

New half-lives and beta-delayed neutron branchings for neutron-rich Ba to Nd nuclei (A~160) relevant for the formation of the r-process rare-earth peak

M. Pallàs¹, A. Tarifeño-Saldivia^{2,1}, A. Tolosa-Delgado^{3,2}, G. G. Kiss⁴, J. L. Tain², A. Vitéz-Sveiczer⁴ for the BRIKEN collaboration⁵

¹Institut de Tècniques Energètiques (INTE), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

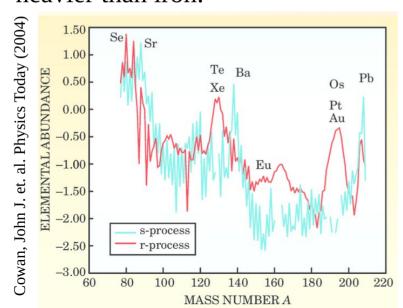
²Instituto de Física Corpuscular (IFIC), Paterna, Spain

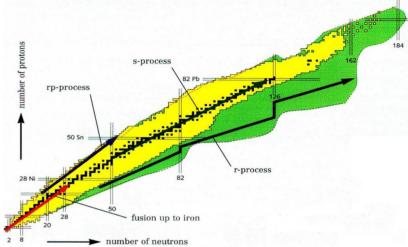
³European Organization for Nuclear Research (CERN), Geneva, Switzerland

⁴Institute for Nuclear Research (ATOMKI), Debrecen, Hungary

⁵www.wiki.edu.ac.uk/display/BRIKEN/Home

Index


- 1. Introduction and motivation
- 2. Experimental setup
- 3. Analysis methodology
- 4. Experimental results

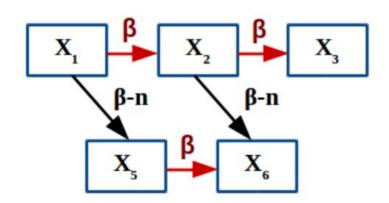

Motivation

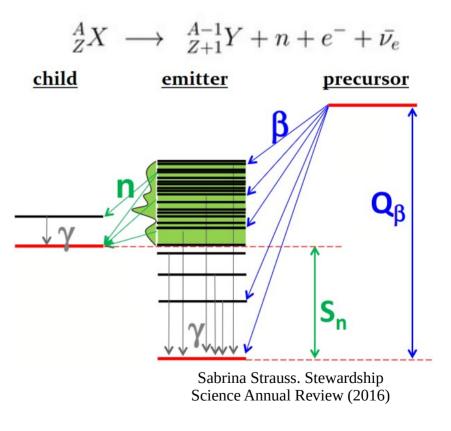
r-process (rapid neutron capture)

- 1. Neutron rich region
- 2. Timescale us-ms
- 3. Responsible for around half of the nuclei heavier than iron.

Physical magnitudes of interest for r-process simulations:

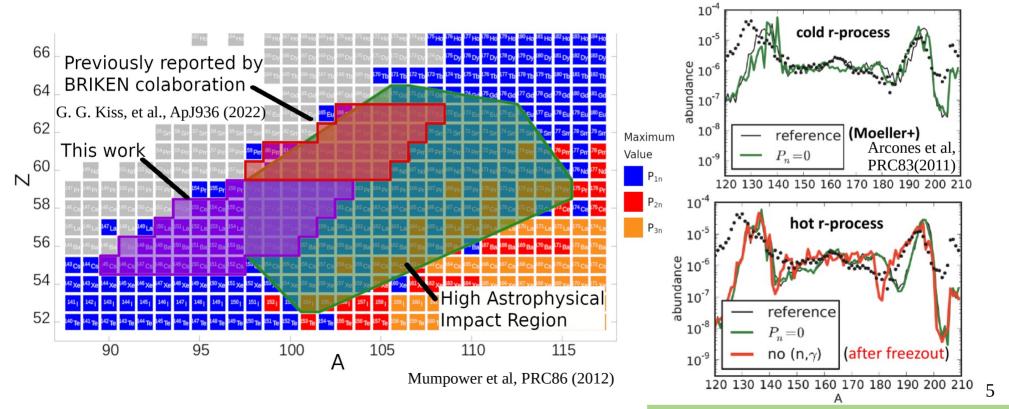
- Half-life $(T_{1/2})$
- Beta-delayed neutron emission probabilities (P_{xn})
- Masses
- Neutron capture rates


- ...


