

Nuclei in the Cosmos XVII

Science Culture Center, Daejeon, Korea

The status and future of nuclear property experiments at CENS

rp-process

.....uu'

(r-process)

CENS n*-explorer

Sunghoon(Tony) Ahn

Center for Exotic Nuclear Studies

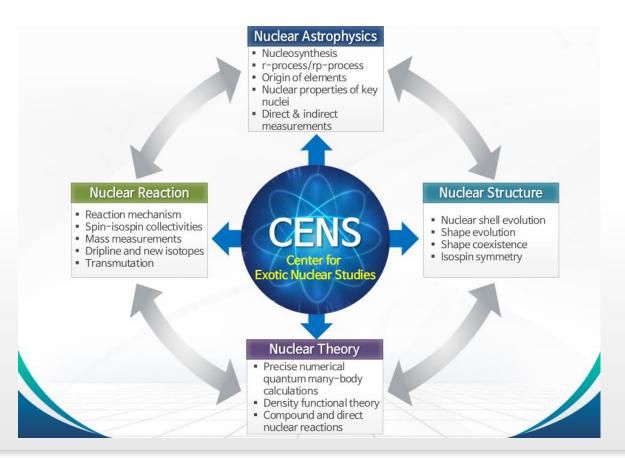
Institute for Basic Science

September 18th, 2023

Acknowledgement

This work was supported by the Institute for Basic Science (IBS-R031-D1), Ministry of Science and ICT(MSIT), Republic of Korea.

Contents

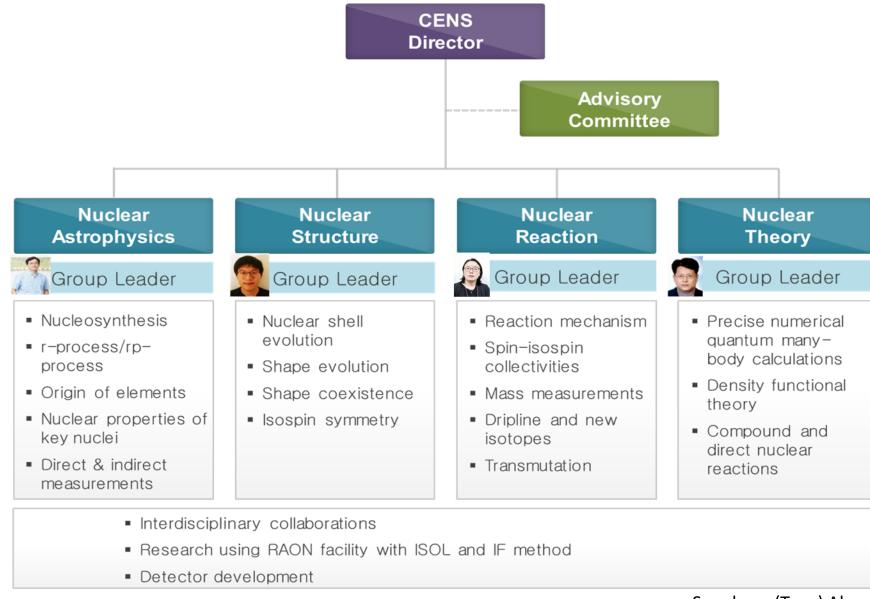

❖ Introduction of the Center for Exotic Nuclear Studies (CENS)

❖ Nuclear astrophysics research activities at CENS

Introduction of CENS

To study properties of exotic nuclei and origin of heavy elements in the universe

- The Center for Exotic Nuclear Studies (CENS) was launched in December 2019.
- We have 26 researchers and 11 Ph.D. students as of today.



Visions

- To become one of the leading research institutions in nuclear physics
- To explore uncharted regions of nuclei and find important discoveries

Organization of CENS

CENS Members (26 researchers)

```
- D. Kim & S. Kim (2020.02.01.)
- T.-S. Park (2020.03.01.)
- J. Hwang (2020.04.01.)
                                        2020
- J. Park (2020.04.16.)
- C.B. Moon & B. Moon (2020.09.01.)
                                         (10)
- <u>S. Ahn</u> (2020.10.01.)
- Z. Korkulu & L. Stuhl (2020.11.01.)
- S. Choi (2020.11.16.)
- S. Bae & S. Cha (2021.03.01.)
                                        2021
- Q. Zhao (2021.04.16.)
- X. Pereira-Lopez (2021.06.16.)
                                         (6)
- <u>D. S. Ahn</u> (2021.10.01.)
- M. Kim (2021.10.16.)
- <u>Y. H. Kim</u> (2022.01.01.)
- M. L. Bui (2022.01.16.)
                                        2022
- J. Y. Huh (2022.07.01.)
                                         (5)
- H. Y. Lee (2022.09.01.)
- I. Mazur (2022.10.16.)
- Y. Kim (2023.01.01.)
- J. W. Lee (2023.03.01.)
                                        2023
- J. S. Ha(2023.04.01.)
                                          (5)
- M.J. Kim (2023.09.01.)
- J.H. Won (2023.04.16.)
```


- 6 Faculty members (4 group leaders)
- **5** Senior researchers
- **2** Research engineers
- **3 YSF(Young Scientist Fellow)**
- **10** Postdoctoral researchers

