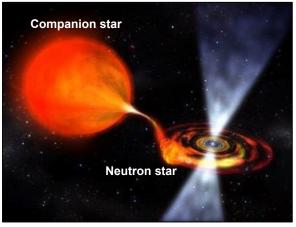


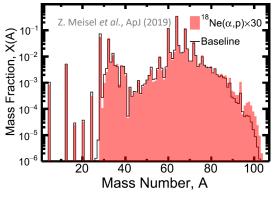
Experimental study on astrophysically important 22 Mg nucleus via resonant scattering of 18 Ne+ α

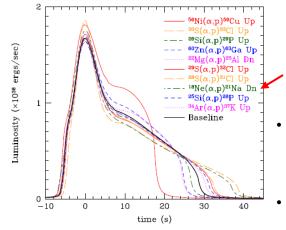

Soomi Cha

Center for Exotic Nuclear Studies, Institute for Basic Science

Background Image: Courtesy of J. DePasquale.

¹⁸Ne(α ,p)²¹Na reaction




 18 Ne(α ,p) 21 Na

hot-CNO cycle

Mg

Na

Rank	Reaction	Type ^a	Sensitivity ^b	Category
l	$^{15}\text{O}(\alpha, \gamma)^{19}\text{Ne}$	D	16	1
2	$^{56}\text{Ni}(\alpha, p)^{59}\text{Cu}$	\mathbf{U}	6.4	1
3	59 Cu(p, γ) 60 Zn	D	5.1	1
1	61 Ga(p, γ) 62 Ge	D	3.7	1
5	22 Mg(α , p) 25 Al	D	2.3	1
5 🔼	$^{14}O(\alpha, p)^{17}F$	D	5.8	1
	23 Al(p, γ) 24 Si	D	4.6	1
₃ 2	$^{18}\text{Ne}(\alpha, p)^{21}\text{Na}$	\mathbf{U}	1.8	1
)	63 Ga(p, γ) 64 Ge	D	1.4	2
10	19 F(p, α) 16 O	\mathbf{U}	1.3	2
11	$^{12}\mathrm{C}(\alpha, \gamma)^{16}\mathrm{O}$	\mathbf{U}	2.1	2
12	$^{26}\text{Si}(\alpha, p)^{29}\text{P}$	U	1.8	2
13	17 F(α , p) 20 Ne	\mathbf{U}	3.5	2
14	$^{24}\text{Mg}(\alpha, \gamma)^{28}\text{Si}$	U	1.2	2
15	57 Cu(p, γ) 58 Zn	D	1.3	2
16	60 Zn(α , p) 63 Ga	\mathbf{U}	1.1	2
17	17 F(p, γ) 18 Ne	\mathbf{U}	1.7	2
18	40 Sc(p, γ) 41 Ti	D	1.1	2
19	48 Cr(p, γ) 49 Mn	D	1.2	2
		-	11 6 1 1 1 1 1	1 (2016)

R. H. Cyburt et al., ApJ (2016)

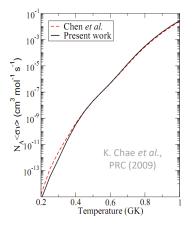
one of the break-out candidates from the hot-CNO cycle, fueling the *rp*-process

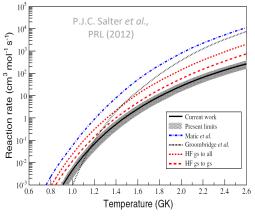
R. Wallace & S. Woosely, ApJ. S. (1981)

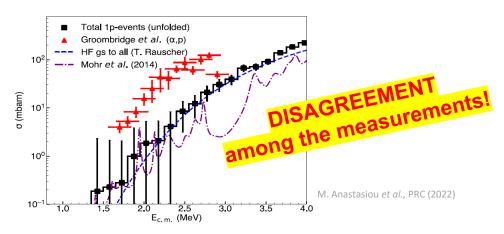
affects on the characteristics of X-ray burst (light curve, ash composition)

Previous studies on the 18 Ne $(\alpha,p)^{21}$ Na reaction

Indirect measurements

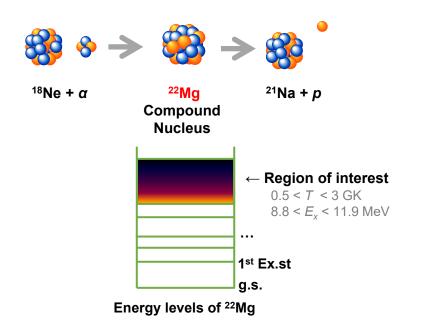

Direct measurements

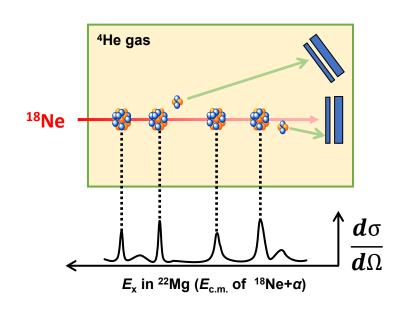

• studies of the structure of ²²Mg


- 24 Mg(p,t) 22 Mg, 12 C(16 O, 6 He) 22 Mg, 25 Mg(3 He, 6 He) 22 Mg, ...
- several resonance parameters obtained
- time reversal reaction : ²¹Na(p,a)¹⁸Ne
 - Salter et al., PRL(2012) : E_{cm} = 1.19-2.57 MeV
 - only (a,p_0) measured \rightarrow considered as a lower limit

• two measurements at Louvain-la-Neuve

- Bradfield-Smith *et al.*, PRC (1999) : E_{cm} = 2.0-3.0 MeV
- Groombridge et al., PRC (2002): E_{cm} = 1.7-2.9 MeV
- recent measurement at FSU
- Anastasiou *et al.*, PRC (2022) : E_{cm} = 2.5-4 MeV





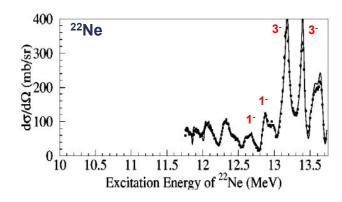
Experiment – Goals & Strategies

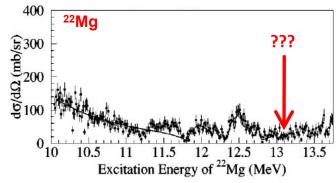
- Energy level properties of ²²Mg above the $E_{\alpha\text{-thres.}}$ dominates the ¹⁸Ne(α ,p)²¹Na reaction
- ¹⁸Ne+α resonant scattering can populate the energy levels of ²²Mg!
- Thick target method in inverse kinematics adopted.

