

Measuring the ¹⁵O(α,γ) ¹⁹Ne Reaction in Type I X-ray Bursts using ²⁰Mg β-decay

Nuclei in the Cosmos (NIC XVII) Daejeon, Korea 2023

Tyler Wheeler for the FRIB E21072 Collaboration

Outline

Summary of Experiment

- Astrophysical Motivation
- Underlying Nuclear Physics
- Experimentally Constraining the ¹⁵O(α,γ)¹⁹Ne Reaction using ²⁰Mg Decay

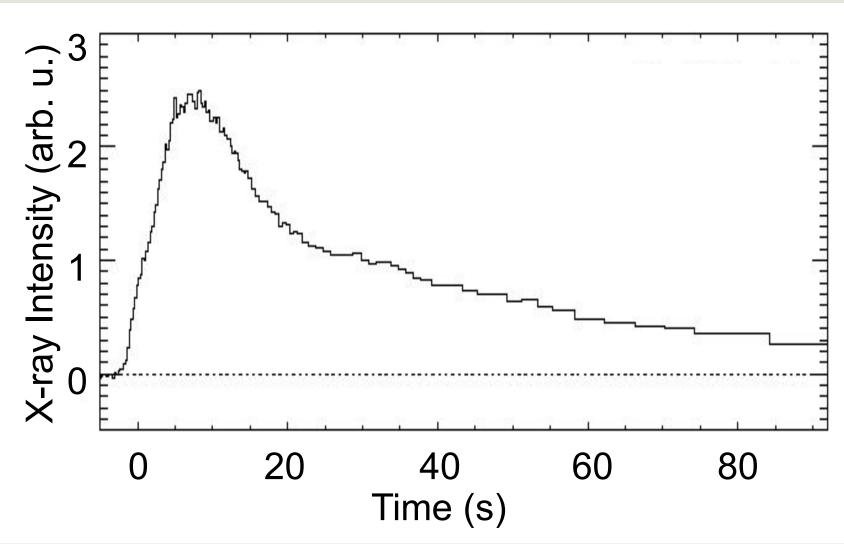
Ongoing Data Analysis

- Search Region on Range vs
 Energy Plots
- CNN Development for Rare Event Search in Data
- Candidate Events