11 Ph.D. students

Research proposals

- FRIB PAC1 (2022):
 - √ 4 proposals and 1 Lol submitted
 - √ 2 proposals and 1 Lol accepted
- FRIB PAC2 (2023):
 - √ 9 proposals submitted
 - √ 2 proposal of spokesperson
 - √ 5 (1 CENS) proposals accepted
- Year 2022: Argonne Argonne
 - ✓ 1 proposal submitted and accepted
- Year 2023:
- ✓ 1 proposals submitted

√ 1 submitted and accepted

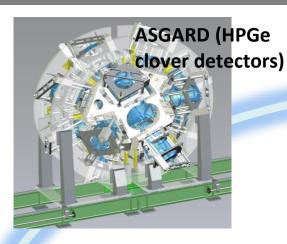
- Year 2021:
 - √ 4 submitted
 - ✓ 1 spokesperson
 - ✓ 2 (1 CENS) accepted

- ✓ 2 (CENS) submitted and accepted
- Year 2022:
- √ 9 submitted
- √ 1 spokesperson
- √ 3 accepted

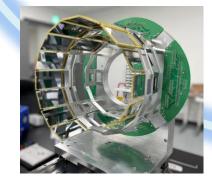
- Year 2020:
- ✓ 6 submitted
- ✓ 5 spokesperson
- ✓ 1 (CENS) accepted
- Year 2021:
 - √ 7 submitted
 - √ 4 spokesperson
- √ 3 accepted
- Year 2022:
 - √ 18 submitted
 - √ 12 spokesperson
 - √ 5 (2 CENS) accepted

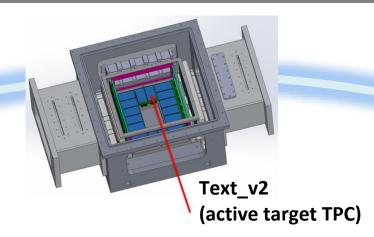
[Summary]

Submitted 67 proposals: Japan(31), Europe(20), USA(16) Accepted 29 proposals: Japan(9), Europe(11), USA(9)


CENS spokespersons for 30 proposals, 12 accepted

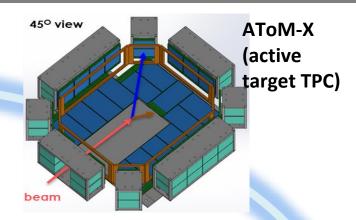
Sunghoon(Tony) Ahn NIC XVII 2023, Sep. 18th, 2023


CENS detector and device development


Decay Spectroscopy Station

A New Plunger Device

Detector System for Internal Conversion Electrons



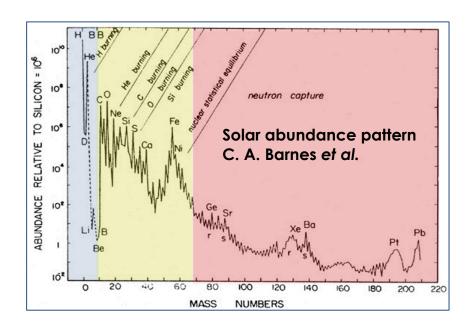
STARK (Si strip array)

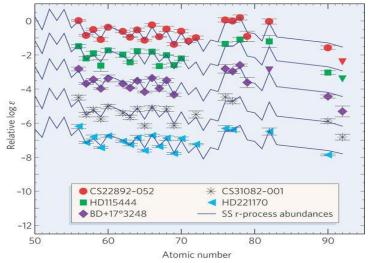
Beam PID

Diagnostics System

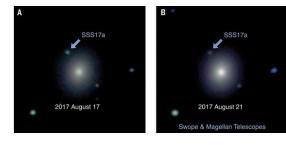
DL-MCP

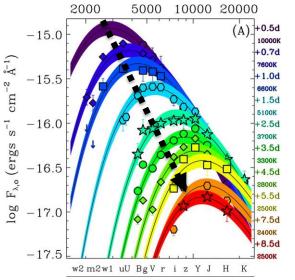
GAGG Scintillator Liquid Organic Scintillator MUSIC/IC

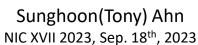

CryoSTAR (gas target)


Surigiouni iony, Ahn NIC XVII 2023, Sep. 18th, 2023

Astrophysical Observables and Origin of Elements

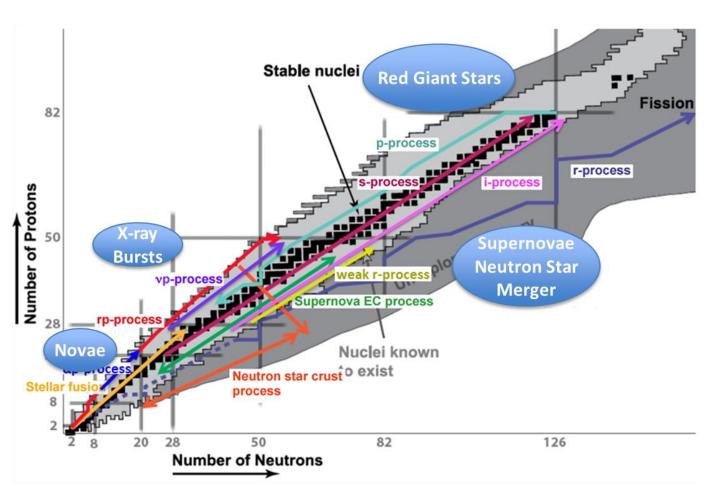





Abundances in metal poor r-stars

J.J. Cowan and C. Sneden, Nature 440, 1151 (2006)

Kilo Nova/GW Observations Drout et al. (2017)