K. P. Artemov et al., Sov. J. Nucl. Phys. 52, 408 (1990)

α-cluster structure in ²²Mg nucleus

Theoretical Prediction


M. Dufour & P. Descouvemont, NPA (2003)


ETCM calculation : ²² Ne						
Jπ	E _x (MeV)	θ_{α}^{2} (%)				
1-	12.58	13				
1-	13.53	8				
3-	12.92	13				
3-	13.69	11				

GCM calculation : ²² Mg						
J™	E _x (MeV)	θ_{α}^{2} (%)				
1-	12.14	11.5				
1-	13.04	6.7				
3-	12.46	11.6				
3-	13.19	11.7				

Experiment

G.V. Rogachev et al., PRC (2001) V. Goldberg et al., PRC (2004)

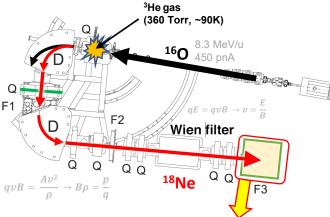
- Predicted 1⁻ and 3⁻ doublets arose from the α -cluster structure in ²²Mg
- Not observed in the previous experiment

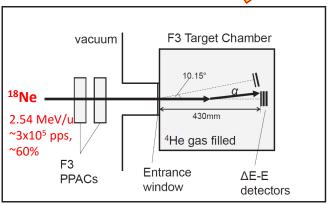
α-cluster structure in ²²Mg nucleus

7	

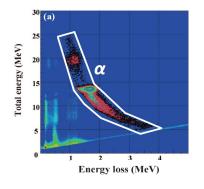
¹⁸Ne+α resonant scattering

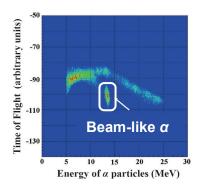
- 1. To enhance our knowledges on the 18 Ne(α ,p) 21 Na reaction
- 2. Observation of 1⁻ and 3⁻ states could be the evidence of the α -cluster states in 22 Mg nucleus.
- 3. Investigating wide energy range will provide the first spectroscopic study for $E_{\star} > 14 \text{ MeV}$!


Excitation Energy of Ne (MeV)


- Excitation Energy of Tyle V
- Predicted 1⁻ and 3⁻ doublets arose from the α-cluster structure in ²²Mg
- Not observed in the previous experiment

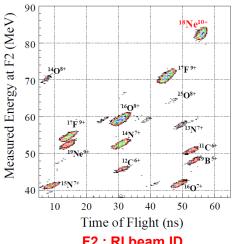
18 Ne(α , α) 18 Ne measurement at CRIB

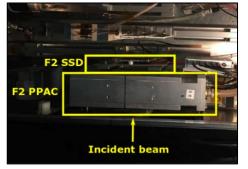




- ¹⁸Ne beam produced by In-flight fragment: ¹⁶O(³He,*n*)¹⁸Ne
- recoiling α particle measurement by silicon detector telescopes (energy, position)

- Tracks of ¹⁸Ne beam particles obtained by two PPACs (extrapolation)
- kinematics reconstruction by considering the energy loss of the beam and recoiling α particles
- Excitation function of ²²Mg extracted!


18 Ne(α , α) 18 Ne measurement at CRIB

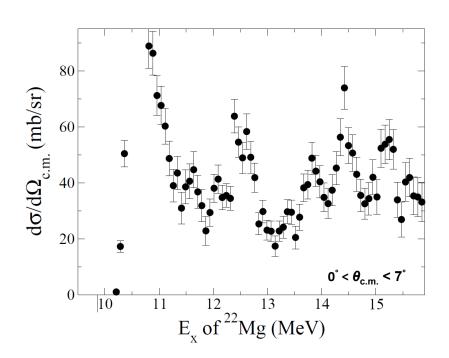

F3 PPAC a - X position (mm) 13N7 -20 80 20 40 60 Time of Flight (ns)

F2: RI beam ID

F3: purified ¹⁸Ne beam!

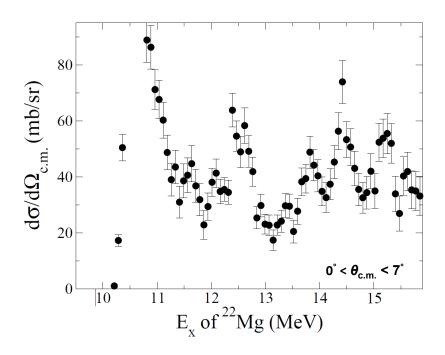
Silicon detector telescopes for energy and position measurement

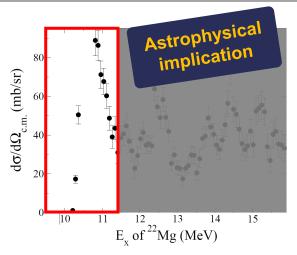
Beam monitoring /Beam trajectory extrapolation by two F3 PPACs