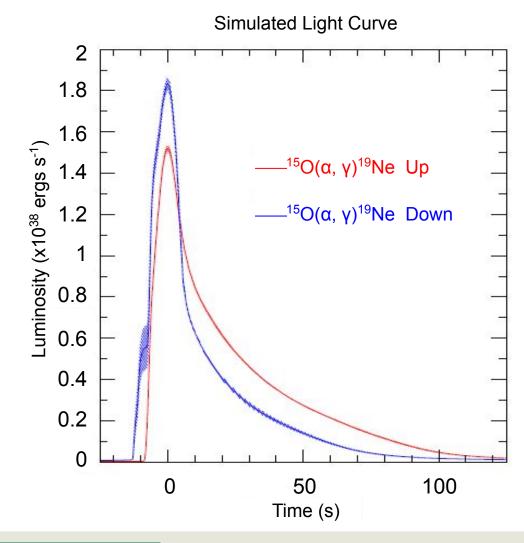
GADGET II FRIB Experiment 21072

- Construction of Full GADGET II
 Detection System
- Experimental Data

Future Outlook


Summary

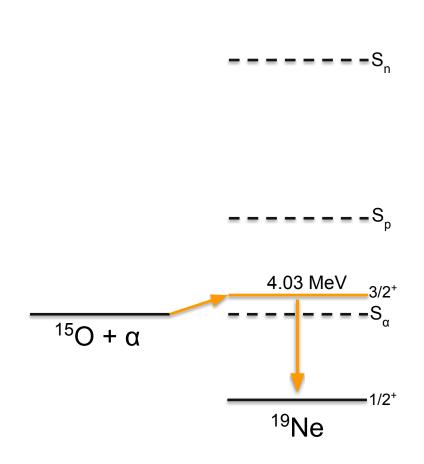
Type I X-ray Bursts



Bottleneck in Type I X-ray Bursts

Reactions that Impact the Burst Light Curve in the Multi-zone X-ray Burst Model

Reaction
$^{15}O(\alpha, \gamma)^{19}Ne$
⁵⁶ Ni(α, p) ⁵⁹ Cu
⁵⁹ Cu(p, v) ⁶⁰ Zn
⁶¹ Ga(p, v) ⁶² Ge
²² Ma(α, p) ²⁵ Al
$^{14}O(\alpha, p)^{17}F$
²³ Al(p. v) ²⁴ Si
¹⁸ Ne(α, p) ²¹ Na
⁶³ Ga(p, y) ⁶⁴ Ge
$^{19}F(p, \alpha)^{16}O$
¹² C(α, ν) ¹⁶ O
²⁶ Si(α, ρ) ²⁹ P
$^{17}F(\alpha, p)^{20}Ne$
24 Mg(α , γ) 28 Si
⁵⁷ Cu(p, γ) ⁵⁸ Zn
60 Zn(α , p) 63 Ga
17 F(p, γ) 18 Ne
$^{40}Sc(p, \gamma)^{41}Ti$
⁴⁸ Cr(p, γ) ⁴⁹ Mn
$Ci(p, \gamma)$ with



The $^{15}O(\alpha, \gamma)^{19}Ne$ reaction proceeds by resonant capture

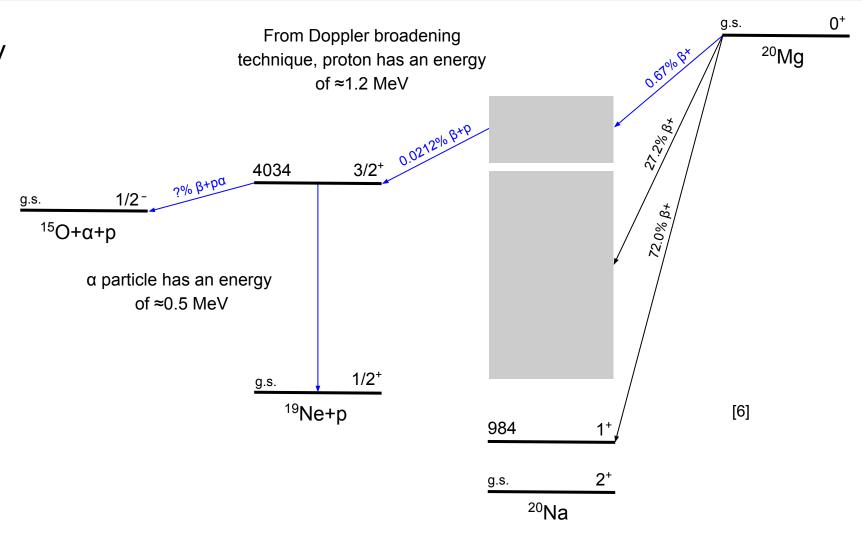
Reaction rate:

$$\langle \sigma v \rangle = [(2\pi)/(kT\mu)]^{3/2}\hbar^2 e^{-Er/kT}\omega \gamma$$

Resonance Strength:

$$\omega \gamma = \frac{2J+1}{(2J_{\alpha}+1)(2J_{15O}+1)} \frac{\Gamma_{\alpha}\Gamma_{\gamma}}{\Gamma}$$

$$\omega \gamma \propto \frac{\Gamma_{\alpha}}{\Gamma} \frac{1}{\tau}$$
[1], [2], [3]

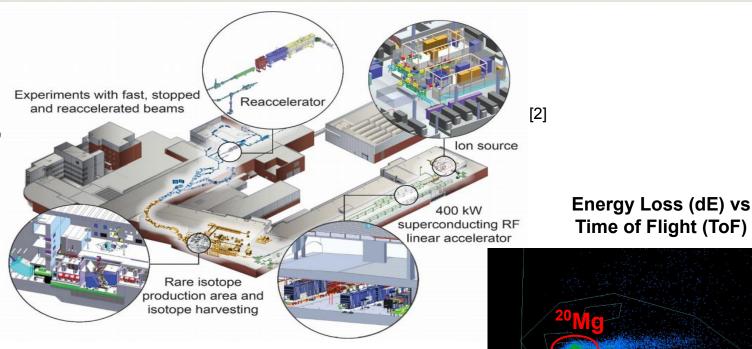

Only need to measure the alpha particle branching ratio to determine the reaction rate.