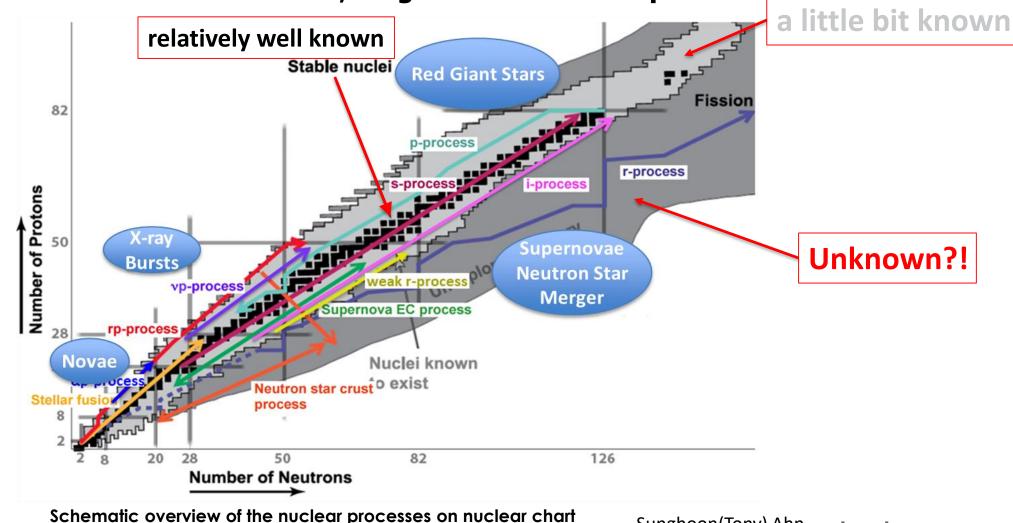



Nucleosynthesis Processes

Schematic overview of the nuclear processes on nuclear chart H. Schatz (2016)

Calculated r-process yields for solar abundance patterns F. Kappeler *et al. Rep. Prog. Phys.* 52 945 1989

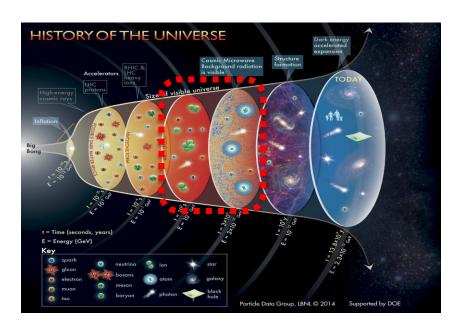
Sunghoon(Tony) Ahn NIC XVII 2023, Sep. 18th, 2023

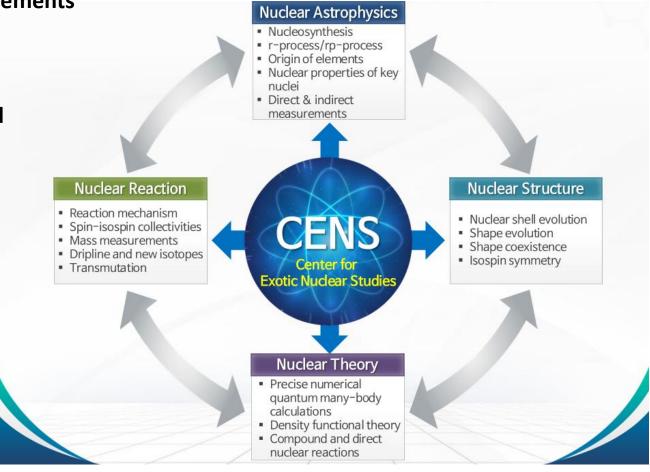


What do we need to study?

H. Schatz, 2016

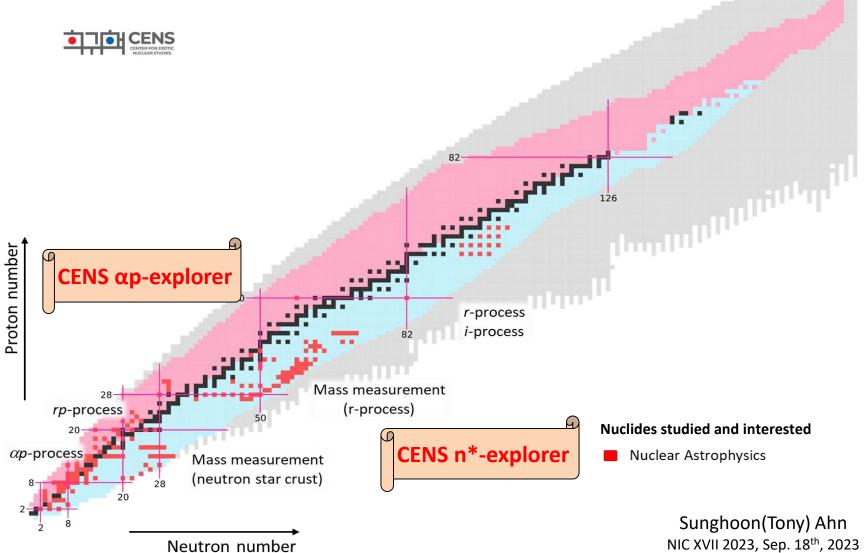
Properties of Nuclei: mass, Q-value, T_{1/2}, P_n, level densities, reaction rates, level structure, magic number and drip line





Nuclear Astrophysics Group at CENS

[Nuclear Astrophysics Research Topics]


- 1. Nucleosynthesis (r-process/rp-process) → Origin of elements
- 2. Nuclear properties of key nuclei
- 3. Direct & indirect measurements
- 4. Interdisciplinary collaborations
- 5. Research using RAON facility with ISOL and IF method
- **6.** Detector development

Astrophysically important nuclei on CENS Nuclear Chart

Properties of Nuclei: mass, Q-value, $T_{1/2}$, P_n , level densities, reaction rates, and level structure

Sensitivity Studies on Nuclear Reaction Rates in X-ray burst

- The sensitivity study by R.H. Cyburt et al. showed there are important astrophysical reaction rates affecting a large variation of energy generation and final ash in X-ray burst model.
- Limited experimental measurements of (p,y), (α,y) and (α,p) performed to reduce their uncertainties.