A bird eye's view of F2 focal plane

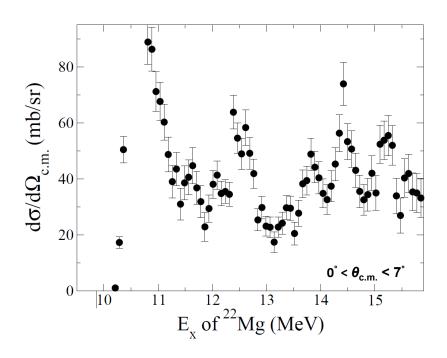
CRIB Wien Filter

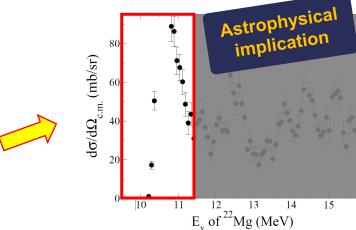
Excitation function of 18 Ne+ α system (22 Mg)

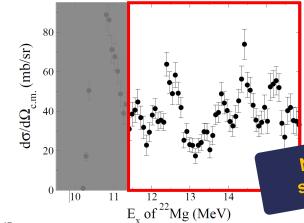

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{c.m.}} = \frac{1}{4\cos\theta_{\text{lab}}} \left(\frac{d\sigma}{d\Omega}\right)_{\text{lab}} = \frac{1}{4\cos\theta_{\text{lab}}} \frac{Y}{IN\Delta\Omega_{\text{lab}}}$$


Excitation function of 18 Ne+ α system (22 Mg)

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{c.m.}} = \frac{1}{4\cos\theta_{\text{lab}}} \left(\frac{d\sigma}{d\Omega}\right)_{\text{lab}} = \frac{1}{4\cos\theta_{\text{lab}}} \frac{Y}{IN\Delta\Omega_{\text{lab}}}$$

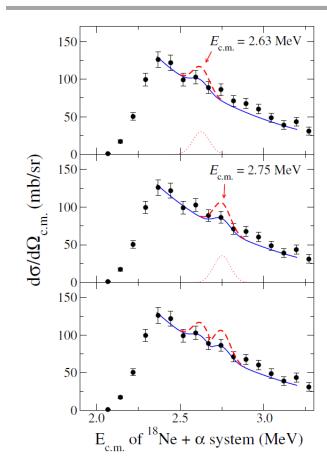





Excitation function of 18 Ne+ α system (22 Mg)

$$\left(\frac{d\sigma}{d\Omega}\right)_{\rm c.m.} = \frac{1}{4\cos\theta_{\rm lab}} \left(\frac{d\sigma}{d\Omega}\right)_{\rm lab} = \frac{1}{4\cos\theta_{\rm lab}} \; \frac{Y}{IN\Delta\Omega_{\rm lab}}$$

15

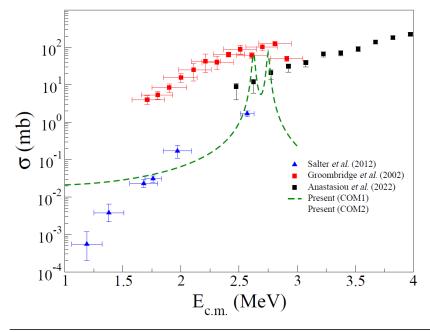

- Two small bumps were observed at the astrophysically important energy range ($T_9 < 2 \text{ GK} \leftrightarrow E_x < 2.9 \text{ MeV}$)
- Two energy levels have been reported in the previous direct measurement.

Present Work	Groombridge et al.
E _{c.m.} (MeV)	E _{c.m.} (MeV)
2.63	2.52 ± 0.14
2.75	2.72 ± 0.14

 $dE_{cm} = 50-100 \text{keV}$

The existence of these resonances is not obvious in our data possibly due to the insufficient statistics.

- Two small bumps were observed at the astrophysically important energy range (T₉ < 2 GK

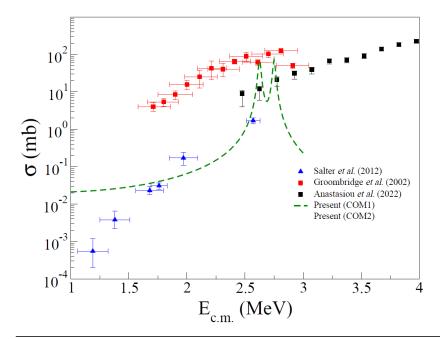

 E_x < 2.9 MeV)
- Two energy levels have been reported in the previous direct measurement.

Present Work	Groombridge e <i>t al.</i>
E _{c.m.} (MeV)	E _{c.m.} (MeV)
2.63	2.52 ± 0.14
2.75	2.72 ± 0.14

dE_{cm}=50-100keV

- The existence of these resonances is not obvious in our data possibly due to the insufficient statistics.
- Upper limits on the 18 Ne(α , α) 18 Ne cross section were set (one-sigma confidence level).

 ¹⁸Ne(α,p)²¹Na reaction cross section was calculated using the Breit-Wigner formula.

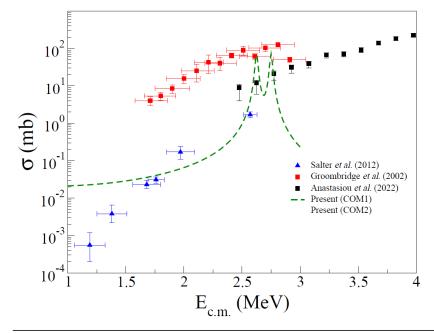

$$\sigma_{BW}(E) = \frac{\lambda^2}{4\pi} \frac{(2J_r + 1)}{(2J_{Ne} + 1)(2J_\alpha + 1)} \frac{\Gamma_\alpha \Gamma_p}{(E - E_r)^2 + (\Gamma_{tot}/2)^2}$$

- E_r , Γ_a adopted from the two observed bumps
- J^m adopted as 0⁺
 D. Groombridge et al., PRC (2002)
- Γ_p in this energy region has not been reported
 - \rightarrow approximated Γ_{p} by two different approaches!

considering the Wigner limit, global mean reduced proton width, ... assuming $\Gamma_{tot} = \Gamma_{\alpha} + \Gamma_{p}$ & Γ_{tot} adopted from Groombridge *et al*.

