)	0.53	9.875(50)	Gb ₀₀₀ -	I.	
10.270(4)	107(2)	(9/2-)	0.09	-		1 I	111 111
10.290(4)	113(3)	(7/2-)	0.10	-	400	1 1 A A	1/1 ///
10.510(4)	73(3)	(11/2-)	0.75	-		1 1/1 / 1	V
10.865(4)	216(9)	(7/2-)	0.14	-	200	1.11	4
10.960(4)	118(4)	(9/2-)	0.07	-		AAA A	V = V
11.335(4)	296(8)	(7/2+)	0.09	-	0		· · · · · · · · · · · · · · · · · · ·
11.370(4)	274(10)	(5/2+)	0.08	-	3	4 5 6 $E_{c.m.}$ (MeV)	7 8

Results: ¹⁹Ne (extracted resonance parameters)


Resonances which affect the $^{18}F(p,\alpha)^{15}O$ reaction rate

	This exp	periment			Previous	experiments		
$E_x(MeV)$	$\Gamma_{\alpha}(\text{keV})$	J^{π}	θ_{α}^{2}	$E_x(MeV)$	$\Gamma_{\alpha}(\text{keV})$	J^{π}	Ref.	
5.652(20)	59(3)	1/2-	0.87	-	-	-		
6.220(4)	65(2)	5/2-	0.86	6.289(10)	-	-	[18, 19]	
6.340(12)	182(9)	1/2+	0.69	-	-	-		
6.426(4)	250(15)	1/2-	0.51	6.437	220(20)	1/2-		
6.860(8)	58(4)	(3/2-)	0.20	(6.841)	25(18)	(3/2-)	[14, 18–20]	
7.055(4)	25(2)	(7/2+)	0.20	(7.054)	29(25)	(5/2+, 7/2+)	[9, 21]	
7.165(15)	51(8)	(3/2+)	0.05	7.203(31)	35(12)	$(3/2+)_{Droc}$	dictad mid	cina statos
7.320(4)	130(3)	(7/2+)	0.67	7.326(15)		- PIEC	aicteu iiiis	sing states
				7.335		-		
7.420(11)	196(4)	(5/2+)	0.89	7.378(7)	121(9)	(7/2+)		
7.790(4)	205(6)	(5/2-)	0.21	7.775(10)	-	-		
7.850(4)	81(7)	(1/2+)	0.05	7.863(39)	292(107)	(1/2+)	[22, 23]	
8.120(4)	114(3)	(7/2-)	0.74	8.063(15)		E_x (MeV)		
8.400(4)	86(3)	(9/2-)	0.39	8.442(9)	7	8 9	10 11	
8.840(7)	110(5)	(5/2-)	0.05	8.810(25)	1200		T T	
9.150(4)	49(15)	(5/2-)	0.02	-	- Data	1	Į į	
9.250(8)	648(11)	(5/2+)	0.47	9.240(20)	1000		f j	
9.310(4)	254(6)	(7/2+)	0.18	-	R-m	atrix best fit	[
9.590(4)	49(5)	(5/2+)	0.03	-	800	_		
9.610(4)	32(2)	(11/2-)	0.90	-	do/dΩ (mb/sr)		1 1	
9.830(8)	120(3)	(11/2+)	0.49		E 600	T	l I	
9.880(8)	133(5)	(9/2+)	0.53	9.875(50)	ΩP/		111 1 T	
10.270(4)	107(2)	(9/2-)	0.09	-	400	1 1 1	1 /1 1 1 1 1 1 1	
10.290(4)	113(3)	(7/2-)	0.10	-	400	I I A	11 /11	**
10.510(4)	73(3)	(11/2-)	0.75	-	ļ.	1 All Fil	# / I / / /	
10.865(4)	216(9)	(7/2-)	0.14	-	200	In III	¥	
10.960(4)	118(4)	(9/2-)	0.07	-	1	AAAA	V L	
11.335(4)	296(8)	(7/2+)	0.09	-	0 3	4 5 6	7 8	
11.370(4)	274(10)	(5/2+)	0.08	-		$E_{c.m.}$ (MeV)	, 0	

Results: Identify two missing states


❖ Enlarged area of the excitation function of 19 Ne in E_x = 6.6-7.2 MeV

Results: Identify two missing states

❖ Enlarged area of the excitation function of 19 Ne in E_x = 6.6-7.2 MeV

Two missing states are required for the R-matrix fitting of ¹⁹Ne excitation function!