Rank	Reaction	Type ^a	Sensitivity ^b	Category
1	⁵⁶ Ni(α, p) ⁵⁹ Cu	U	12.5	1
2	59 Cu(p, γ) 60 Zn	D	12.1	1
3	$^{15}O(\alpha, \gamma)^{19}Ne$	D	7.9	1
4	$^{30}S(\alpha, p)^{33}Cl$	U	7.8	1
5	$^{26}\text{Si}(\alpha, p)^{29}\text{P}$	U	5.3	1
6	61 Ga(p, γ) 62 Ge	D	5.0	1
7	23 Al(p, γ) 24 Si	U	4.8	1
8	$^{27}P(p, \gamma)^{28}S$	D	4.4	1
9	63 Ga(p, γ) 64 Ge	D	3.8	1
10	60 Zn(α , p) 63 Ga	U	3.6	1
11	22 Mg(α , p) 25 Al	D	3.5	1
12	56 Ni(p, γ) 57 Cu	D	3.4	1
13	$^{29}S(\alpha, p)^{32}Cl$	U	2.8	1
14	$^{28}\text{S}(\alpha, p)^{31}\text{Cl}$	U	2.7	1
15	31 Cl(p, γ) 32 Ar	U	2.7	1
16	35 K(p, γ) 36 Ca	U	2.5	2
17	18 Ne(α , p) 21 Na	D	2.3	2
18	25 Si(α , p) 28 P	U	1.9	2
19	57 Cu(p, γ) 58 Zn	D	1.7	2
20	34 Ar(α , p) 37 K	U	1.6	3
21	24 Si(α , p) 27 P	U	1.4	3
22	22 Mg(p, γ) 23 Al	D	1.1	3
23	65 As(p, $\gamma)^{66}$ Se	U	1.0	3
24	$^{14}O(\alpha, p)^{17}F$	U	1.0	3
25	40 Sc(p, γ) 41 Ti	D	0.9	3
26	34 Ar(p, γ) 35 K	D	0.8	3
27	47 Mn(p, γ) 48 Fe	D	0.8	3
28	39 Ca(p, γ) 40 Sc	D	0.8	3

Rank	Reaction	Type ^a	Sensitivity ^b	Category
1	$^{15}O(\alpha, \gamma)^{19}Ne$	D	16	1
2	56 Ni(α , p) 59 Cu	U	6.4	1
3	59 Cu(p, γ) 60 Zn	D	5.1	1
4	61 Ga(p, γ) 62 Ge	D	3.7	1
5	22 Mg(α , p) 25 Al	D	2.3	1
6	$^{14}O(\alpha, p)^{17}F$	D	5.8	1
7	23 Al(p, γ) 24 Si	D	4.6	1
8	$^{18}\text{Ne}(\alpha, p)^{21}\text{Na}$	U	1.8	1
9	63 Ga(p, γ) 64 Ge	D	1.4	2
10	19 F(p, α) 16 O	U	1.3	2
11	$^{12}\mathrm{C}(\alpha, \gamma)^{16}\mathrm{O}$	U	2.1	2
12	$^{26}\text{Si}(\alpha, p)^{29}\text{P}$	U	1.8	2
13	17 F(α , p) 20 Ne	U	3.5	2
14	$^{24}\mathrm{Mg}(\alpha, \gamma)^{28}\mathrm{Si}$	U	1.2	2
15	57 Cu(p, γ) 58 Zn	D	1.3	2
16	60 Zn(α , p) 63 Ga	U	1.1	2
17	17 F(p, $\gamma)^{18}$ Ne	U	1.7	2
18	40 Sc(p, γ) 41 Ti	D	1.1	2
19	48 Cr(p, γ) 49 Mn	D	1.2	2

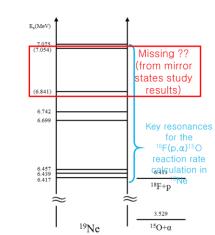
(Left) Calculated light curves of X-ray burst (Middle) Reactions that impact the burst light curve in the single-zone X-ray burst model (Right) Reactions that impact the burst light curve in the multi-zone X-ray burst model R. H. Cyburt *et al.* ApJ 830:55 (2016)

Indirect measurements of (p,a)/(a,p) reaction cross section

[$^{15}O+\alpha$ elastic resonance scattering]

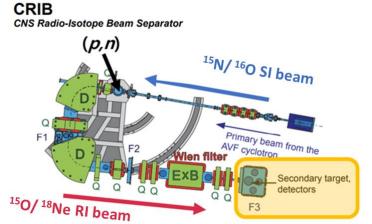
→ HCNO-II

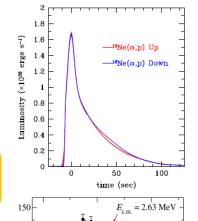
---> HCNO-III

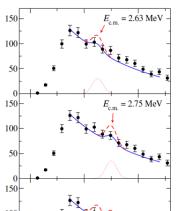

 $E_{\rm r}(^{19}{\rm Ne})$ [MeV] 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5