	E_r	J^{π}	Γ_{α}	Γ_p	$\Gamma_{ ext{tot}}$
COM1	2.63	0_{+}	0.015	0.01	0.025
COMT	2.75	0_{+}	0.015	0.01	0.025
COM2	2.63	0+	0.015	0.085	0.1
COM2	2.75	0+	0.015	0.195	0.21

 18Ne(α,p)²¹Na reaction cross section was calculated using the Breit-Wigner formula.


$$\sigma_{BW}(E) = \frac{\lambda^2}{4\pi} \frac{(2J_r + 1)}{(2J_{\text{Ne}} + 1)(2J_\alpha + 1)} \frac{\Gamma_0}{(E - E_r)^2 + (\Gamma_{\text{tot}}/2)^2}$$

- E_r , Γ_a adopted from the two observed bumps
- J^m adopted as 0⁺
 D. Groombridge et al., PRC (2002)
- Γ_p in this energy region has not been reported
 - \rightarrow approximated Γ_p by two different approaches!

considering the Wigner limit, global mean reduced proton width, ... assuming $\Gamma_{tot} = \Gamma_{\alpha} + \Gamma_{p}$ & Γ_{tot} adopted from Groombridge *et al*.

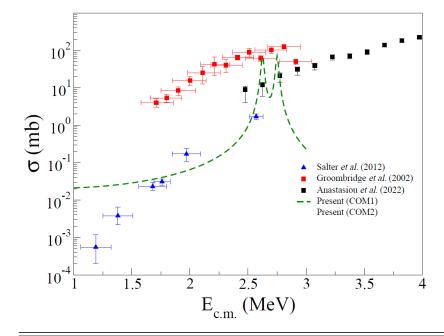
	E_r	J^{π}	Γ_{α}	Γ_p	$\Gamma_{ ext{tot}}$
COM1	2.63	0_{+}	0.015	0.01	0.025
COMT	2.75	0_{+}	0.015	0.01	0.025
COM2	2.63	0+	0.015	0.085	0.1
COM2	2.75	0+	0.015	0.195	0.21

 ¹⁸Ne(α,p)²¹Na reaction cross section was calculated using the Breit-Wigner formula.

$$\sigma_{BW}(E) = \frac{\lambda^2}{4\pi} \frac{(2J_r + 1)}{(2J_{Ne} + 1)(2J_{\alpha} + 1)} \frac{\Gamma_{\alpha}\Gamma_p}{(E - E_r)^2 + (\Gamma_{tot}/2)^2}$$

- E_r , Γ_a adopted from the two observed bumps
- J^m adopted as 0⁺

D. Groombridge et al., PRC (2002)

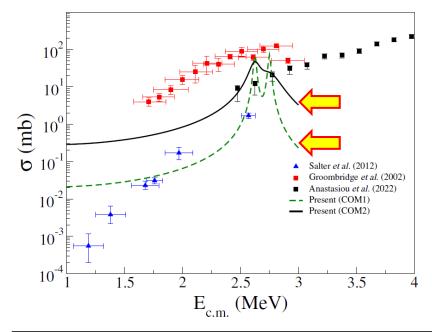

- Γ_p in this energy region has not been reported
 - \rightarrow approximated Γ_p by two different approaches!

considering the Wigner limit, global mean reduced proton width, ... assuming $\Gamma_{tot} = \Gamma_{\alpha} + \Gamma_{p}$ & Γ_{tot} adopted from Groombridge *et al.*

	E_r	J^{π}	Γ_{α}	Γ_p	$\Gamma_{ ext{tot}}$
COM1	2.63	0+	0.015	0.01	0.025
COMI	2.75	0+	0.015	0.01	0.025
COM2	2.63	0+	0.015	0.085	0.1
COM2	2.75	0+	0.015	0.195	0.21

¹⁸Ne(α ,p)²¹Na reaction cross section was calculated using the Breit-Wigner formula.

$$\sigma_{BW}(E) = \frac{\lambda^2}{4\pi} \frac{(2J_r + 1)}{(2J_{Ne} + 1)(2J_{\alpha} + 1)} \frac{\Gamma_{\alpha} \Gamma_{p}}{(E - E_r)^2 + (\Gamma_{tot}/2)^2}$$


- E_r , Γ_a adopted from the two observed bumps
- J^{π} adopted as 0⁺ D. Groombridge et al., PRC (2002)
- Γ_p in this energy region has not been reported
 - \rightarrow approximated Γ_p by two different approaches!

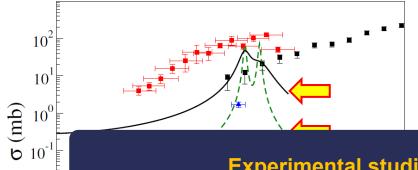
considering the Wigner limit, global mean reduced proton width, ... assuming $\Gamma_{tot} = \Gamma_{q} + \Gamma_{p}$ & Γ_{tot} adopted from Groombridge *et al.*

	E_r	J^{π}	Γ_{α}	Γ_p	$\Gamma_{ ext{tot}}$
COM1	2.63	0_{+}	0.015	0.01	0.025
COMT	2.75	0+	0.015	0.01	0.025
COM2	2.63	0+	0.015	0.085	0.1
COMZ	2.75	0+	0.015	0.195	0.21

18

 ¹⁸Ne(α,p)²¹Na reaction cross section was calculated using the Breit-Wigner formula.