Results: Updated S-factor calculation

Updated S-factor including two missing states (6. 860 and 7.055 MeV states)

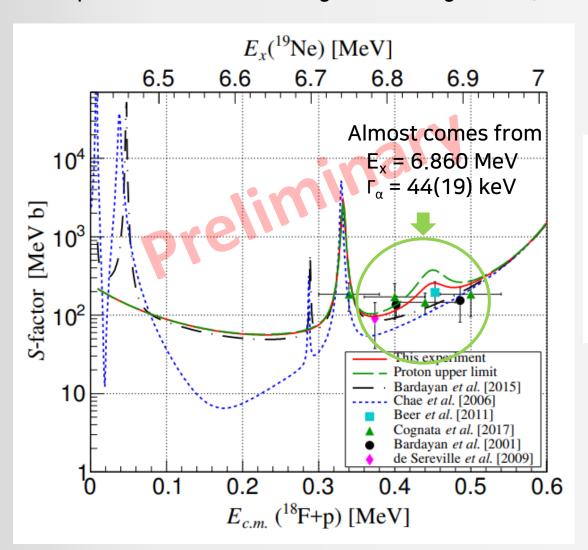


TABLE I: Resonance state energies and widths, including those for the two newly observed states for the S-factor calculation.

$E_{\rm x}({ m MeV})$	$\Gamma_{\alpha}(\text{keV})$	$\Gamma_p(\text{keV})$	J^{π}	Ref.
6.132(5)	0.74	<u>≤6</u>	(3/2+)	[11, 25]
6.286(4)	11.7	83.5	(1/2+)	[26-28]
6.742(2)	5.2	0.0022	3/2-	[6, 12, 29]
6.860(27)	44(19)	0.007	3/2-	this work
7.055(25)	42(11)	0.047	(5/2+,7/2+)	this work, [12, 29]
7.075(17)	23.8	15.2	3/2+	[30]
7.845(25)	71(27)	59	1/2+	this work, [11]

Results: Updated S-factor calculation

Updated S-factor including two missing states (6, 860 and 7,055 MeV states)

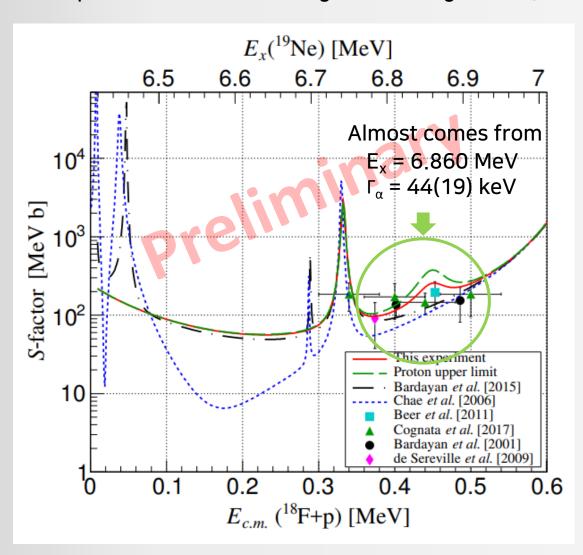


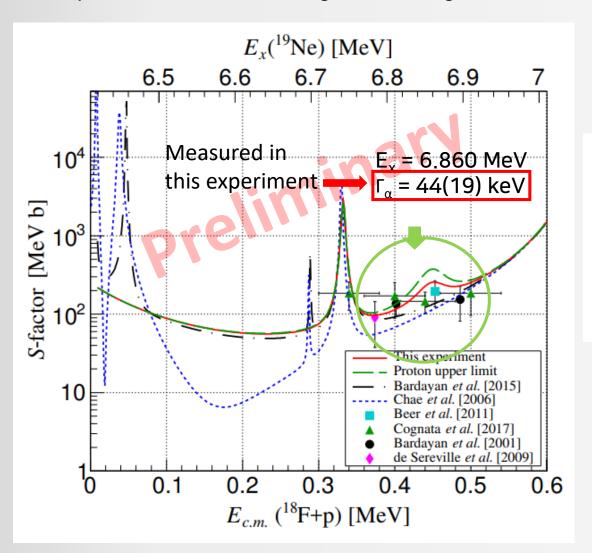
TABLE I: Resonance state energies and widths, including those for the two newly observed states for the S-factor calculation.