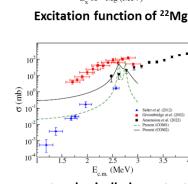
г_а = 58 keV

 $E_{c.m.}$ [MeV]


Bardavan et al. [2001]


D. Kim et al. PRL in preparation




[18Ne+α elastic resonance scattering]

S.M. Cha et al. Front. Phys. 11 1163299 (2023)

Goldberg et al., PRC 69, 024602 (2004)

10.5 11 11.5 12 12.5 13 Excitation Energy of ²²Ne (MeV)

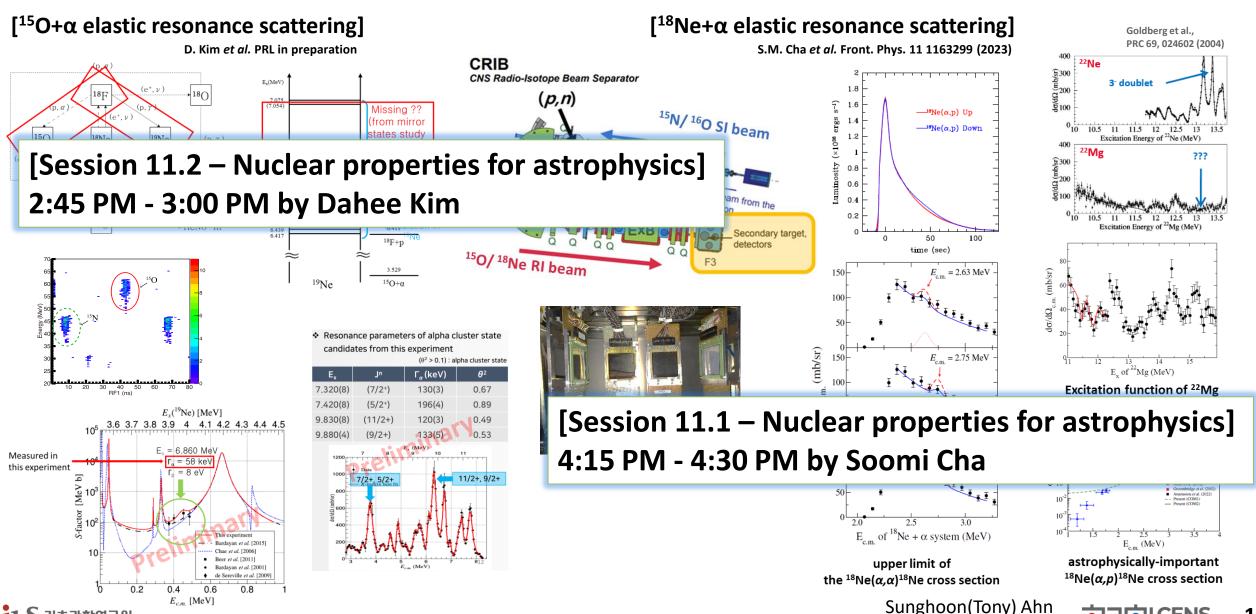
Excitation Energy of 22Mg (MeV)

astrophysically-important ¹⁸Ne(α ,p)¹⁸Ne cross section

Resonance parameters of alpha cluster state

candidates from this experiment $(\theta^2 > 0.1)$: alpha cluster stat			
E _x	Jπ	Γ _α (keV)	θ^2
7.320(8)	(7/2 ⁺)	130(3)	0.67
7.420(8)	(5/2+)	196(4)	0.89
9.830(8)	(11/2+)	120(3)	0.49
9.880(4)	(9/2+)	133(5)	0.53
1000	7 8 Data 7/2+5/2+ 8-matrix best fit	(MeV) 9 10	11/2+, 9/2+
(s/qtii) (600 Ctp/op 400		6 7	812

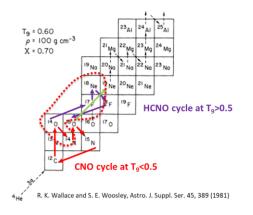
 E_{cm} of ¹⁸Ne + α system (MeV) upper limit of the 18 Ne $(\alpha,\alpha)^{18}$ Ne cross section


Measured in

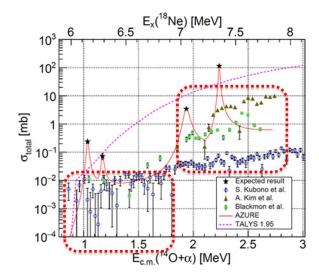
this experiment

Sunghoon(Tony) Ahn NIC XVII 2023, Sep. 18th, 2023

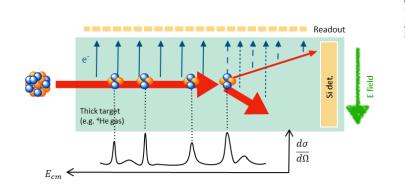
Indirect measurements of (p,a)/(a,p) reaction cross section