β-delayed neutron emission

Neutron rich nuclei typically decay via β^- . The energy available for this process is the \mathbf{Q}_{β} value. For very rich neutron nuclei the \mathbf{Q}_{β} is big enough $(\mathbf{Q}_{\beta} > \mathbf{S}_{\mathbf{n}})$ to allow neutron emission following a β^- decay.

This process is known as β -delayed neutron emission.

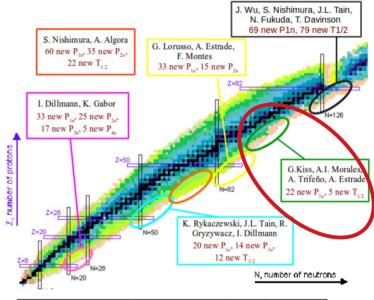


β-delayed neutron emission on REP

According to theoretical models and sensitivity studies, $T_{1/2}$ and P_n of very neutron-rich nuclei for $55 \le Z \le 64$ are the most influential ones on the formation of the REP.

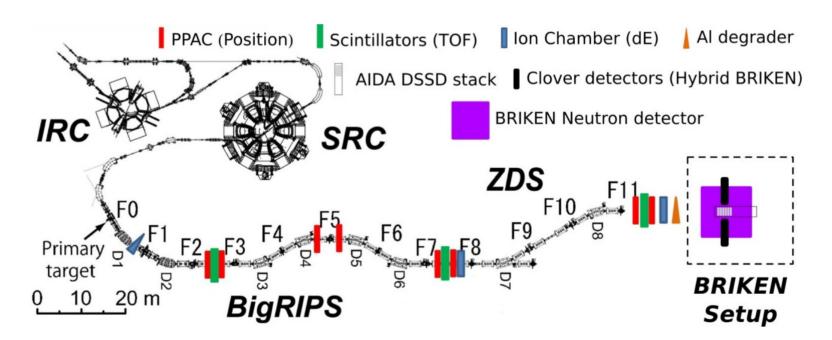
BRIKEN project

- Riken Nishima Center (Japan).
- The largest beta-delayed detector in the world.
- More than 50 participants from 18 international institutions
- Aims to study very rich neutron isotopes characterized by their:
 - Half-life $(T_{1/2})$
 - Emission probabilities (P_{xn})



	Identified (Qbxn>0)	Measured (06/2017)		Measured
	# of isotopes	# of isotopes	Fraction	mass region
β1n	621	298	48.0%	⁸ He- ²¹⁶ TI
β2n	300	23	7.7%	¹¹ Li- ¹³⁶ Sb
β3n	138	4	2.9%	¹¹ Li- ³¹ Na
β4n	58	1	1.7%	¹⁷ B

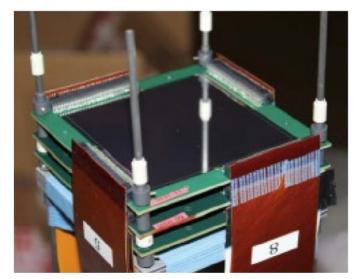
Index

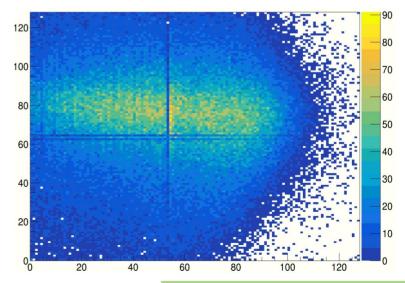


- 1. Introduction and motivation
- 2. Experimental setup
- 3. Analysis methodology
- 4. Experimental results