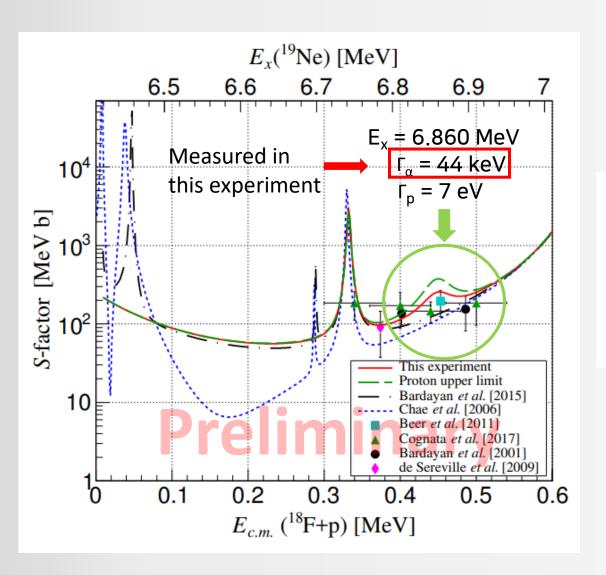
$E_{\rm x}({ m MeV})$	$\Gamma_{\alpha}(\text{keV})$	$\Gamma_p(\text{keV})$	J^{π}	Ref.
6.132(5)	0.74	≤ 6	(3/2+)	[11, 25]
6.286(4)	11.7	83.5	(1/2+)	[26-28]
6.742(2)	5.2	0.0022	3/2-	[6, 12, 29]
6.860(27)	44(19)	0.007	3/2-	this work
7.055(25)	42(11)	0.047	(5/2+,7/2+)	this work, [12, 29]
7.075(17)	23.8	15.2	3/2+	[30]
7.845(25)	71(27)	59	1/2+	this work, [11]

The missing state at E_x=6.860 MeV affect the Sfactor calculation by several factors difference around the astrophysically important energy range!

Results: Updated S-factor

Updated S-factor including two missing states (6. 860 and 7.055 MeV states)

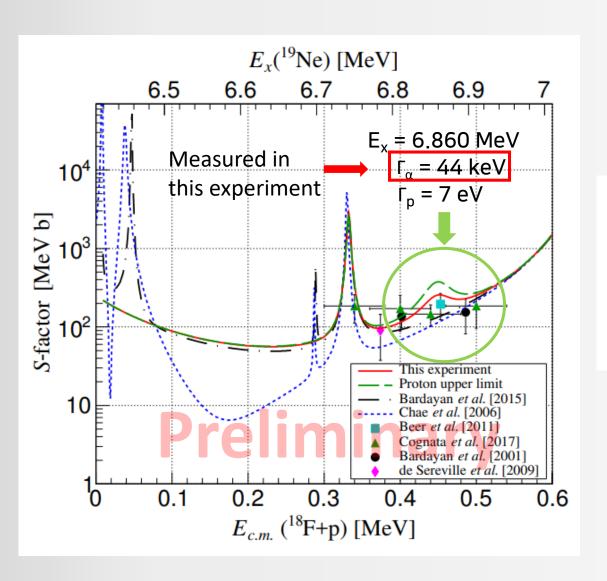



TABLE I: Resonance state energies and widths, including those for the two newly observed states for the S-factor calculation.

$E_{\rm x}({ m MeV})$	$\Gamma_{\alpha}(\text{keV})$	$\Gamma_p(\text{keV})$	J^{π}	Ref.
6.132(5)	0.74	≤ 6	(3/2+)	[11, 25]
6.286(4)	11.7	83.5	(1/2+)	[26-28]
6.742(2)	5.2	0.0022	3/2-	[6, 12, 29]
6.860(27)	44(19)	0.007	3/2-	this work
7.055(25)	42(11)	0.07	(5/2+,7/2+)	this work, [12, 29]
7.075(17)	23.8	1	3/2+	[30]
7.845(25)	71(27)		1/2+	this work, [11]

Never been measured!

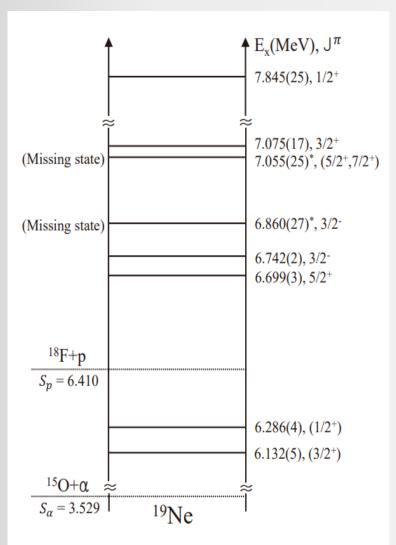
Results: Proton width calculation



Finding the minimum kaisquare between experimental value and the calculation result by varying the proton width value.

