

Recent astrophysics results from the Enge split-pole spectrograph program at the Triangle Universities Nuclear Laboratory

Presenter: R. Longland (TUNL/NCSU)

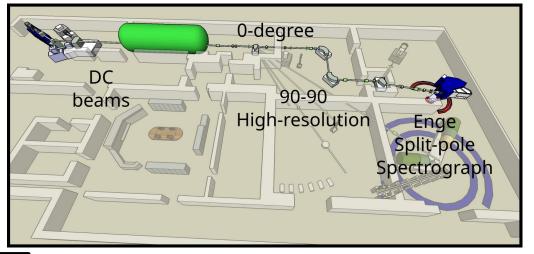
TUNL overview

Four-university consortium

- North Carolina State University
- North Carolina Central University
- The University of North Carolina at Chapel Hill
- Duke University

Three accelerator facilities

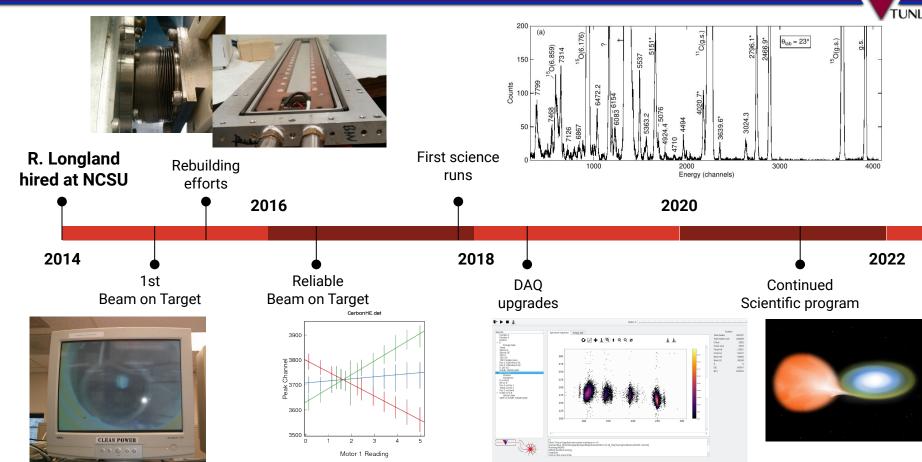
- Tandem Accelerator Lab.
- Laboratory for Experimental Nuclear Astrophysics (LENA)
- High-Intensity γ-ray Source (HIγS)



Enge split-pole spectrograph

Beam Capabilities

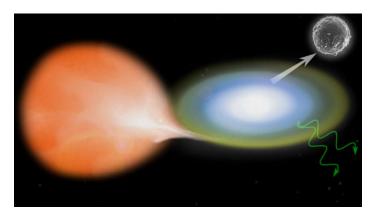
- p,d (~ 1 μ A)
- ³He, ⁴He (~ 500 enA)
- 10 MV Tandem Accelerator
- High-resolution beamline (∆E < 1 keV)



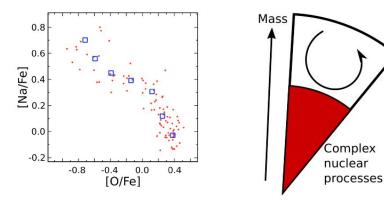
Enge split-pole spectrograph

- 0.125 5 msr acceptance
- 1.5 T maximum field
- 0° and 180° capabilities
- $\Delta \rho \sim 0.3 \text{ mm} (\sim 10 \text{ keV for }^{20} \text{Ne}(d,p)^{21} \text{Ne})$

Timeline



Astrophysics program


NC STATE UNIVERSITY

Novae

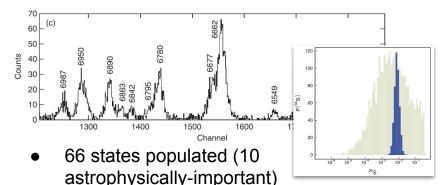
- Nova explosions can produce
 - \circ γ rays
 - Grains
 - + more
- These messengers provide tight constraints on nova conditions
- Nuclear physics uncertainties prevalent

AGB Stars

Prantzos et al., A&A 149 (2006) 18

- Oxygen-sodium anti-correlation in globular clusters
- Hot bottom burning in AGB stars can explain sodium production
- Uncertainty dominated by ²³Na+p destruction channels

Novae



PHYSICAL REVIEW C 99, 055812 (2019)

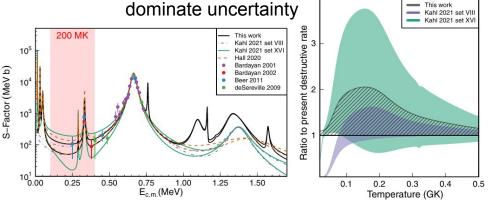
Experimental study of 35 Cl excited states via 32 S(α , p)

K. Setoodehnia, J. H. Kelley, C. Marshall, F. Portillo Chaves, and R. Longland Department of Physics, North Carolina State University, Raleigh NC 27695, USA and Triangle Universities Nuclear Laboratory, Duke University, Durham NC 27710, USA

- Nova models cannot explain ³⁴S anomalies in nova grains
- $^{34}S(p,\gamma)^{35}Ar$ was purely theoretical