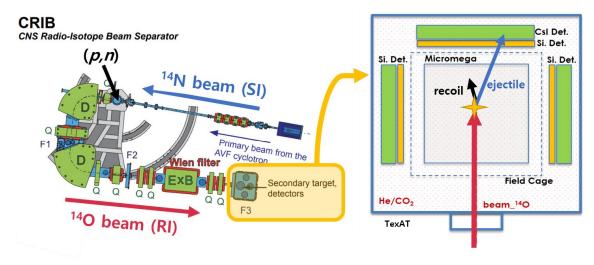

NIC XVII 2023, Sep. 18th, 2023

Direct measurement of $^{14}O(a_rp)^{17}F$ cross section at CRIB

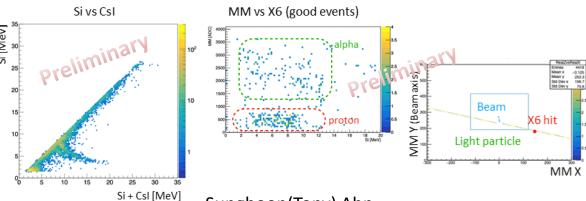

R. H. Cyburt et al. 2016

Rank	Reaction	Туре	Sensitivity
1	¹⁵ O(α,γ) ¹⁹ Ne	D	16
2	⁵⁶ Ni(α,p) ⁵⁹ Cu	U	6.4
3	⁵⁹ Cu(<u>p,</u> y) ⁶⁰ Zn	D	5.1
4	⁶¹ Ga(<u>p,γ</u>) ⁶² Ge	D	3.7
5	²² Mg(α,p) ²⁵ Al	D	2.3
6	¹⁴ O(α,p) ¹⁷ F	D	5.8
7	²³ Al(<u>p,y</u>) ²⁴ Si	D	4.6
8	18Ne(α,p) ²¹ Na	U	1.8
9	⁶³ Ga(<u>p,γ</u>) ⁶⁴ Ge	D	1.4
10	¹⁹ F(p,α) ¹⁶ O	U	1.3


Reactions that impact the burst light curve in the multi-zone X-ray burst model



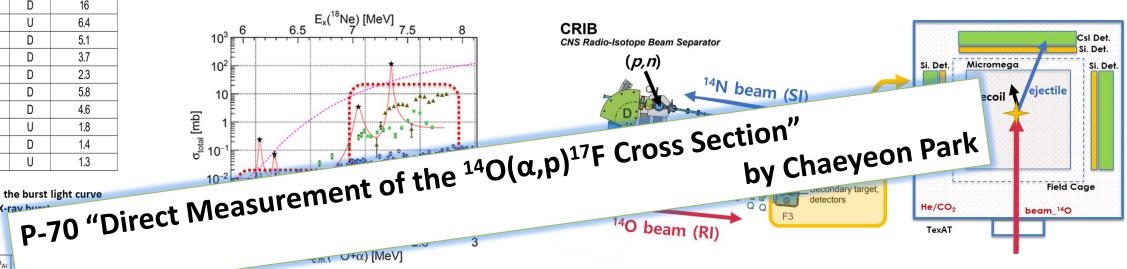
- "A direct measurement of the $^{14}O(\alpha,p)^{17}F$ reaction with the Texas Active Target detector" approved by RIKEN PAC (2020)
- Beam time was very hard to get due to the Covid-19. We performed the experiment on Mar. 2023.



Previous measured data and calculated total cross sections of $^{14}O(\alpha,p)$ reaction

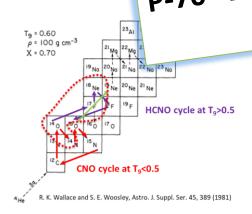
more than 40 participants!

Sunghoon(Tony) Ahn NIC XVII 2023, Sep. 18th, 2023

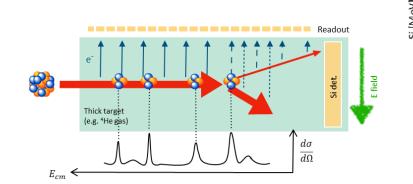


Direct measurement of $^{14}O(a_rp)^{17}F$ cross section at CRIB

R. H. Cyburt et al. 2016

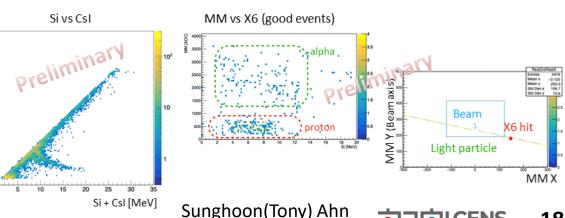

Rank	Reaction	Туре	Sensitivity
1	¹⁵ O(α,γ) ¹⁹ Ne	D	16
2	⁵⁶ Ni(α,p) ⁵⁹ Cu	U	6.4
3	⁵⁹ Cu(<u>p,y</u>) ⁶⁰ Zn	D	5.1
4	⁶¹ Ga(<u>p,</u> γ) ⁶² Ge	D	3.7
5	²² Mg(α,p) ²⁵ Al	D	2.3
6	¹⁴ O(α,p) ¹⁷ F	D	5.8
7	²³ Al(<u>p,y</u>) ²⁴ Si	D	4.6
8	¹⁸ Ne(α,p) ²¹ Na	U	1.8
9	⁶³ Ga(<u>p,y</u>) ⁶⁴ Ge	D	1.4
10	¹⁹ F(p,α) ¹⁶ O	U	1.3

- "A direct measurement of the $^{14}O(\alpha,p)^{17}F$ reaction with the Texas Active Target detector" approved by **RIKEN PAC (2020)**
- Beam time is currently very hard to get due to the Covid-19. We performed the experiment on Mar. 2023.



