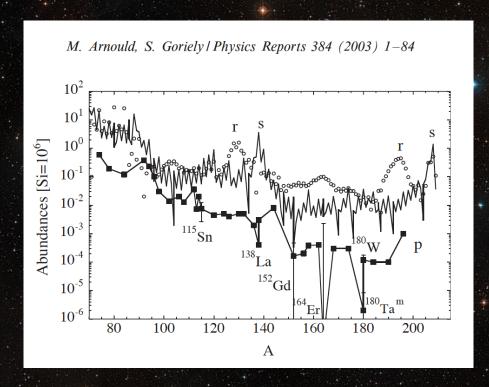
Nuclei in the Cosmos XVII

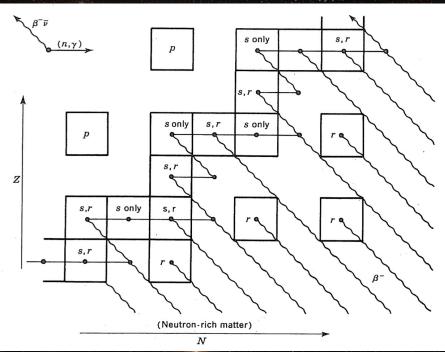
Institute for Basics Science Daejeon, Korea, 17-22 Sep 2023

The p-process nucleosynthesis in core-collapse supernovae

Lorenzo Roberti, Marco Pignatari, Maria Lugaro

Konkoly Observatory, CSFK, Budapest, Hungary


The p(γ)-process nucleosynthesis


- The <u>y-process</u>: a sequence of photodisintegrations (γ ,n), (γ ,p), and (γ , α) in O/Ne rich layers in CCSN explosions from massive star progenitors (e.g., Woosley & Howard, 1978; Rayet et al., 1995);
- Production of **p-nuclei**: 35 neutron-deficient isotopes of elements heavier than Fe;
- <u>Underproduction</u> of typical γ -process yields from massive stars (factor of \sim 2-4) compared to the solar system abundances. <u>Larger underproduction</u> of ^{92,94}Mo and ^{96,98}Ru yields (\sim 1 order of magnitude).

The p(γ)-process nucleosynthesis

- The <u>y-process</u>: a sequence of photodisintegrations (γ ,n), (γ ,p), and (γ , α) in O/Ne rich layers in CCSN explosions from massive star progenitors (e.g., Woosley & Howard, 1978; Rayet et al., 1995);
- Production of <u>p-nuclei</u>: 35 neutron-deficient isotopes of elements heavier than Fe;
- Underproduction of typical γ stars (factor of ~2-4) compare abundances. Larger underpro yields (~1 order of magnitude
 P-38: Riccardo Mucciola (94Mo);
 P-22: Fu-Long Liu (102Pd);
 P-36: Anastasiia Chekhovska (113In, 114Sn);
 Talk: Sophia Dellmann, Monday (120Te, 124Xe).

The p-nuclei

Clayton, D.D. (1968) Principles of Stellar Evolution and Nucleosynthesis. University of Chicago Press, Chicago.

35 stable proton-rich nuclei: ⁷⁴Se, ⁷⁸Kr, ⁸⁴Sr, ^{92,94}Mo, ^{96,98}Ru, ¹⁰²Pd, ^{106,108}Cd, ^{112,114,115}Sn, ¹¹³In, ¹²⁰Te, ^{124,126}Xe, ^{130,132}Ba, ^{136,138}Ce, ¹³⁸La, ¹⁴⁴Sm, ¹⁵²Gd, ^{156,158}Dy, ^{162,164}Er, ¹⁶⁸Yb, ¹⁷⁴Hf, ¹⁸⁰Ta, ¹⁸⁰W, ¹⁸⁴Os, ¹⁹⁰Pt, and ¹⁹⁶Hg.

A&A 677, A22 (2023) https://doi.org/10.1051/0004-6361/202346556 © The Authors 2023

Astronomy Astrophysics

The γ -process nucleosynthesis in core-collapse supernovae

I. A novel analysis of γ -process yields in massive stars

L. Roberti^{1,2,3,*}, M. Pignatari^{1,2,4,*}, A. Psaltis^{5,6,*}, A. Sieverding⁷, P. Mohr⁸, Zs. Fülöp⁸, and M. Lugaro^{1,2,9,10}

Analysis of γ-process yields in 5 different existing sets of core-collapse supernova models (Rauscher+02, Pignatari+16, Sieverding+18, Ritter+18, Lawson+22);

