Nuclei in the Cosmos (NIC XVII)

Contribution ID: 12 Type: Oral

Understanding the abundance of 22Na in novae by measuring femtosecond lifetimes in 23Mg with a new method

Tuesday, 19 September 2023 16:05 (15 minutes)

Simulations of explosive nucleosynthesis in novae predict the production of the radioisotope 22 Na. Its half-life of 2.6 yr makes it a very interesting astronomical observable by allowing space and time correlations with the astrophysical object. Its γ -ray line at 1.275 MeV has not been observed yet by the γ -ray space observatories. This radioisotope should bring constraints on nova models. It may also help to explain abnormal 22 Ne abundance observed in presolar grains and in cosmic rays. Hence accurate yields of 22 Na are required. At peak nova temperatures, the main destruction reaction 22 Na(p, γ) 23 Mg has been found dominated by a resonance at 0.204 MeV corresponding to the E_x =7.785 MeV excited state in 23 Mg. However, the different determinations of the strength of this resonance disagree, resulting in uncertainties of one order of magnitude for the expected mass of 22 Na ejected in novae [1].

An experiment was performed at GANIL facility to measure both the lifetime and the proton branching ratio of the key state at $E_x=$ 7.785 MeV. The principle of the experiment is based on the one used in [2]. With a beam energy of 4.6 MeV/u, the reaction $^3{\rm He}(^{24}{\rm Mg},\alpha)^{23}{\rm Mg}^*$ populated the state of interest. This reaction was measured with particle detectors (magnetic spectrometer VAMOS++, silicon detector SPIDER) and γ -ray tracking spectrometer AGATA. The expected time resolution with AGATA high space and energy resolutions is 1 fs. Particle and γ -ray emissions were analyzed with a new simulation code EVASIONS to determine the spectroscopic properties of the key state.

Our new results [3] will be presented. Doppler shifted γ -ray spectra from 23 Mg states were improved by imposing coincidences with the excitation energies reconstructed with VAMOS++. This ensured to suppress the feeding from higher states. Lifetimes in 23 Mg, down to the femtosecond, were measured with a new approach based on particle - γ -ray correlations and velocity-difference profiles. Protons emitted from unbound states in 23 Mg were also identified. With an higher precision on the measured lifetime and proton branching ratio of the key state, a new value of the resonance strength $\omega\gamma$ was obtained, it is below the sensitivity limit of direct measurement experiments. The 22 Na(p,γ) 23 Mg thermonuclear rate has been reevaluated with the statistical Monte Carlo approach. The amount of 22 Na ejected during novae has been proven to be a tool for better understanding the underlying novae properties. Thanks to the highly-accurate rate, derived here, robust estimates of the detectability limit of 22 Na in novae have been determined with respect to the next generation of γ -ray space telescopes, and the detection of the 22 Na γ -ray line found promising in the coming decades.

References

- [1] C. Fougères et al, EPJ Web Conf 279, 09001 (2023).
- [2] O. S. Kirsebom et al, Phys. Rev. C 93, 1025802 (2016).
- [3] C. Fougères et al, arXiv:2212.06302, 09001 (2022).

Primary authors: FOUGÈRES, Chloé (Argonne National Laboratory); Dr DE OLIVEIRA SANTOS, François (Grand Accélérateur National d'Ions Lourds (GANIL, CEA/DRF-CNRS/IN2P3); Prof. JOSÉ, Jordi (Universitat Politècnica de Catalunya and Institut d'Estudis Espacials de Catalunya)

Presenters: FOUGÈRES, Chloé (Argonne National Laboratory); Dr DE OLIVEIRA SANTOS, François (Grand

Accélérateur National d'Ions Lourds (GANIL, CEA/DRF-CNRS/IN2P3)

Session Classification: Novae and X-ray bursts, Type IA supernova and the p-process

Track Classification: Novae and X-ray bursts