Feeding the 4.03 MeV state via ²⁰Mg(βp) decay

- Transfer reactions have been used to populate the 4.03 MeV state:
 p(²¹Ne, t)¹⁹Ne* [1]
 - 3 He(20 Ne, α) 19 Ne* [2] 19 F(3 He, t) 19 Ne* [3]
- Transfer reaction methods have produced a strong upper limit on the branching ratio (~10⁻⁴) [4]
- Our method utilized the decay sequence ²⁰Mg(βp) to populate the 4.03 MeV state in ¹⁹Ne [5], [6]

^[2] K. E. Rehm et al., PRC 67, 065809 (2003)

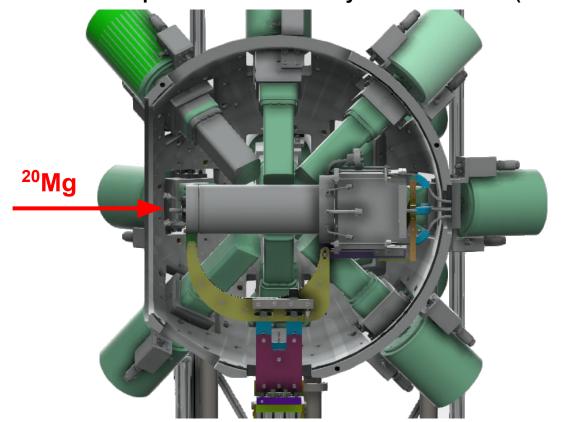
^[3] W. P Tan et al., PRL 98, 242503 (2007)


^[5] B. E. Glassman et al., PRC 99, 065801(R) (2019)

E21072 at the Facility for Rare Isotope Beams (FRIB)

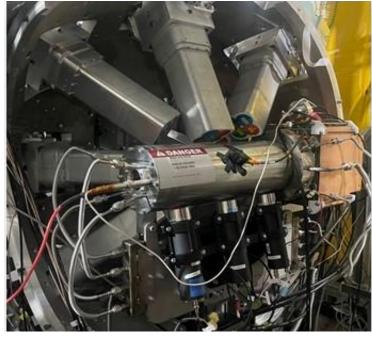
 Ran experiment 21072 in November of 2022 (spokesperson is Chris Wrede, MSU/FRIB[1])

- ³⁶Ar primary beam that impinged on a ¹²C target to create a fast beam of ²⁰Mg
- ~1800 ²⁰Mg beam particles per second