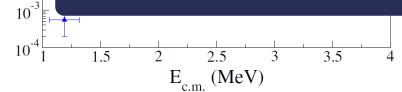
$$\sigma_{BW}(E) = \frac{\lambda^2}{4\pi} \frac{(2J_r + 1)}{(2J_{Ne} + 1)(2J_{\alpha} + 1)} \frac{\Gamma_{\alpha} \Gamma_{p}}{(E - E_r)^2 + (\Gamma_{tot}/2)^2}$$


- E_r , Γ_a adopted from the two observed bumps
- J^m adopted as 0⁺ D. Groombridge et al., PRC (2002)
- Γ_{p} in this energy region has not been reported
 - \rightarrow approximated Γ_p by two different approaches!

considering the Wigner limit, global mean reduced proton width, ... assuming $\Gamma_{tot} = \Gamma_{\alpha} + \Gamma_{p} \& \Gamma_{tot}$ adopted from Groombridge *et al.*

	E_r	J^{π}	Γ_{α}	Γ_p	$\Gamma_{ m tot}$	- tuengly
COM1	2.63	0+	0.015	0.01	0.025	24Ne reaction cross section strongly
COMT	2.75	0+	0.015	0.01	0.025	¹⁸ Ne $(\alpha,p)^2$ Na reaction widths of the resonances:
COM2	2.63	0+	0.015	0.085	0.1	depend on the proton was
COM2	2.75	0+	0.015	0.195	0.21	

 10^{-2}

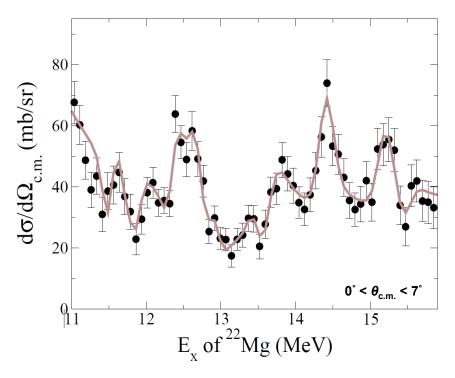


 ¹⁸Ne(α,p)²¹Na reaction cross section was calculated using the Breit-Wigner formula.

$$\sigma_{BW}(E) = \frac{\lambda^2}{4\pi} \frac{(2J_r + 1)}{(2J_{\text{Ne}} + 1)(2J_{\alpha} + 1)} \frac{\Gamma_{\alpha} \Gamma_{p}}{(E - E_r)^2 + (\Gamma_{\text{tot}}/2)^2}$$

Experimental studies of the Γ_p are highly required for a conclusive understanding on the $^{18}{\rm Ne}(\alpha,p)^{21}{\rm Na}$ reaction cross section !

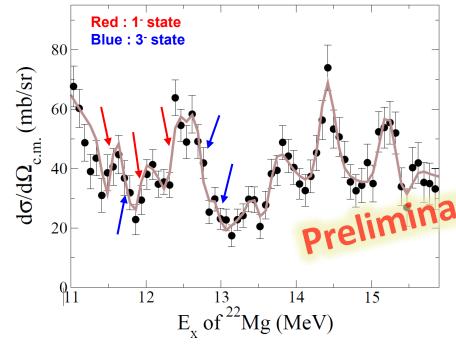
S.M. Cha et al., Frontiers in Physics (2023)


→ approxim S.M. Chactury

considering the Wigner limit, global mean reduced proton width, ... assuming $\Gamma_{tot} = \Gamma_{\alpha} + \Gamma_{p} \& \Gamma_{tot}$ adopted from Groombridge *et al.*

	E_r	J^{π}	Γ_{α}	Γ_p	$\Gamma_{ m tot}$	(alv
COM1	2.63	0+	0.015	0.01	0.025	Ne $(\alpha,p)^{21}$ Na reaction cross section strongly
COMI	2.75	0+	0.015	0.01	0.025 18	Ne $(\alpha,p)^{21}$ Na reaction cross section of the resonances! send on the proton widths of the resonances!
COM2	2.63	0+	0.015	0.085	0.1 de p	end on the proton was
COMZ	2.75	0+	0.015	0.195		

R-matrix analysis


- Evident peaks observed at E_x ~ 11 16 MeV!
- Resonance parameters of ²²Mg nucleus (E_r , Γ_α , J^π) can be constrained by R-matrix analysis.
- performed R-matrix calculation using SAMMY8
- All possible spin and natural parity combinations was considered during the analysis.
- χ^2 analysis is performed to deduce possible resonance parameters for each peak.

• calculated the dimensionless partial width (θ_{α}^2) for each level to provide a direct comparison with theoretical prediction $\theta_a^2 = \Gamma_\alpha / \Gamma_W$

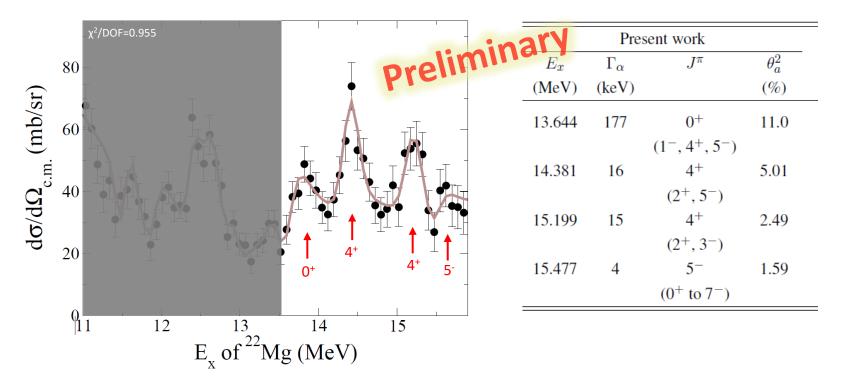
$$\Gamma_w = 2\hbar^2/\mu R^2 P_l$$

1⁻ and 3⁻ candidates?