$E_{\rm x}({ m MeV})$	$\Gamma_{\alpha}(\text{keV})$	$\Gamma_p(\text{keV})$	J^{π}
6.132(5)	0.74	≤ 6	(3/2+)
6.286(4)	11.7	83.5	(1/2+)
6.742(2)	5.2	0.0022	3/2-
6.860(27)	44(19)	0.007	3/2-
7.055(25)	42(11)	0.047	(5/2+,7/2+)
7.075(17)	23.8	15.2	3/2+
7.845(25)	71(27)	59	1/2+

Results: Proton width calculation


Finding the minimum kaisquare between experimental value and the calculation result by varying the proton width value.

$E_{\rm x}({ m MeV})$	$\Gamma_{\alpha}(\text{keV})$	$\Gamma_p(\text{keV})$	J^{π}
6.132(5)	0.74	≤ 6	(3/2+)
6.286(4)	11.7	83.5	(1/2+)
6.742(2)	5.2	0.0022	3/2-
6.860(27)	44(19)	0.007	3/2-
7.055(25)	42(11)	0.047	(5/2+,7/2+)
7.075(17)	23.8	15.2	3/2+
7.845(25)	71(27)	59	1/2+

 Proton width upper limit of the missing state at E_x = 6.860 MeV in ¹⁹Ne with 1σ confidence level is ~ 14 eV.

Very close to the deduced value (12 eV) from the mirror state in ¹⁹F!

Summary

- Studied missing states in 19 Ne near proton threshold (E_x =6.410 MeV) for the 18 F(p,a) 15 O reaction rate which is a nuclear astrophysically important reaction in a classical nova.
- Identified ~ 28 resonances in 19 Ne including 12 new resonances via the 15 O+alpha elastic scattering experiment in $E_x = 6.0 \sim 11.5$ MeV.
- Observed two missing states near the proton threshold.
- Calculated proton width for one of the missing state at E_x = 6.860 MeV, and which would change the S-factor by several factors at $E_{c.m.}$ = 0.4-0.5 MeV region and contribute to the $^{18}F(p,a)^{15}O$ reaction rate at nova temperature.

Collaboration list

 α -cluster States Observed in ¹⁹Ne Affecting the ¹⁸F (p, α) ¹⁵O Reaction Rate in Novae

D. Kim, 1, 2, * K. I. Hahn, 1, 2, † A. Kim, 3 S. Y. Park, 4 G. W. Kim, 4 E. K. Lee, 4 S. W. Hong, 5 K. Y. Chae, 5 S. M. Cha, 1 M. S. Gwak, 6 E. J. Lee, 5 J. H. Lee, 5 J. Y. Moon, 6 S. H. Choi, 7 S. H. Bae, 1 H. Yamaguchi, 8 S. Hayakawa, 8 Y. Sakaguchi, 8 K. Abe, 8 N. Imai, 8 N. Kitamura, 8 O. Beliuskina, 8 Y. Wakabayashi, 9 S. Kubono, 9 V. Panin, 9 N. Iwasa, 10 D. Kahl, 11 and A. A. Chen 12

1 Center for Exotic Nuclear Studies (CENS), Institute for Basic Science (IBS), Daejeon, Korea

2 Ewha Womans University, Seoul, Korea

3 Center for Extreme Nuclear Matters (CENuM), Korea University, Seoul, Korea

4 Center for Underground Physics (CUP), Institute for Basic Science (IBS), Daejeon, Korea

5 Department of Physics, SungKyunKwan University, Suwon, Korea

6 RISP, Institute for Basic Science (IBS), Daejeon, Korea

7 Department of Physics and Astronomy, Seoul National University, Seoul, Korea

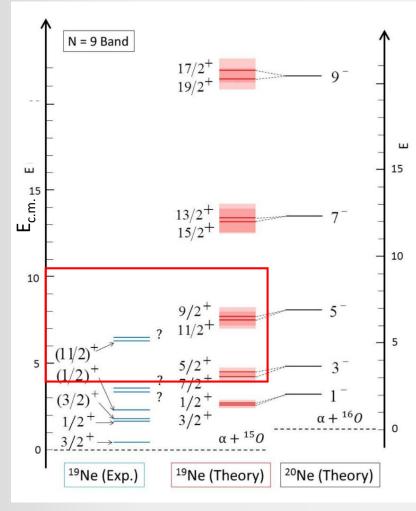
8 Center for Nuclear Study, University of Tokyo, Wako, Japan

⁹RIKEN, Nishina Center, Wako, Japan ¹⁰Department of Physics, University of Tohoku, Sendai, Japan ¹¹Extreme Light Infrastructure Nuclear Physics.