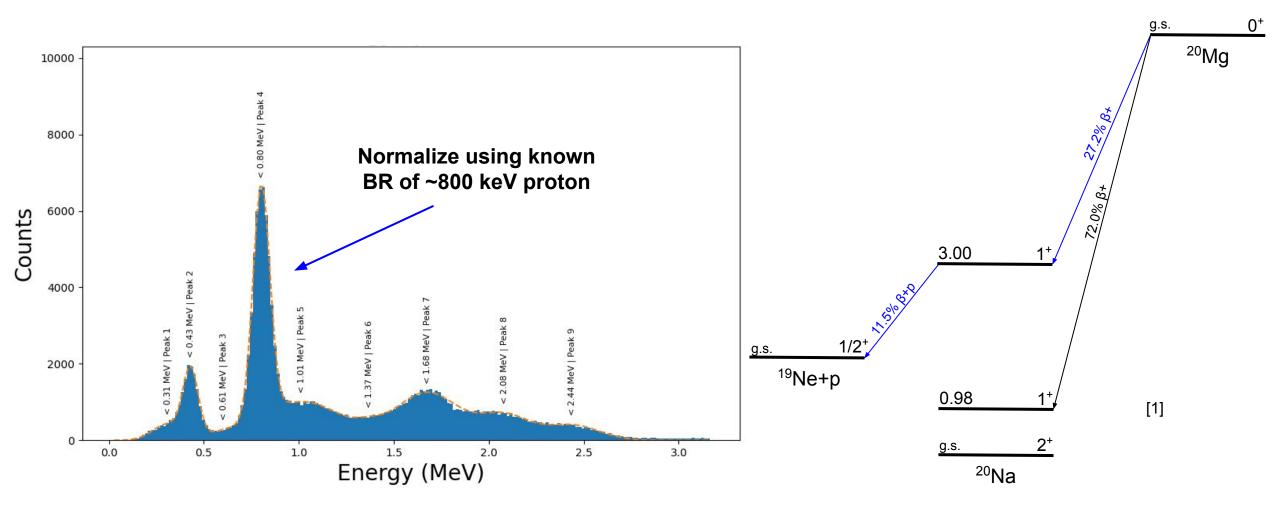


The GADGET II Detection System

GADGET II Detection System Design

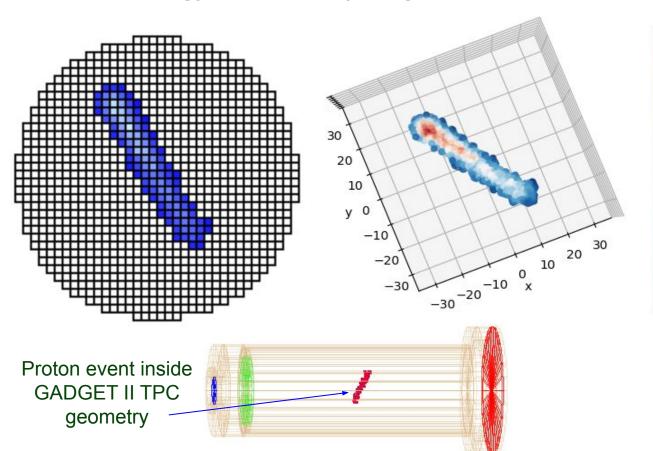

TPC surrounded by the DEcay Germanium Array initiator (DEGAi)
DEGAi is part of the FRIB Decay Station initiator (FDSi)

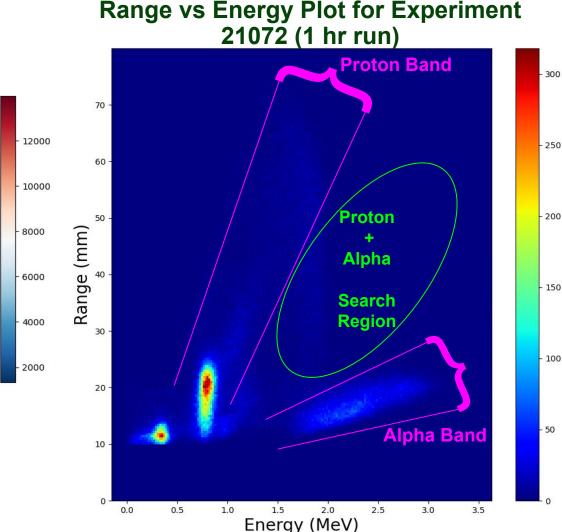
Final Experimental Setup (Nov. 2022)


GADGET II, In Preparation (2023)

Ruchi Mahajan, MSU/FRIB (Postdoc)