- Cluster model (CM) and Shell model (SM) calculation performed
- 1- states obtained from both CM and SM calculation
- More discussions on 3^- states and reduction of α -widths required

Present Work				Dufour & Descouvemont			Goldberg e <i>t al.</i>	
Ε̄ _χ (MeV)	Γ _α (keV)	Jπ	θ _α ² (%)	Е _х ^{GCM} (MeV)	Jπ	θ ² _{GCM} (%)	E _x (MeV)	J
11.493	7	1-	4.78	12.25	1 ⁻	11.5	11.462	1
11.705	3	3-	12.30	12.57	3-	11.6	11.798	2
11.869	6	1-	2.40	13.15	1 ⁻	6.7	11.842	1
12.352	19	1- (4+)	3.72	13.30	3-	11.7	11.9	0
12.744	11	3-	6.80				12.362	1
12.974	8	3-	3.65					
13.456	4	3 ⁻ (0 ⁺ ,1 ⁻)	1.06					

First spectroscopic result of ²²Mg



- No information from NNDC
- No information from the theory

First spectroscopic result of ²²Mg

- Best fitting result : $J^{\pi} = 0^+$, 4^+ , 4^+ , and 5^- for four peaks
- cannot exclude other possibilities

Summary

- The α resonant scattering on ¹⁸Ne was measured in inverse kinematics to understand the astrophysically important ¹⁸Ne(α ,p)²¹Na reaction and the α -clustering of proton-rich ²²Mg nucleus.
- The measurement of 18 Ne + α scattering was done at CRIB in RIKEN by adopting the thick target method.
- The excitation function of 22 Mg was obtained for E_x = 10–16 MeV.
- Since energy levels were not clearly observed at the astrophysically important energy range, upper limits on the 18 Ne(α , α) 18 Ne cross section were set.
- The astrophysical impact was also investigated by estimating the 18 Ne(α ,p) 21 Na cross section.
- R-matrix analysis was performed to constrain the energy level properties of ²²Mg.

Background Image: Courtesy of Tervel Kutsev Astronomical Photographer of the year 2023 "People and Space" category

List of collaborators

CENS, IBS S.M.Cha, S.H.Bae, K.I.Hahn, D.Kim, B.Moon

Sungkyunkwan U. K.Y.Chae*, N.N.Duy, M.J.Kim, E.J.Lee

U. of Tokyo K.Abe, S.Hayakawa, H.Shimizu, H.Yamaguchi, L.Yang

Seoul National U. S.H.Choi

30 MeV Cyclotron center D.N.Binh

RIKEN Nishina Center V.H.Phong, Z. Ge

Ewha Womans U. A.Kim, G.W.Kim, S.I.Lim, S.Y.Park

Korea U. B.Hong

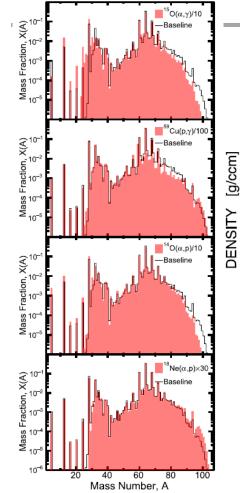
U. of Edinburgh D.Kahl

Vietnam A. of Sci. and Tech. L.H.Khiem

Chonbuk National U. E.J.Kim

IRIS, IBS J.Y.Moon, M.S.Kwag

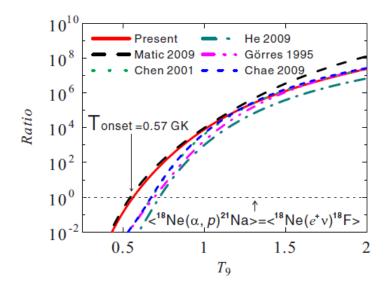
UNIST K.Kwak


	Energy levels of ²² Ne								
	ETCM calcul	ation		Experimenta	l data				
Jπ	E_{x} (MeV)	θ_{α}^{2} (%)	J ^π	E_{x} (MeV)	θ_{α}^{2} (%)				
1-	12.58	13	1-	12.58	10				
1-	13.53	8	1 ⁻	12.84	20				
3-	12.92	13	3-	13.19	19				
3-	13.69	11	3-	13.41	11				

As can be seen in Fig. 9 there are many anomalies in the 22 Mg spectrum at lower energies. The corresponding resonances were not observed in the mirror $\alpha + ^{18}$ O scattering due to the very small energies of the α particles. Generally speaking, a proper study of $\alpha + ^{18}$ Ne can bring information about the states in 22 Ne which are very close to the α -particle threshold, and maybe even below it.

TABLE II. Tentative spin assignment for ²²Mg levels.

Level	Spin	Energy (MeV)
1	2	2.87
2	2	3.055
3	0	3.18
4	1	3.32
5	2	3.656
6	1	3.70
7	0	3.76
8	1	4.02
9	0	4.021
10	2	4.085
11	1	4.22


10 ¹⁵		E 150	(2 <i>p</i> ,γ) ¹⁷ Ne
10 ¹⁰	D 18	$Ne(2p, y)^{20}Mg$	-
10 ⁵	B \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	c 18Ne(α,μ	/
10	B A	M. Wiesho JPG (1999	er et al.,
L	0.5	1.0	3.0
		PERATURE	[GK]

11410	8	А			
11499	17			K	[2+]
11594	12			KL	
11748	17			KL	[0+]
11914	13			KL	
12003	20 ?			L	
12185	17			KL	[3-]
12474	26			K	[2+]
12665	17			K	[3-]
13014	37	А		K	
14012	3	А	G		

TABLE I. Resonant parameters used in the present R-matrix analysis.