Experimental setup

This experimental setup is composed of:

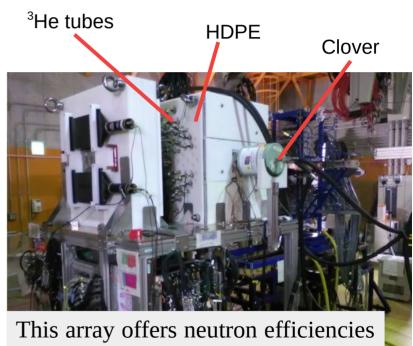

1. BigRIPS+ZeroDegree fragment separators


Experimental setup

This experimental setup is composed of:

- 1. BigRIPS+ZeroDegree fragment separators
- 2. Advanced Implantation Detector Array (AIDA)
 - Stack of 6 silicon double-sided detectors.

Griffin et al, PoS(NIC XIII)097 2015



Experimental setup

This experimental setup is composed of:

- 1. BigRIPS+ZeroDegree fragment separators
- 2. Advanced Implantation Detector Array (AIDA)
 - Stack of 6 silicon double-sided detectors.
- 3. BRIKEN detector
 - 140 ³He tubes + HDPE moderator for neutron detection.
 - 2 Clover type HPGe gamma detectors.
 - Ancillary (F11, Si...).

*M. Pallas et. al. ArXiv:2204.13379 (2022) Full report to be submited (2023).

of around 69% up to 1MeV*.

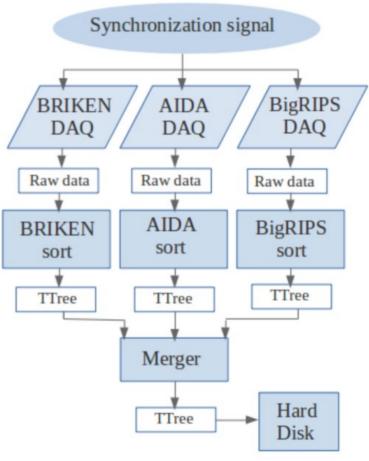
A. Tarifeño-Saldivia et. al. J. Instrum. (2017).

10

Index

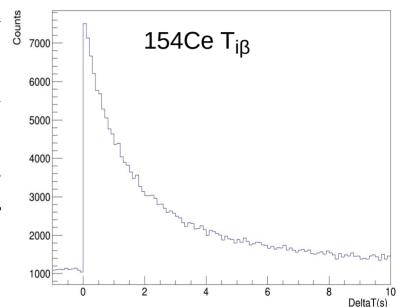
- 1. Introduction and motivation
- 2. Experimental setup
- 3. Analysis methodology
- 4. Experimental results

Experimental data

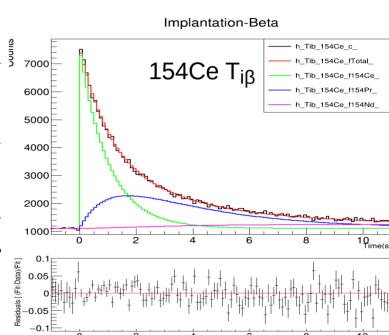


- The data used in this analysis came from an experiment conducted by the BRIKEN Collaboration in October 2018 at RIBF RIKEN.
- In the 2018 experimental run, a 60-particle-nA 238U beam, with 345
 MeV/nucleon, hitting a 4 mm thick Be target was used to produce the secondary radioactive beam. The neutron-rich fragments were filtered out by the BigRIPS fragment separator.
- **108 hours** of measures were analyzed. In this study, we rerport the results isotopes from Ba to Nd.