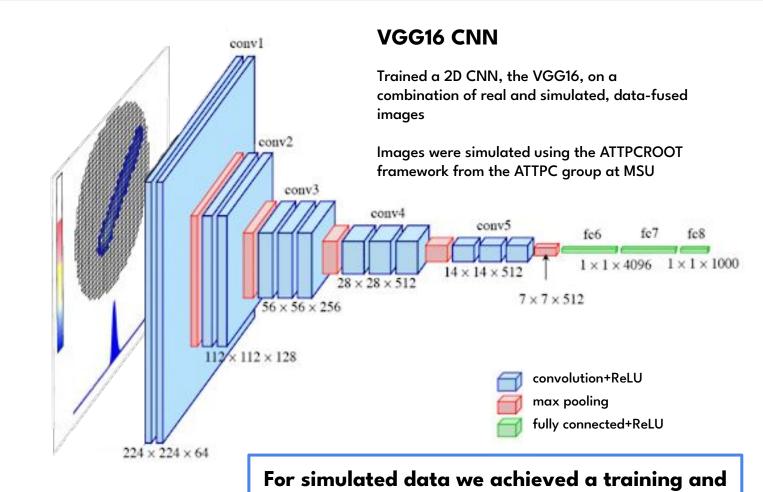
TPC Raw Energy Spectrum 1 hr Run from Experiment 21072





Range vs Energy Search Region 1 hr Run from Experiment 21072

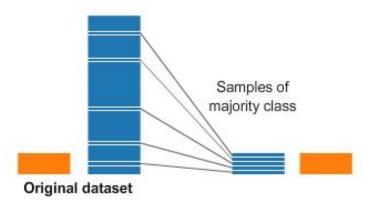
Experimental Data: Typical Proton Track Energy = 1.67 MeV | Length = 55 mm



Early Data Fusion w/ Convolutional Neural Net (CNN)

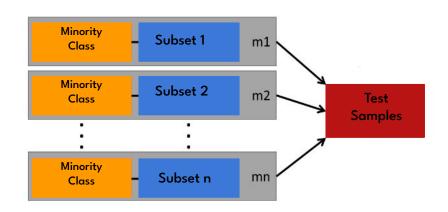
Data Fused Images

Used early data fusion to compress 3D images into 2D data-fused images with no loss of topology uniqueness

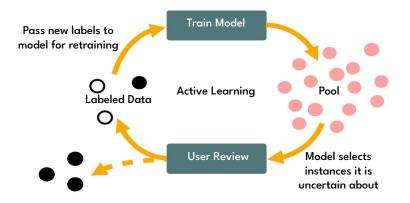


testing accuracy of 100%

Combatting Imbalanced Data for Rare Event Search in TPC Data


Undersampling/Oversampling

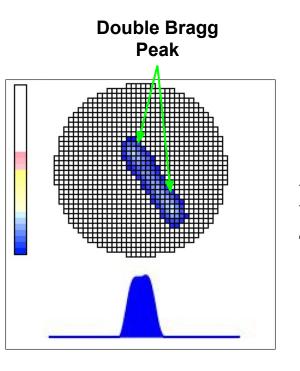
Undersampling the majority class and oversampling the minority class to create a balanced data set improves model performance

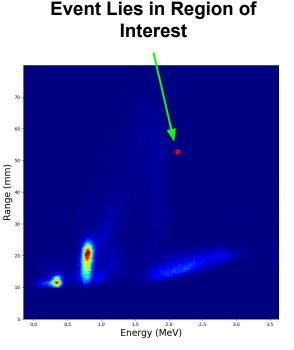

Ensemble Method w/ Majority Vote

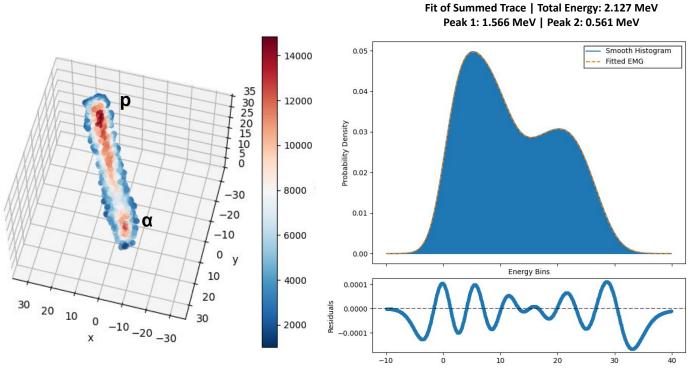
Train multiple CNNs and use a majority voting approach to make final predictions from the ensemble

