Nuclei in the Cosmos (NIC XVII)

Contribution ID: 33

Type: Oral

Bound-state beta-decay of Thallium-205 to constrain s-process predictions for the early Solar System

Thursday, 21 September 2023 17:00 (15 minutes)

Bound-state β -decay (β_h^- -decay) is a radically transformative decay mode that can change the stability of a nucleus and generate temperature- and density-dependent decay rates. In this decay mode the β -electron is created directly in a bound atomic orbital of the daughter nucleus instead of being emitted into the continuum, so the decay channel is only significant in almost fully stripped ions during extreme astrophysical conditions. The β_{h}^{-} -decay of 205 Tl⁸¹⁺ could influence our understanding of the production of 205 Pb, a short-lived radioactive (SLR, 17.3 Myr) nucleus that is fully produced by the s-process in stars. In the context of the early Solar system, SLRs are defined by half-lives of 0.1-100 My and their abundance in meteorites can be used to constrain the formation of the Solar System [1]. Historically, it has been noted that thermal population of the 2.3 keV state of ²⁰⁵Pb in stellar conditions could dramatically reduce the abundance of s-process ²⁰⁵Pb by speeding up the EC-decay to ²⁰⁵Tl. This destruction of ²⁰⁵Pb is potentially balanced by the β_b^- -decay of ²⁰⁵Tl⁸¹⁺ [2]. Currently, a theoretical prediction for the half-life of fully stripped ²⁰⁵Tl is used in stellar models, but given the importance of the 205 Pb/ 204 Pb chronometer, a measurement of the β_b^- -decay for 205 Tl $^{81+}$ was conducted at the GSI Heavy Ion Facility in March 2020. A ²⁰⁵Tl⁸¹⁺ beam was stored in the Experimental Storage Ring, and the growth of $^{205}\text{Pb}^{81+}$ daughters with storage time was directly attributable to the β_b^- -decay channel. We will report the measured half-life and detail how this half-life can be used to more accurately predict the ²⁰⁵Pb abundance in the early Solar System.

[1] M. Lugaro, et al. Progress in Particle and Nuclear Physics, 102:1–47, 2018.

[2] K. Yokoi, et al. Astronomy and Astrophysics, 145:339–346, 1985.

Primary author: LECKENBY, Guy (TRIUMF)

Co-authors: Mr SZÁNYI, Balázs (University of Szeged); Prof. MEYER, Bradley (Clemson University); Dr GRIF-FIN, Chris (TRIUMF); Dr VESCOVI, Diego (Goethe University Frankfurt); Prof. MARTÍNEZ-PINDEO, Gabriel (GSI Helmholtz Centre); Dr WEICK, Helmut (GSI Helmholtz Centre); Dr DILLMANN, Iris (TRIUMF); Dr GLO-RIUS, Jan (GSI Helmholtz Centre); Prof. TAKAHASHI, Kohji (GSI Helmholtz Centre); Dr PIGNATARI, Marco (Konkoly Observatory); Dr LUGARO, Maria (Konkoly Observatory); Dr SIDHU, Ragandeep Singh (University of Edinburgh); Dr MANCINO, Riccardo (GSI Helmholtz Centre); Dr CHEN, Rui Jiu (GSI Helmholtz Centre); Dr CRISTALLO, Sergio (INAF); Dr SANJARI, Shahab (GSI Helmholtz Centre); Ms KAUR, Tejpreet (Punjab University); Dr FAESTERMANN, Thomas (Technische Universität München); Dr NEFF, Thomas (GSI Helmholtz Centre); Dr BATTINO, Umberto (University of Hull); Prof. LITVINOV, Yuri (GSI Helmholtz Centre)

Presenter: LECKENBY, Guy (TRIUMF)

Session Classification: Nuclear properties for astrophysics

Track Classification: Nuclear properties for astrophysics