A&A 677, A22 (2023) https://doi.org/10.1051/0004-6361/202346556 © The Authors 2023

Astronomy Astrophysics

The γ -process nucleosynthesis in core-collapse supernovae

I. A novel analysis of γ -process yields in massive stars

L. Roberti^{1,2,3,*}, M. Pignatari^{1,2,4,*}, A. Psaltis^{5,6,*}, A. Sieverding⁷, P. Mohr⁸, Zs. Fülöp⁸, and M. Lugaro^{1,2,9,10}

Analysis of γ-process yields in 5 different existing sets of core-collapse supernova models (Rauscher+02, Pignatari+16, Sieverding+18, Ritter+18, Lawson+22);

Main results:

• The <u>pre-supernova structure</u> of the model is crucial to determine the properties of the explosive O/Ne nucleosynthesis;

A&A 677, A22 (2023) https://doi.org/10.1051/0004-6361/202346556 © The Authors 2023

Astronomy Astrophysics

The γ -process nucleosynthesis in core-collapse supernovae

I. A novel analysis of γ -process yields in massive stars

L. Roberti^{1,2,3,★}, M. Pignatari^{1,2,4,★}, A. Psaltis^{5,6,★}, A. Sieverding⁷, P. Mohr⁸, Zs. Fülöp⁸, and M. Lugaro^{1,2,9,10}

Analysis of γ-process yields in 5 different existing sets of core-collapse supernova models (Rauscher+02, Pignatari+16, Sieverding+18, Ritter+18, Lawson+22);

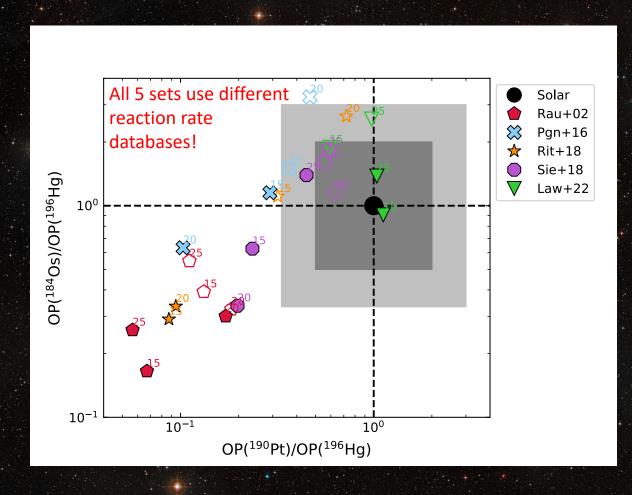
Main results:

- The <u>pre-supernova structure</u> of the model is crucial to determine the properties of the explosive O/Ne nucleosynthesis;
- <u>C-O shell interactions</u> before the explosion boost the production of all the nuclei with A≥110;

A&A 677, A22 (2023) https://doi.org/10.1051/0004-6361/202346556 © The Authors 2023

Astronomy Astrophysics

The γ -process nucleosynthesis in core-collapse supernovae


I. A novel analysis of γ -process yields in massive stars

L. Roberti^{1,2,3,*}, M. Pignatari^{1,2,4,*}, A. Psaltis^{5,6,*}, A. Sieverding⁷, P. Mohr⁸, Zs. Fülöp⁸, and M. Lugaro^{1,2,9,10}

Analysis of γ-process yields in 5 different existing sets of core-collapse supernova models (Rauscher+02, Pignatari+16, Sieverding+18, Ritter+18, Lawson+22);

Main results:

- The <u>pre-supernova structure</u> of the model is crucial to determine the properties of the explosive O/Ne nucleosynthesis;
- <u>C-O shell interactions</u> before the explosion boost the production of all the nuclei with A≥110;
- Different sets of <u>reaction rates</u> lead to significant differences in isotopic ratios.

Ratios of p-nuclei close to each other in mass, normalized to the solar ratio

$$OP(A) = X(A)/X(A)_{\odot}$$

- * = undecayed yields + radiogenic contribution

Effect of different explosive prescriptions (preliminary)

Exploring the effect of explosion parametrization on γ-process:

- 2 sets of stellar progenitors: Ritter+18, Lawson+22; 15, 20, and 25 M_O;
- 2 approaches: <u>semi-analytical explosions</u> (Ritter+18), <u>hydrodynamic</u> <u>simulations</u> mimicking a 3D convective engine (Lawson+22).