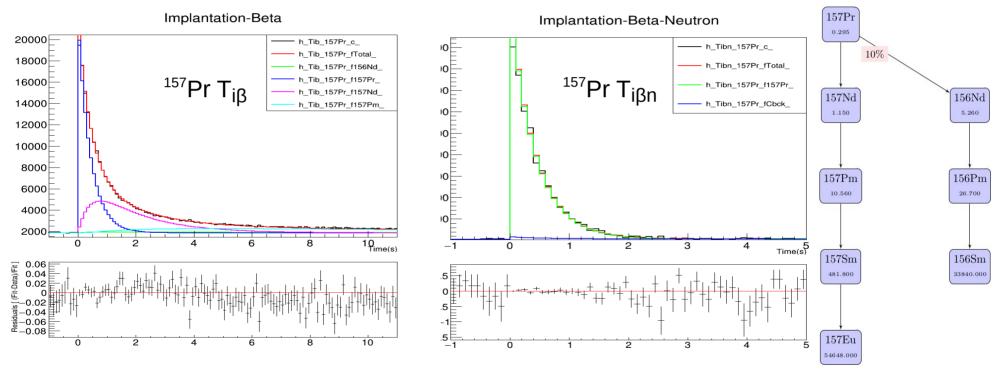
Data Analysis


- 1. Acquisition is run by three different DAQs (BigRIPS, AIDA and BRIKEN). To ensure syncronization, a signal is fed to each DAQ.
- 2. Data is merged into a single file where temporal correlation vectors are built.

Data Analysis


- 1. Acquisition is run by three different DAQs (BigRIPS, AIDA and BRIKEN). To ensure syncronization, a signal is fed to each DAQ.
- 2. Data is merged into a single file where temporal correlation vectors are built.
- 3. Sort the merged data to obtain β -implant $(T_{i\beta})$ and β -implant-neutron $(T_{i\beta n})$ time correlation histograms for each isotope.

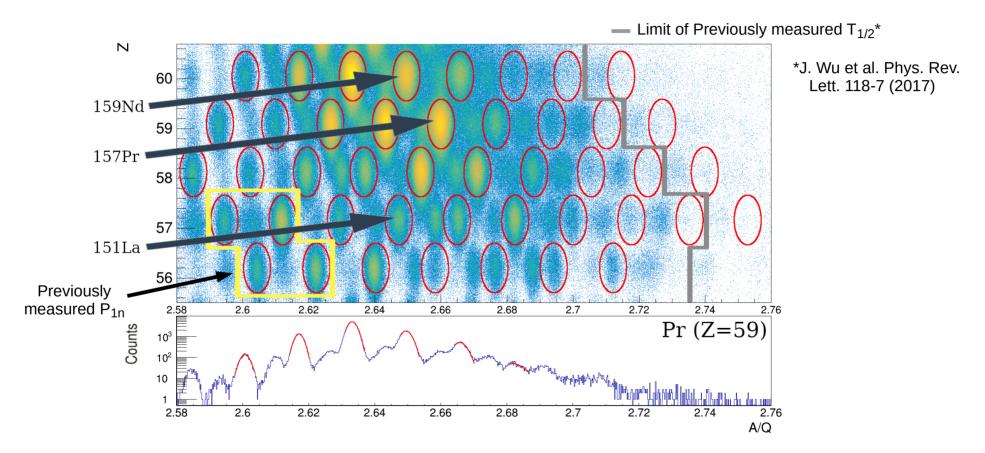
Data Analysis


- 1. Acquisition is run by three different DAQs (BigRIPS, AIDA and BRIKEN). To ensure syncronization, a signal is fed to each DAQ.
- 2. Data is merged into a single file where temporal correlation vectors are built.
- 3. Sort the merged data to obtain β -implant $(T_{i\beta})$ and β -implant-neutron $(T_{i\beta n})$ time correlation histograms for each isotope.
- 4. $T_{1/2}$ and P_{1n} values are obtained from the simultaneous fit of these histograms.