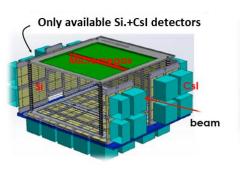
Si vs CsI

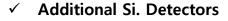
Reactions that impact the burst light curve in the multi-zone X-ray bu



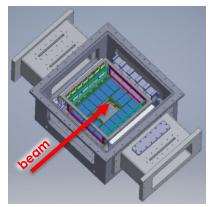
Previous measured data and calculated total cross sections of $^{14}O(\alpha,p)$ reaction

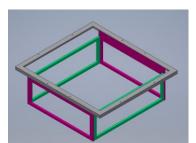
more than 40 participants!

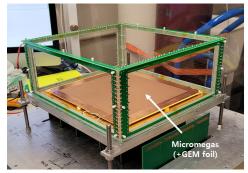

NIC XVII 2023, Sep. 18th, 2023


Development of TexAT_v2

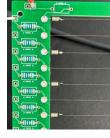
- Goals: high beam rate (10⁵ pps), large solid angle coverage, high energy and position resolution
- A new field cage built and tested at TAMU: PCB, $50\mu m$ tungsten wire and $100M\Omega$ resistors
- High beam rate test: $^{14}N(\alpha,\alpha)$ data with $5x10^5$ pps beams taken at TAMU

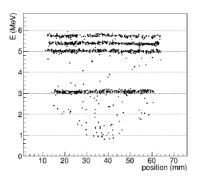


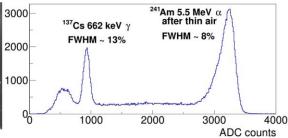




CsI+PIN diode replaced by CsI+MPPC


→ enhanced energy resolution (6%).

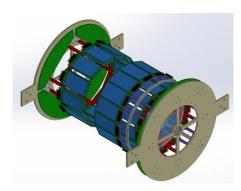




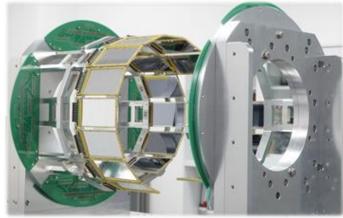
- ✓ J. Bishop et al., JPCS **1308** (2019) 012006.
- ✓ J. Hooker et al., PRC **100** (2019) 054618.
- ✓ M. Barbui et al., PRCI (2020).
- ✓ J. C. Zamora et al., PLB **816** (2021) 136256.
- ✓ J. Bishop *et al.*, Nat.Commun. **13** (2022) 2151.
- ✓ J. Bishop et al., PRC 103 (2021) L051303.

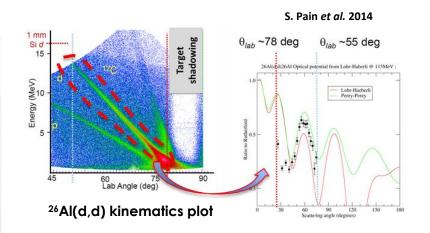
S. Bae et al., 541 NIMB (2023) 45.

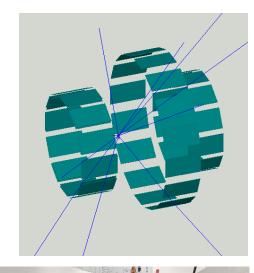
Sunghoon(Tony) Ahn NIC XVII 2023, Sep. 18th, 2023

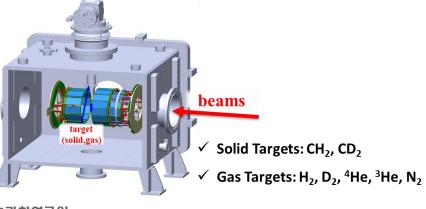

CENS n*-explorer Project

- Objective:
 - 1. direct measurements of neutron transfer reaction cross sections which are important for i-process and r-process
 - 2. Mass measurement which are important for r-process
 - 3. Direct measurements of (α,n) reaction cross sections which are important for weak r-process
- Methods:
 - 1. (d,p) reaction in inverse kinematics using solid target with STARK or ORRUBA
 - 2. New mass measurement using Bp Time-of-Flight method
 - 3. (α,n) Thick Target in Inverse Kinematics (TTIK) using MUSIC, neutron detector, SECAR or AToM-X
 - Sensitivity Study #1. "r-process", AIP Advances 4, 041008 (2014) by R. Surman et al.
 - ✓ No studies for light particles (Z=30~40) yet.
 - \checkmark (n, γ) reaction rates with stable beams near the interest region.
 - (d,p) or $(d,p\gamma)$ reaction cross sectionss for (n,γ) reactions
 - (d,d) reactions for d-OMP studies
 - ✓ Masses around Z=30~40 and N=50~60
 - Sensitivity Study #2. "s-process reaction flow", Data Nucl. Data Tables, 108, 1 (2016) by A. Koloczek et al.
 - ✓ (d,p) or (d,py) reactions for (n,y) reactions: 56 Fe, 58 Fe, 64 Ni and 22 Ne
 - Sensitivity Study #3. "i-process reaction flow", PhD. Thesis (2015) by Hampel et al.
 - \checkmark (d,p) or (d,py) reactions for (n,y) reactions: ³¹Si, ³²Si, ³⁴S, ⁴⁵Ca and ⁴⁷Ca