E_x (²² Mg)	J^{π}	S	ℓ	Γ_p (keV)
6.333	1+	1	0	16
6.591	1-	2	1	36
6.615	2+	2	0	10
6.796	2^{-}	1	1	62
6.885	1-	2	3	2
7.270	1-	2	1	82
7.339	2+	2	2	18
7.369	3-	2	3	7
7.585	2+	2	0	16
7.654	1-	2	1	114
7.802	2-	1	1	19
7.920	2+	2	0	3
8.005	3-	2	3	1
8.190	2+	2	2	5
8.353	1+	1	2	97
8.527	3-	2	1	3
8.578	4+	2	2	5
8.677	2+	2	2	7
8.727	2+	2	0	12
8.827	1-	2	1	57
8.922	2+	2	2	4
9.050	1-	2	1	105
9.158	4+	2	2	2

As discussed in the Introduction, the 18 Ne(α , p) 21 Na cross section was studied before by Bradfield-Smith *et al.* [9] and Groombridge *et al.* [10]. There, the experimental results were summarized as a table of resonance parameters and widths. Figure 14 displays the cross section derived from the resonance parameters of Ref. [10], in comparison to our result. Our experiment shows a much lower cross section, by close to an order of magnitude.

TABLE I. Resonant properties of excited states in 22 Mg deduced from the present work. The excitation energies from the previous work are listed for comparison. The uncertainties of energy, in units of keV, are included in parentheses. The observed proton partial widths are deduced from the R-matrix analysis with those spin-parity assignments as shown in Fig. 1.

E_x^{present}	E_x [7]	E_x [8]	E_x [9]	E_x [11]	Parity ^a	J^{π} (R matrix) ^b	J^{π} ; ℓ (adopted)	Γ_p (keV)
6.61(15)°	6.606(9)	6.606(11)	6.616(4)		$\pi = N[4]$	$(2^+,1^+)$	2+;0	23(7)
$6.81(15)^{d}$	6.766(12)	6.767(20)	6.771(5)	6.760(90)		$(1^+, 2^+)$	$(1^+, 2^+);0$	64(20)
6.93(15)		6.889(10)	6.878(9)		$\pi = N$	$(2^+,1^+,3^-,2^-)$	$(2^+,3^-);0(1)$	27(7)
7.06(16)						$(1^+, 3^-, 2)$	$(1^+, 3^-, 2); 0(1)$	49(20)
7.27(16)						$(2^+,1^+)$	$(2^+,1^+);0$	17(7)
7.42(17)		7.402(13)	7.373(9)			$(1, 2^+)$	$(1, 2^+);0(1)$	10(7)
7.59(17)	7.614(9)		7.606(11)			$(1^+, 2^+)$	$(1^+, 2^+);0$	23(7)
7.82(18)		7.784(18)	7.757(11)	7.840(90)	$\pi = uN$	$(1^{-} - 3^{-})$	$(2^{-});1$	27g
7.98(19)	7.938(9)	7.964(16)	7.986(16)	7.890(100)	$\pi = N$	$(1^+, 2^+)$	$(2^+);0$	20^{g}
8.18(19)	8.197(10)	8.203(23)	8.229(20)			$(1^{+}-3^{+})$	$(1^+-3^+);2$	33 ^g
8.31(20)				8.290(40)		$(1^{+}-3^{+})$	$(1^+-3^+);2$	49 ^g
8.51(20)°	8.512(10)	8.547(18)		8.550(90)	$\pi = N$	$(1^{-} - 3^{-})$	(3-);1	60(20)
8.62(21) ^f	(8.644(18))	8.613(20)	8.598(20)			(2+)	$(2^+);2$	33(10)

^aN, uN denote level of natural and unnatural parity, respectively.

^bPresent results deduced from the *R*-matrix analysis.

 $^{^{}c}J^{\pi}=2^{+}$ determined for the 6.616-MeV state [16].

 $^{^{\}rm d}J^{\pi} = (1^{-}, 2^{-})$ determined for the 6.796-MeV state [16].

 $^{^{\}rm c}J^{\pi}=2^+$ assumed in Chen et al. [8].

 $^{^{\}rm f}J^{\pi}=3^{\rm -}$ assumed in Chen et al. [8].

^gThe proton widths of these states are only roughly estimated from the *R*-matrix fits to the data.

	Pres	sent work	
E_x	Γ_{α}	J^{π}	θ_a^2
(MeV)	(keV)		(%)
11.493	7	1-	4.78
11.705	3	3-	12.30
11.869	6	1-	2.40
12.352	19	1-	3.72
		(4^{+})	
12.744	11	3-	6.80
12.974	8	3-	3.65
13.456	4	3-	1.06
		$(0^+, 1^-)$	
13.644	177	0+	11.0
		$(1^-, 4^+, 5^-)$	
14.381	16	4+	5.01
		$(2^+, 5^-)$	
15.199	15	4+	2.49
		$(2^+, 3^-)$	

5-

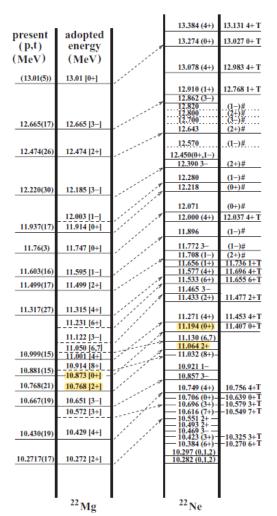
 $(0^+ \text{ to } 7^-)$

1.59

15.477

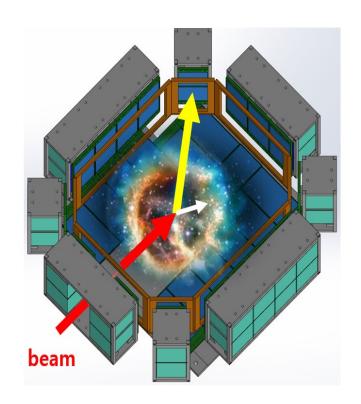
TABLE II. Tentative spin assignment for ²²Mg levels.