Horia Hulubei National Institute for RD in Physics and Nuclear Engineering(IFIN-HH), Bucharest-Magurele, Romania

12 Department of Physics and Astronomy, McMaster University, Hamilton, Canada

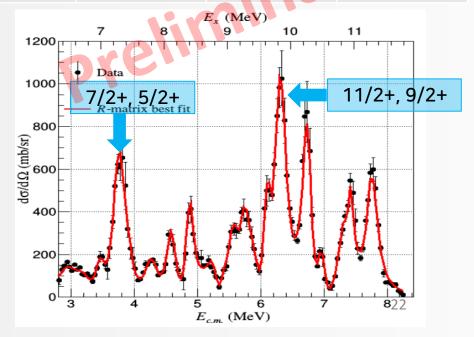
- D. W. Bardayan (Notre Dame University, US)
- S. Ahn, J. Park (Center for Exotic nuclear Studies, Korea)
- S. L. Olsen, D. Leonard (Center for Underground Physics, Korea)



Thank you for your attention

Results: ¹⁹Ne (Alpha cluster states)

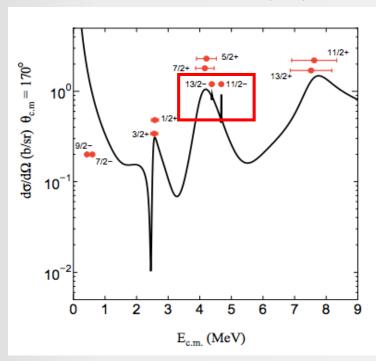
 Predicted alpha cluster states using the simple potential model



R. Otani et al., Phys. Rev. C 90, 034316 (2014)

Resonance parameters of alpha cluster state candidates from this experiment

 $(\theta^2 > 0.1)$: alpha cluster state


E _x	J π	$Γ_{\alpha}$ (keV)	θ^2
7.320(8)	(7/2+)	130(3)	0.67
7.420(8)	(5/2+)	196(4)	0.89
9.830(8)	(11/2+)	120(3)	0.49
9.880(4)	(9/2+)	133(5)	0.53

Motivation: Alpha cluster states in A=19 isotopes

 Theoretical calculation result using simple potential model on the excitation energies of the cluster structure states in ¹⁹Ne. D. Torresi et al., PRC 96, 044317 (2017)

TABLE II. Comparison of the calculated and measured $\alpha + {}^{15}\text{O}$ rotational levels.

	Expt.		Calc.a		
E_x (MeV)	I^{π}	θ_{α}^{2}	E_x (MeV)	I^{π}	
0.27509(13)b	1/2 ^{-a}	(bound)	0.52	1/2-	
1.51756(3) ^b	$5/2^{-a}$	(bound)	1.56	$5/2^{-}$	
1.6156(5)b	$3/2^{-a}$	(bound)	1.66	$3/2^{-}$	
4.140(4) ^b	$(9/2^{-})$	≤1°	3.98	$9/2^{-}$	
4.197(2)b	$(7/2^{-})$	≤0.1°	4.18	7/2-	
8.428(2) ^d	$(13/2^{-})^{b}$	0.31(4) ^d	7.98	13/2-	
(8.790) ^d	$(11/2^{-/+})^{b}$	$0.10(3)^{d}$	8.26	$11/2^{-}$	
14.2(3) ^b	_	_	13.67	17/2-	
14.5(3) ^b	_	_	14.26	$15/2^{-}$	

^aThere is an uncertainty of ≈50 keV on the calculated energies for $9/2^-$ and above, from extracting the values from Fig. 3 of Ref. [45].

The $^{15}\text{O}+\alpha$ excitation function fitting result $(\theta_{\text{c.m}} = 180^{\circ})$. The states with negative alpha clus ter states, $J^{\pi} = 13/2$ - and 11/2-, were measured.

Finding positive alpha-cluster states which were predicted by theoretical calculation.