Effect of different explosive prescriptions (preliminary)

Exploring the effect of explosion parametrization on γ-process:

- 2 sets of stellar progenitors: Ritter+18, Lawson+22; 15, 20, and 25 M_o;
- 2 approaches: <u>semi-analytical explosions</u> (Ritter+18), <u>hydrodynamic</u> <u>simulations</u> mimicking a 3D convective engine (Lawson+22).

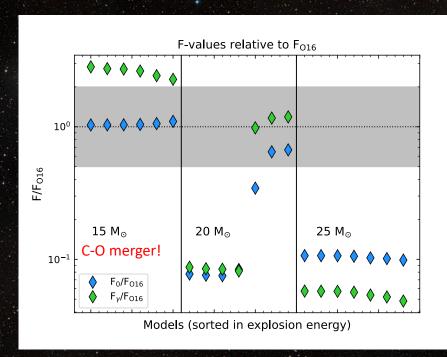
Main results:

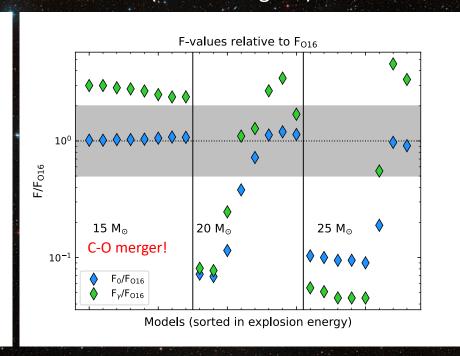
• The γ-process production site shifts in the structure by varying the explosion energy;

Effect of different explosive prescriptions (preliminary)

Exploring the effect of explosion parametrization on γ -process:

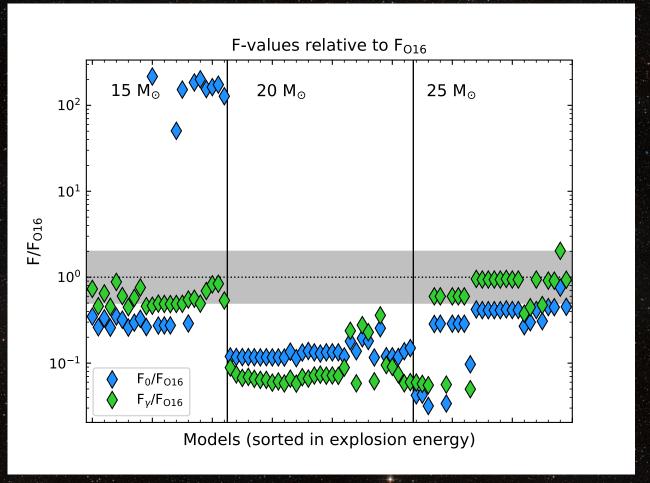
- 2 sets of stellar progenitors: Ritter+18, Lawson+22; 15, 20, and 25 M_O;
- 2 approaches: <u>semi-analytical explosions</u> (Ritter+18), <u>hydrodynamic</u> <u>simulations</u> mimicking a 3D convective engine (Lawson+22).


Main results:


- The γ-process production site shifts in the structure by varying the explosion energy;
- More energetic explosions → more γ-process material escaped from the remnant;
- Less energetic explosions → more γ-process material locked in the remnant.

Semi-analytical models

Pure RDA


SBW propagation (more energetic)

$$F_0 = \frac{\sum_i^{35} F_i}{35}$$
; $F_{\gamma} = \frac{\sum_i^{3} F_i}{3}$ for 3 most produced γ -only nuclei

Full hydrodynamic models

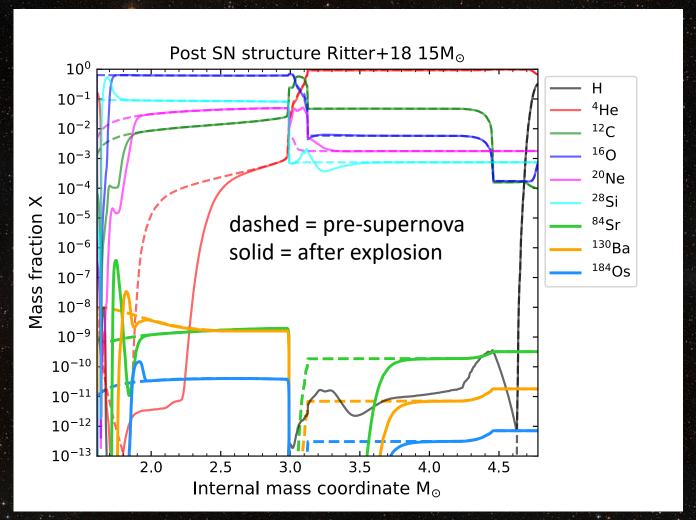
Explosion models from <u>Fryer, et al., 2018, ApJ, 856, 63</u>; nucleosynthesis from <u>Lawson, et al. 2022, MNRAS, 511, 886</u>

