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Introduction: Nuclear Reaction Rates by Statistical Hauser-Feshbach

Statistical Hauser-Feshbach theory for nuclear reactions in the keV to MeV energy range

Widely employed for astrophysics study - nucleo-synthesis

Calculated cross section strongly depends on
~ model parameters: photon strength function, level density, optical potential, ..
~ implementation: nuclear deformation fission model, ... Comnound Elastic
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Fission cross section is still very difficult to
predict by the current HF model
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Fission Transmission Calculation - Conventional Method

Extremely simplified penetration model employed

Hill and Wheeler expression gives an analytical
expression by WKB approximation for Inverted
parabolic barriers

Often double-humped barrier shape assumed, which
are combined by

Sometimes potential valleys considered (Class-Il)

Because two barriers are fully decoupled, there is
no actual fission path

Number of fission channels determined by the level
densities on top of each barrier

Includes fission level density enhancement
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Solving Schrodinger Equation for Fission Penetration

1-D Schroedinger Equation in the deformation coordinate
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which satisfies the asymptotic solution
W (kz) — SulT) (kz) = > Tmax
AulT) (kz) 2 < Tmin

W' F) (k) = cos(kx) + i sin(kx)

Cramer, Nix PRC 2, 1048 (1970)

transmission coefficient (penetration) is given by - = T >
T=1-|5 A
when complex potential 2 -
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1-D Fission Potential and Wave-Functions
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Transmission coefficient is given by the
amplitude inside the barriers when unit wave
In the exteror region is given
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Fission Transmission Coefficient
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3 Resonance-like structure appears

not a CN resonance but nuclear shape effect

this happens when incoming and reflection
waves are in phase
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Penetration Through Excited States - Fission Trajectory Model

Penetration happen many excited states

Fission paths must be defined for all of the
possible trajectories

They are distorted by the nuclear deformation, Class-| Barrier A Class-l Barrier B

mass asymmetry, pairing effect, etc
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We employ a simplified trajectory oo A B s
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compression model
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where fo and f1 are parameters
Eo

Low-lying discrete levels are lowerd,
and continuum at higher energy region

asymptotes CN level density

Xmin X1 <1 X2 &2 X3 Xmax
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Calculated Fission Cross Sections for Major Actinides

Calculated cross sections compared with “evaluated data”
reveals resonance-like structure, remarkable for 238U which is a sub-threshold fissioner

calculations reasonably agree with evaluations even limited number of parameters employed
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+/- 100 keV change in the fission barrier roughly sub-thresold fission cross

cover the range of experimental data sectionssignificantly increased
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Concluding Remarks and Perspective

New fission penetration model incorporated into coupled-channels Hauser-Feshbach model

Fission penetration (= fission transmission coefficients) is calculated for the arbitrary-shape 1-D
potential by solving Schroedinger equation numerically

This model ensures that the penetrability is always unity when the system energy is above all the fission barriers

Fission paths through excited states expressed by the fission trajectory model

Although very crude at this moment, only limited number of parameters involved

Calculated fission cross sections for major actinides compared with high-quality evaluated data

We demonstrate the 1-D model potential with the fission trajectory model reproduces experimental fission cross
section data

Feasible (plausible) extensions
Potential energy surface by more microscopic insights
Include different deformation coordinates: mass asymmetry and fragment deformation
Coupled-channels formalism for Schroedinger equation
Consistent calculation for both the fission cross section and the fission product yields
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