Fitting procedure

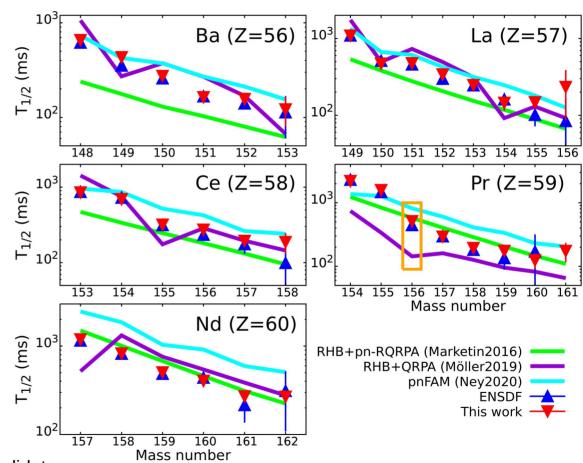
After obtaining the time-correlated histograms, we perform a self-consistent fitting procedure* to obtain $T_{1/2}$ and P_{1n} values using Bateman equations.

*A. Tolosa-Delgado et al. NIM A 925 (2019) 133-147


Index

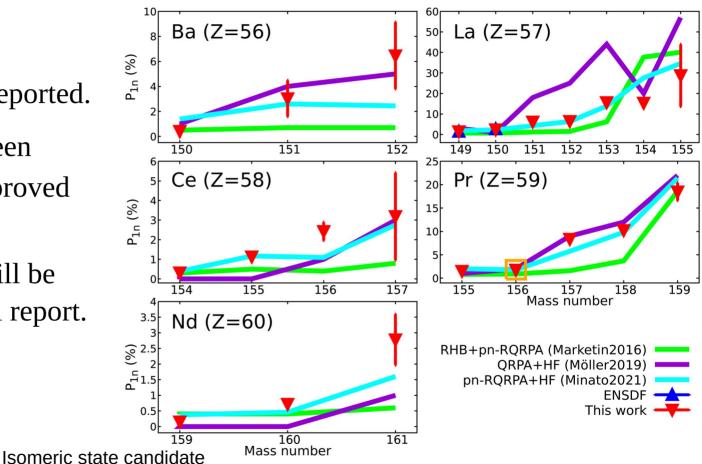
- 1. Introduction and motivation
- 2. Experimental setup
- 3. Analysis methodology
- 4. Experimental results

Particle identification



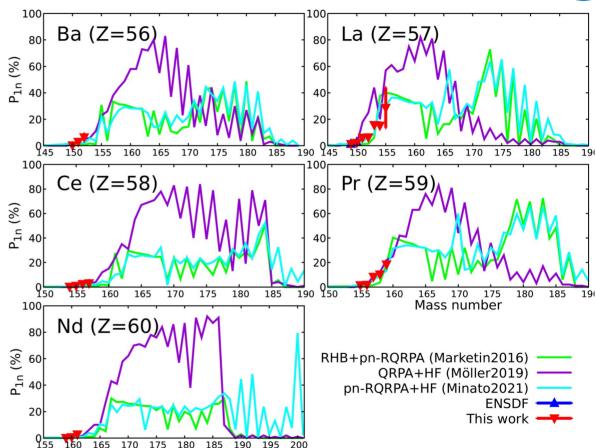
$T_{1/2}$ results

- Consistent results with previous measurements. $34\ T_{1/2}\ values$ have been remeasured many with improved precision.
- Additionally, we report **1 new** $T_{1/2}$.
- New higher limits will be presented in the final report.


Isomeric state candidate

19

P_{1n} results


- 20 new P_{1n} values reported.
- 2 P_{1n} values have been remeasured with improved precision.
- New higher limits will be presented in the final report.