Summary

- The production of p-nuclei is still unclear, therefore we aim to explore in more detail the CCSN scenario;
- The stellar structure at the onset of the Fe core collapse and the nuclear network play a crucial role in the production of p-nuclei;
- The C-O shell merger crucial for p-nuclei heavier than Pd.
- Next steps: radionuclides (^{92}Nb , $^{97-98}Tc$, ^{146}Sm), update of the nuclear network for the γ -process nucleosynthesis, production of new γ -process stellar yields.
- Question for our experimental nuclear physics friends: any new reaction rates for γ-process?

Summary

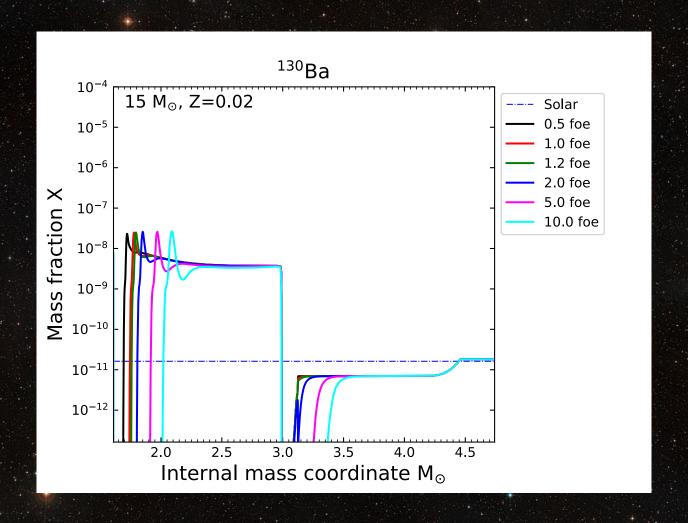
- The production of p-nuclei is still unclear, therefore we aim to explore in more detail the CCSN scenario;
- The stellar structure at the onset of the Fe core collapse and the nuclear network play a crucial role in the production of p-nuclei;
- The C-O shell merger crucial for p-nuclei heavier than Pd.
- Next steps: radionuclides (^{92}Nb , $^{97-98}Tc$, ^{146}Sm), update of the nuclear network for the γ -process nucleosynthesis, production of new γ -process stellar yields.
- Question for our experimental nuclear physics friends: any new reaction rates for γ-process?


Backup slides

The p-(neutron deficient) nuclei

35 stable proton-rich nuclei: ⁷⁴Se, ⁷⁸Kr, ⁸⁴Sr, ^{92,94}Mo, ^{96,98}Ru, ¹⁰²Pd, ^{106,108}Cd, ^{112,114,115}Sn, ¹¹³In, ¹²⁰Te, ^{124,126}Xe, ^{130,132}Ba, ^{136,138}Ce, ¹³⁸La, ¹⁴⁴Sm, ¹⁵²Gd, ^{156,158}Dy, ^{162,164}Er, ¹⁶⁸Yb, ¹⁷⁴Hf, ¹⁸⁰Ta, ¹⁸⁰W, ¹⁸⁴Os, ¹⁹⁰Pt and ¹⁹⁶Hg.

- Different explosive contributions (e.g., α & vp-process, Woosley & Hoffman 1992, Froehlich et al. 2006, Arcones & Montes 2011);
- r-process contribution (Dillmann et al. 2008);
- neutrino capture (Goriely et al. 2001);
- s-process contribution (Bisterzo et al. 2011);
- s-process and neutrino capture (Bisterzo et al. 2011, Arnould & Goriely 2003).


The y-process nucleosynthesis in C-O shell mergers

Different explosive prescriptions

- <u>Set 1</u>: Ritter+18 progenitors (MESA), Fryer+12 remnant mass, Sedov Blastwave (SBW) solution for propagation of shock wave, adiabatic exponential decay for temperature and density;
- <u>Set 2</u>: Ritter+18 progenitors (MESA), Fryer+12 remnant mass, pure radiation dominated approximation (RDA), adiabatic exponential decay for temperature and density;
- <u>Set 3</u>: Lawson+22 progenitors (Kepler), with hydrodynamic explosions from Fryer+18, mimicking the convection enhanced supernova engine in 1D, using a three-part parameterization for the energy injection (power, duration, and the extent of the energy injection region).

Different explosion energies