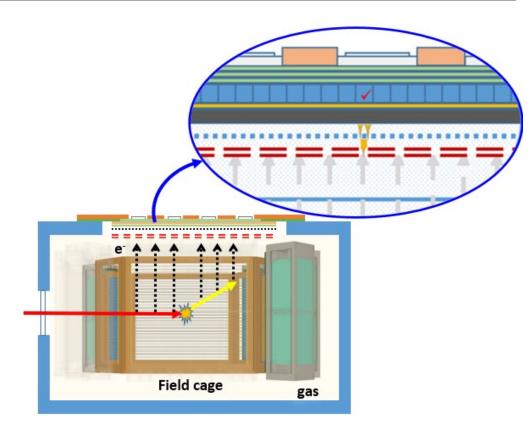
Level	Spin	Energy (MeV)
		(MeV)
1	2	2.87
2	2	3.055
3	0	3.18
4	1	3.32
5	2	3.656
5	1	3.70
7	0	3.76
3	1	4.02
)	0	4.021
10	2	4.085
11	1	4.22


TABLE I. Summary of resonance parameters (R = 5.0 fm).

N	$E_{\rm c.m.}$ (MeV)	$\frac{E_x}{({\rm MeV})}$	J^{π}	$\frac{\Gamma_{\rm c.m.}}{({\rm keV})}$	$\Gamma_\alpha/\Gamma_{tot}$ %	γ^2_{α} (kev)	$\gamma^2_{\alpha}/\gamma^2_{W}$
1	2.91	12.58	1-	97	36	79	10
2	3.17	12.84	1 -	145	72	150	20
3	3.52	13.19	3 -	67	40	144	19
4	3.74	13.41	3 -	56	40	82	11
5	9.61	19.28	(7^{-})	88	25	64	8
6	9.89	19.56	(7^{-})	75	23	41	5
7	11.18	20.85	9-	110	14.5	393	51
8	12.17	21.84	9-	170	22.	441	57

TABLE VII. The spin values and resonance strengths of the levels at center-of-mass energies E_{res} (c.m.) used in the calculations of the rates for the ¹⁸Ne(α , p)²¹Na reaction.


E_x (MeV)	E _{res} (c.m.) (MeV)	$J^{\pi a}$	S_{α}	Γ_{α} (eV)	ωγ (eV)
8.1812(16)	0.039	[2+]	2.8×10^{-1}	1.7×10^{-65}	8.53×10^{-65}
8.385(7)	0.243	$[2^{+}]$	3.2×10^{-1}	2.7×10^{-18}	1.33×10^{-17}
8.5193(20)	0.377	[3-]	4.0×10^{-3}	7.0×10^{-15}	4.87×10^{-14}
8.574(6)	0.432	[4+]	6.0×10^{-2}	3.6×10^{-13}	3.26×10^{-12}
8.6572(17)	0.515	$[0^{+}]$	1.1×10^{-1b}	5.0×10^{-8}	4.97×10^{-8}
8.743(14)	0.601	[4+]	2.2×10^{-2}	5.7×10^{-10}	5.15×10^{-9}
8.7832(22)	0.642	[1-]	1.1×10^{-1b}	4.0×10^{-6}	1.21×10^{-5}
8.9318(27)	0.790	[2+]	1.1×10^{-1b}	8.3×10^{-5}	4.13×10^{-4}
9.080(7)	0.938	[1-]	1.1×10^{-1b}	7.7×10^{-3}	2.31×10^{-2}
9.157(4)	1.015	[4+]	7.8×10^{-2}	9.7×10^{-5}	8.70×10^{-4}
9.318(12)	1.176	[2+]	1.1×10^{-1b}	9.9×10^{-2}	4.97×10^{-1}
9.482(11)	1.342	[3-]	1.5×10^{-2}	1.8×10^{-2}	1.25×10^{-1}
9.542(9)	1.401	$[2^{+}]$	2.8×10^{-2}	3.6×10^{-1}	1.78
9.709(19)	1.565	$[0^{+}]$	1.5×10^{-1}	5.2×10^{1}	5.18×10^{1}
9.7516(27)	1.610	[2+]	1.9×10^{-2}	1.6	8.22
9.860(5)	1.718	$[0^{+}]$	1.9×10^{-2}	2.1×10^{1}	2.07×10^{1}
10.085(13)	1.944	[2+]	5.0×10^{-2}	4.5×10^{1}	2.25×10^{2}
10.2715(17)	2.130	2+	_c	_c	1.03×10^{4c}
10.429(13)	2.287	[4+]	_c	_c	7.30×10^{3} c
10.651(13)	2.513	[3-]	_c	_c	1.82×10^{4c}
10.768(13)	2.626	[2+]	1.1×10^{-1b}	2.3×10^{3}	1.16×10^{4}
10.873(14)	2.734	$[0^{+}]$	_c	_c	4.52×10^{4c}
11.001(11)	2.859	[4+]	_c	_c	8.10×10^{3c}
11.315(16)	3.173	[4+]	3.0×10^{-2b}	2.0×10^{2}	1.83×10^{3}
11.499(17)	3.357	[2+]	1.1×10^{-1b}	1.7×10^{4}	8.64×10^{4}
11.595(12)	3.455	[1-]	5.4×10^{-2}	2.0×10^{4}	6.11×10^4
11.747(17)	3.607	$[0^{+}]$	1.1×10^{-1b}	7.1×10^4	7.13×10^4
11.914(13)	3.780	$[0^{+}]$	1.1×10^{-1b}	8.8×10^{4}	8.82×10^{4}
12.003(20)	3.861	[1-]	2.1×10^{-1}	1.4×10^{5}	4.31×10^{5}
12.185(17)	4.050	[3-]	1.8×10^{-1}	3.7×10^4	2.60×10^{5}
12.474(26)	4.332	[2+]	1.1×10^{-1b}	7.8×10^{4}	3.89×10^{5}
12.665(17)	4.523	[3-]	1.2×10^{-1}	4.9×10^{4}	3.45×10^{5}
(13.010(50))	4.865	[0+]	1.1×10^{-1b}	2.2×10^{5}	2.16×10^{5}


^aSpin for the mirror assignments given in Figs. 9 and 10. ^bConstant S_{α} values as explained in the text.

Resonance strengths are measured in Ref. [22].