 Reaction rate uncertainty reduced by order of magnitude

Politino*, **** R. Longland **, ^{1,2,4}* A. L. Cooper **, ^{3,2,4}* S. Hunt, ^{3,2} A. M. Laird **, ⁴ C. Marshall, ^{1,2} and K. Setoodehnia **


**Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA

**Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA

**Department of Physics, University of York, York Y010 5DD, United Kingdom

• 18 F(p, α) 15 O rate needed for γ -ray observations of novae

• Unknown interference effects

- Determined spin-parity of key sub-threshold state
- Factor of 2 uncertainty reduction

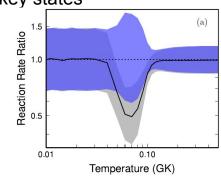
AGB Stars

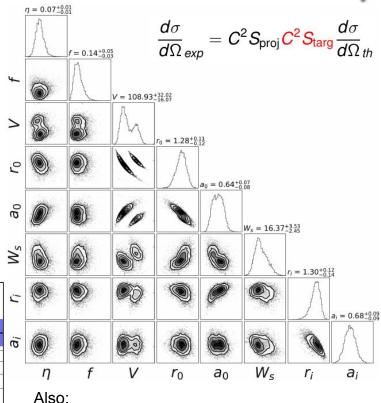
PHYSICAL REVIEW C 107, 035806 (2023)

New constraints on sodium production in globular clusters from the 23 Na(3 He, d) 24 Mg reaction

C. Marshall[©], ^{1,2,*} K. Setoodehnia[©], ^{1,2,†} G. C. Cinquegrana[©], ^{3,4} J. H. Kelly[©], ^{1,2} F. Portillo Chaves[©], ^{1,2} A. Karakas, 3,4 and R. Longland 1,2

¹Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA

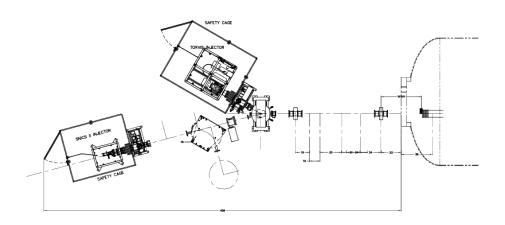

²Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA


³School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia ⁴ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), 2611 AU Mount Stromlo Road,

Australian Capital Territory, Australia

$$\langle \sigma \mathbf{v} \rangle = \left(\frac{2\pi}{\mu \mathbf{k} T} \right)^{3/2} \hbar^2 \sum_i \omega \gamma_i \mathbf{e}^{-E_r/\mathbf{k} T} \quad \sigma_{\mathsf{total}}^{\mathsf{DC}}(E) = \sum_i C_i^2 S_i \sigma_i^{\mathsf{DC}}(E)$$

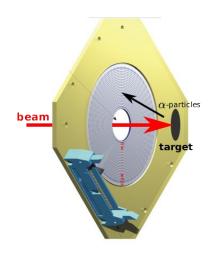
- Sodium production in AGB stars can explain sodium-oxygen anticorrelation in globular clusters
- Extracted energies and C²S for key states
- Reaction rate factor of 2 higher than previous
- Low-energy states under analysis -> direct capture



Marshall et al., Phys. Rev. C 102 (2020) 024609 Marshall et al., Phys. Rev. C 104 (2021) L032801

Upcoming upgrades

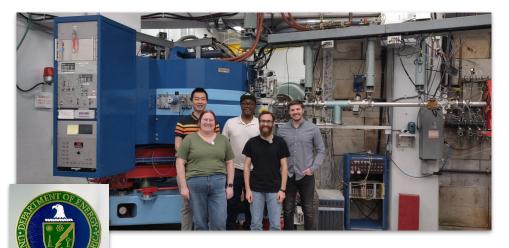
NC STATE UNIVERSITY


lon source upgrade

- TORVIS H/He injector
 - 5x more hydrogen
 - 10x more helium
 - Stability upgrade
- SNICS-II
 - Target implantation
 - Heavy beam capabilities

Auxiliary detectors

- Silicon detectors to measure decay branches in coincidence
- γ-ray detectors
 (CeBr3) for decay
 schemes



- DAQ development complete
- Detector characterization underway
- Requires stability improvements associated with ion source upgrade

Summary

NC STATE UNIVERSITY

- TUNL's Enge split-pole spectrograph nuclear astrophysics program
- Beam-on-target since 2016
- In "production mode"
- Upgrades to ion sources, detector construction, controls, coincidence capabilities

https://go.ncsu.edu/rlongland

Experimental papers since 2018

Portillo et al., Phys. Rev. C 107 (2023) 035809

Marshall et al., Phys. Rev. C 107 (2023) 035806

Frost-Schenk et al., MNRAS 514 (2022) 2650

Marshall et al., Phys. Rev. C 104 (2021) L032801

Hamill et al., EPJ 56 (2020) 36

Setoodehnia et al., Phys. Rev. C 99 (2019) 055812

Marshall et al., IEEE TIM 68 (2019) 533

Setoodehnia et al., Phys. Rev. C 98 (2018) 055804

Funded by U.S. Department of Energy Award Number DE-SC0017799 and Contract Nos. DE-FG02-97ER41033 and DE-FG02-97ER41042.