P_{1n} results

- 20 new P_{1n} values reported.
- 2 P_{1n} values have been remeasured with improved precision.
- New higher limits will be presented in the final report.

Mass number

Isomeric state candidate

Remarks

Next steps:

- 1. Finish the systematic errors evaluation.
- 2. Astrophysical impact of the new data on the description of the r-process.

Acknowledgments

M. Pallàs¹*, A. Tarifeño-Saldivia².¹¹, G. G. Kiss³, J. L. Tain², A. Tolosa-Delgado⁵.², A. Vitéz-Sveiczer³.⁴, F. Calviño¹, J. Agramunt², P. Aguilera⁶, A. Algora², J. M. Allmond³, H. Baba³, N. T. Brewer⁰.³, R. Caballero-Folch¹⁰, P. J. Coleman-Smith¹¹, G. Cortes¹, T. Davinson¹², I. Dillmann¹⁰.¹³, C. Domingo-Pardo², A. Estrade¹⁴, N. Fukuda³, S. Go¹₅.¹⁶, C. J. Griffin¹⁰, R. K. Grzywacz⁰.³, O. Hall¹², L. J. Harkness-Brennan¹³, T. Isobe³, D. Kahl¹², T. T. King⁰, A. Korgul¹³, S. Kovács⁴, S. Kubono⁵, M. Labiche¹¹, J. Liu¹⁰, M. Madurga⁰, K. Miernik¹³, F. Molina⁶, N. Mont-Geli¹, A. I. Morales², E. Nácher², A. Navarro¹, N. Nepal³, S. Nishimura³, M. Piersa-Silkowska¹³, V. Phong³, B. C. Rasco⁰.³, J. Romero-Barrientos⁶, B. Rubio², K. P. Rykaczewski³, Y. Saito¹⁰.²⁰, H. Sakurai³, Y. Shimizu³, M. Singh⁰, T. Sumikama³, H. Suzuki³, T. N. Szegedi³, H. Takeda³, K. Wang¹⁴, M. Wolińska-Cichocka²¹, P. J. Woods¹², and R. Yokoyama¹⁶ for the BRIKEN collaboration²²

KNOXVILLE

¹Institut de Tècniques Energètiques (INTE), Universitat Politècnica de Catalunya (UPC), 08028 Barcelona, Spain.

²Instituto de Física Corpuscular (IFIC), CSIC-UV, E-46980 Paterna, Spain.

³Institute for Nuclear Research (ATOMKI), 4026 Debrecen, Bem tér 18/c, Hungary.

⁴University of Debrecen, 4032 Debrecen, Egyetem tér 1, Hungary.

⁵Department of Physics, University of Jyväskylä, Finland.

⁶Centro de Investigación en Física Nuclear y Espectroscopía de Neutrones (CEFNEN). Comisión Chilena de Energía Nuclear, Nueva Bilbao 12501, Las Condes, Santiago-Chile.

⁷Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.

⁸RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.

⁹Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA.

¹⁰TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada.

¹¹STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, United Kingdom.

¹²School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom.

¹³Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada.

¹⁴ Central Michigan University, Mt. Pleasant, MI 48859, USA.

¹⁵Department of Physics, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.

¹⁶Center for Nuclear Study, The University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0106, Japan.

¹⁷Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom.

¹⁸Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland.

¹⁹Department of Physics, the University of Hong Kong, Pokfulam Road, Hong Kong.

