

Realistic fission transmission coefficients in the statistical Hauser-Feshbach compound-nucleus reaction theory

T. Kawano
Theoretical Division

Introduction: Nuclear Reaction Rates by Statistical Hauser-Feshbach

Statistical Hauser-Feshbach theory for nuclear reactions in the keV to MeV energy range

Widely employed for astrophysics study - nucleo-synthesis

Calculated cross section strongly depends on

model parameters: photon strength function, level density, optical potential, ...

implementation: nuclear deformation fission model, ...

Fission cross section is still very difficult to predict by the current HF model

Compound Elastic

Fission Transmission Calculation - Conventional Method

- Extremely simplified penetration model employed
 - Hill and Wheeler expression gives an analytical expression by WKB approximation for Inverted parabolic barriers
 - Often double-humped barrier shape assumed, which are combined by

$$T_f = \frac{T_A T_B}{T_A + T_B}$$

- Sometimes potential valleys considered (Class-II)
- Because two barriers are fully decoupled, there is no actual fission path
 - Number of fission channels determined by the level densities on top of each barrier
 - Includes fission level density enhancement

$$T_i(E) = \frac{1}{1 + \exp\left(2\pi \frac{V_i + E - E_0}{C_i}\right)}, i = A, B$$

Solving Schrödinger Equation for Fission Penetration

1-D Schroedinger Equation in the deformation coordinate

$$\frac{d^2}{dx^2}\phi(x) + \frac{2\mu}{\hbar^2} \left\{ E - (V(x) + iW(x)) \right\} \phi(x) = 0$$

$$\frac{\mu}{\hbar^2} = 0.054A^{5/3} \quad \text{MeV}^{-1}$$

Cramer, Nix PRC 2, 1048 (1970)

which satisfies the asymptotic solution

$$u^{(-)}(kx) - Su^{(+)}(kx)$$
 $x > x_{\text{max}}$ $Au^{(-)}(kx)$ $x < x_{\text{min}}$ $u^{(\pm)}(kx) = \cos(kx) \pm i\sin(kx)$

transmission coefficient (penetration) is given by

$$T = 1 - |S|^2$$

when complex potential

$$T = A = \frac{u^{(-)} - Su^{(+)}}{\phi} \Big|_{x_m}$$

1-D Fission Potential and Wave-Functions

Transmission coefficient is given by the amplitude inside the barriers when unit wave in the exteror region is given

Fission Transmission Coefficient

Penetration Through Excited States - Fission Trajectory Model

Penetration happen many excited states

Fission paths must be defined for all of the possible trajectories

 They are distorted by the nuclear deformation, mass asymmetry, pairing effect, etc

We employ a simplified trajectory compression model

$$\varepsilon_x = \left\{ f_0 + \left(1 - e^{-f_1 E_x} \right) \left(1 - f_0 \right) \right\} E_x$$

$$V(E_x, x) = V_0(E_x, x) + \varepsilon_x$$

where f₀ and f₁ are parameters

Low-lying discrete levels are lowerd, and continuum at higher energy region asymptotes CN level density

Calculated Fission Cross Sections for Major Actinides

Calculated cross sections compared with "evaluated data"

Los Alamos NATIONAL LABORATORY

- ereveals resonance-like structure, remarkable for ²³⁸U which is a sub-threshold fissioner
- calculations reasonably agree with evaluations even limited number of parameters employed

Concluding Remarks and Perspective

- New fission penetration model incorporated into coupled-channels Hauser-Feshbach model
 - Fission penetration (= fission transmission coefficients) is calculated for the arbitrary-shape 1-D
 potential by solving Schroedinger equation numerically
 - This model ensures that the penetrability is always unity when the system energy is above all the fission barriers
 - Fission paths through excited states expressed by the fission trajectory model
 - Although very crude at this moment, only limited number of parameters involved
 - Calculated fission cross sections for major actinides compared with high-quality evaluated data
 - We demonstrate the 1-D model potential with the fission trajectory model reproduces experimental fission cross section data

Feasible (plausible) extensions

- Potential energy surface by more microscopic insights
- Include different deformation coordinates: mass asymmetry and fragment deformation
- Coupled-channels formalism for Schroedinger equation
- Consistent calculation for both the fission cross section and the fission product yields