Active Learning

Deploy models on unlabeled data and have them query the user to obtain labels for the most informative examples




All of these methods combined to give us ~97% accuracy in identifying real two-particle events



Ongoing Analysis of Experimental Data: Example of Candidate p-α Event

Future Outlook: GADGET II FRIB Experiment E23035

Reactions that Impact the Burst Light Curve in the Multi-zone X-ray Burst Model

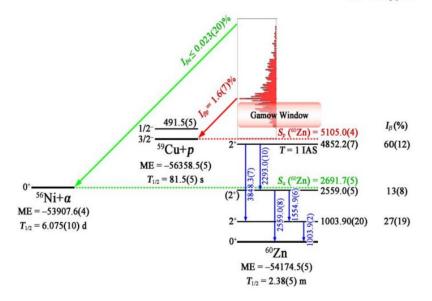
Rank	Reaction
1	$^{15}O(\alpha, \gamma)^{19}Ne$
<mark>2</mark> 3	⁵⁶ Ni(α, p) ⁵⁹ Cu
<mark>3</mark>	⁵⁹ Cu(p, γ) ⁶⁰ Zn⁴
4	⁶¹ Ga(p, y) ⁶² Ge
5	²² Μα(α, p) ²⁵ ΑΙ
6	¹⁴ O(α, p) ¹⁷ F
7	²³ Al(p, y) ²⁴ Si
8	18 Ne(α , p) 21 Na
9	⁶³ Ga(p, y) ⁶⁴ Ge
10	¹⁹ F(p, α) ¹⁶ O
11	¹² C(α, ν) ¹⁶ O
12	²⁶ Si(α, ρ) ²⁹ P
13	¹⁷ F(α, p) ²⁰ Ne
14	²⁴ Mq(α, γ) ²⁸ Si
15	⁵⁷ Cu(p, γ) ⁵⁸ Zn
16	60 Zn(α , p) 63 Ga
17	¹⁷ F(p. v) ¹⁸ Ne
18	⁴⁰ Sc(p, v) ⁴¹ Ti
19	48 Cr(p, γ) 49 Mn

U.S. Department of Energy Office of Science

National Science Foundation

Michigan State University

PAC 2 approved FRIB experiment to measure two critical reactions in Type I X-ray bursts

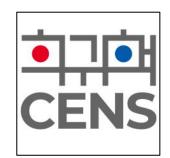

Chris Wrede, MSU/FRIB (Spokesperson)

Alexander Adams, MSU/FRIB (Thesis Experiment)

Will utilize the β-decay of ⁶⁰Ga to measure the relative rates of ⁵⁹Cu(p, γ) and ⁵⁹Cu(p, α) reactions

A simplified decay scheme for 60Ga.

Summary


- The ¹⁵O(α, γ)¹⁹Ne reaction is one of the most important reaction rate uncertainties underlying X-ray bursts from neutron stars
- The reaction rate can be determined by measuring the alpha particle branching ratio from the 4.03 MeV state in ¹⁹Ne
- We are searching for the alpha emission from this state by using the ²⁰Mg decay sequence at FRIB with a fast beam of ²⁰Mg and the GADGET II TPC
- We will continue to analyze experimental data with the aid of ML algorithms (CNNs) to identify the rare events of interest
- Once the reaction rate is calculated we will model X-ray burst light curves from neutron stars and investigate the next-most-important reactions

Thank you to our GADGET II Collaborators! Collaboration for FRIB experiment # 21072

UNIVERSITY

The End

Measuring the ¹⁵O(α,γ) ¹⁹Ne Reaction in Type I X-ray Bursts using ²⁰Mg β-decay

Nuclei in the Cosmos (NIC XVII) Daejeon, Korea 2023

Tyler Wheeler for the FRIB E21072 Collaboration

This work was supported by the U.S. National Science Foundation under Grants No. PHY-1102511, PHY-1565546, PHY-1913554, and PHY-1811855, and the U.S. Department of Energy, Office of Science, under award No. DE-SC0016052 and DE-SC0023529.

Thank you!