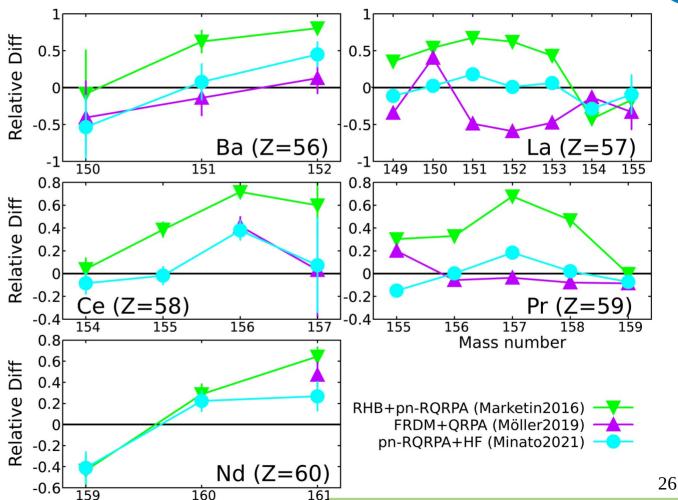
²⁰Department of Physics and Astronomy, The University of British Columbia, Vancouver BC V6T 1Z1, Canada.


²¹Heavy Ion Laboratory, University of Warsaw, Pasteura 5A, 02-093 Warsaw, Poland.

Backup

$T_{1/2}$ model comparison

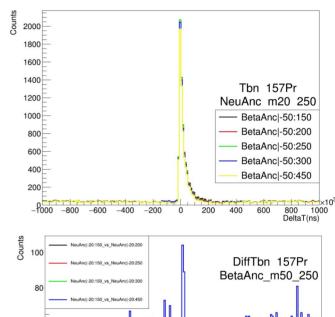
Mass number

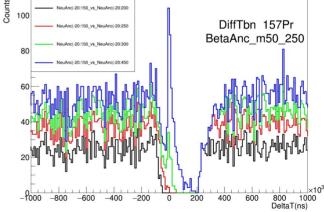


P_{1n} model comparison

Mass number

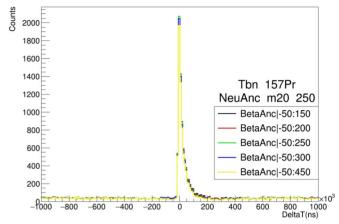
Overall pn-RQRPA+HF (Minato2021) fits our data the best. In particular for La isotopes.




Improve signal to noise ratio

The are multiple techniques to reduce the background of our measures and improve the signal to noise ratio:

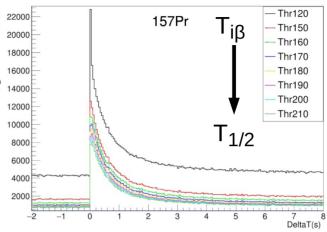
Beta veto window using ancillary detectors.

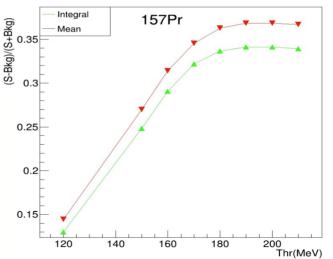



Improve signal to noise ratio

The are multiple techniques to reduce the background of our measures and improve the signal to noise ratio:

- Beta veto window using ancillary detectors.
- Neutron veto window using ancillary detectors (only affects $T_{i\beta n}$).




Improve signal to noise ratio

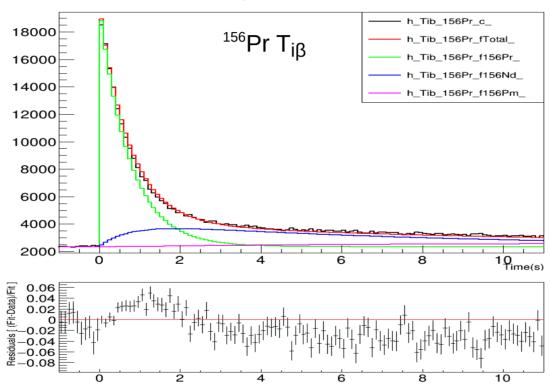
The are multiple techniques to reduce the background of our measures and improve the signal to noise ratio:

- Beta veto window using ancillary detectors.
- Neutron veto window using ancillary detectors (only affects $T_{i\beta n}$).
- Beta energy threshold

Fix charged states

Theoretical models

RHB+pn-RQRPA: Relativistic Hartree Bogoliubov + proton-neutron Relativistic Quasiparticle Random Phase Approximation

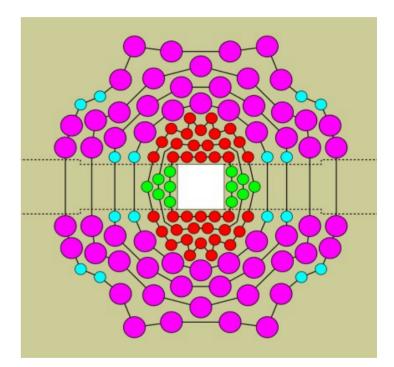

QRPA+HF: Quasiparticle Random-Phase Approximation + Hauser-Feshbach

pnFAM: proton-neutron Finite Amplitude Method

pn-RQRPA + HF: proton-neutron Relativistic Quasiparticle Random-Phase Approximation + Hauser-Feshbach statistical model

Isomer effect

Implantation-Beta

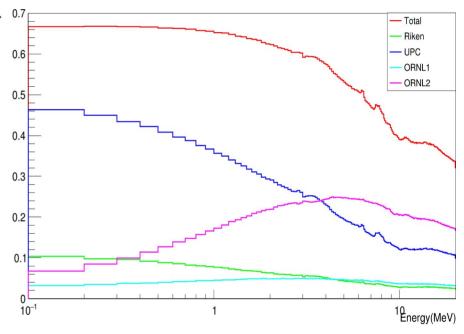


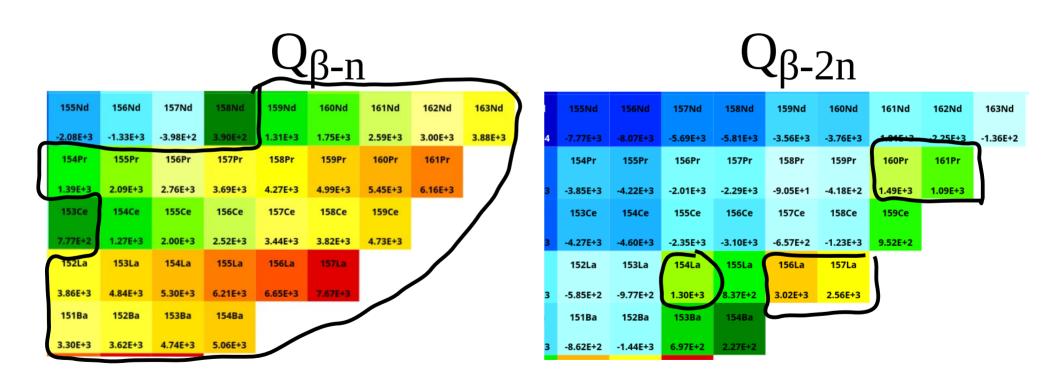
BRIKEN detector

This detector is composed of:

- 1. 140 ³He tubes for neutron detection.
- 2. 2 Clover type HPGe gamma detectors.
- 3. Ancillary (F11, Si...).
- 4. HDPE moderator and shielding.

Design: A. Tarifeño-Saldivia et. al. Journal of Instrumentation, 12(04):P04006–P04006, apr 2017.


BRIKEN detector


This detector is composed of:

- 1. 140 ³He tubes for neutron detection.
- 2. 2 Clover type HPGe gamma detectors.
- 3. Ancillary (F11, Si...).
- 4. HDPE moderator and shielding.

This array offers neutron efficiencies of around 68.6% up to 1MeV. The expected neutron energy spectra from beta-delayed emission is expected to be below 1MeV.

*Characterization of the BRIKEN neutron counter: M. Pallas et. al. ArXiv:2204.13379 (2022) Full report to be summited (2023).