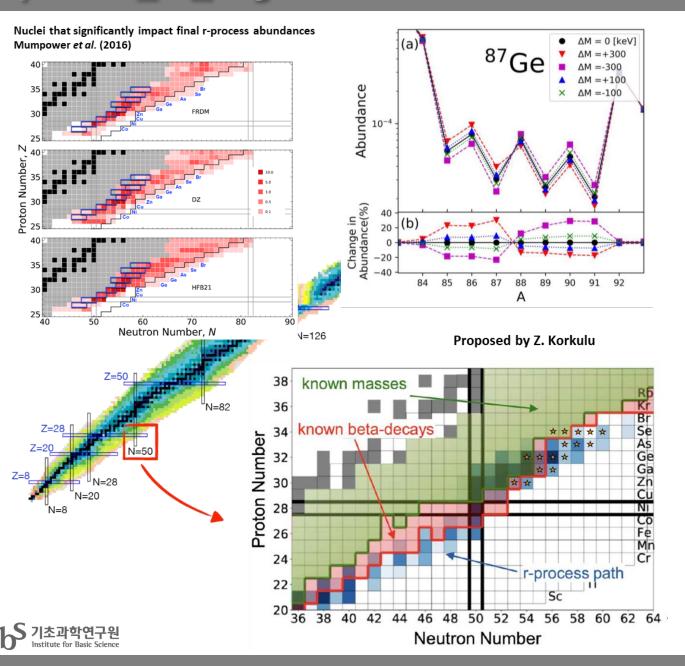


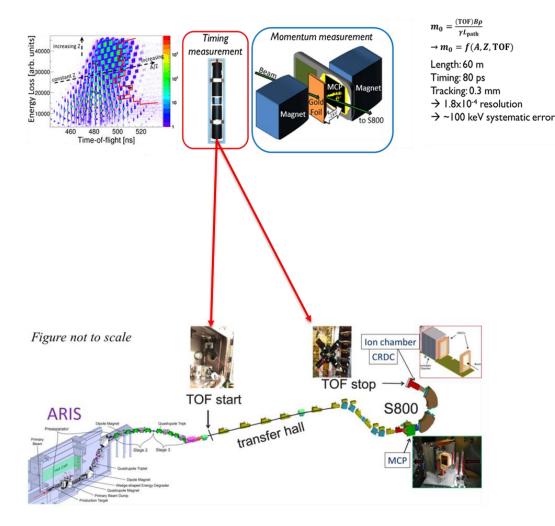

Development of STARK silicon detector array

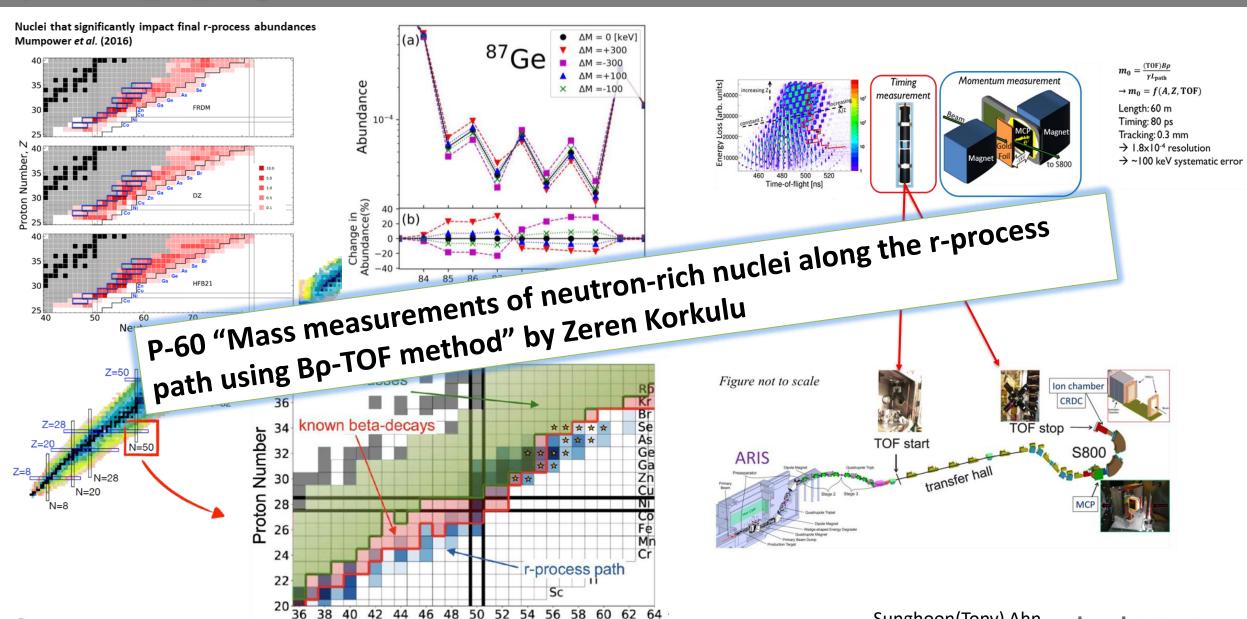

- STARK: Silicon Telescope Array for Reactions in inverse Kinematics
- Three rings with 12-16-12 polygons. 96-116-107 mm from the center of the target
- Scattering chamber: 580(X) x 400(Y) x 600(Z) mm3
- CryoSTAR compatible
- To do: Vacuum test and Commissioning
- \rightarrow (α ,p) reaction studies, transfer reaction studies, OMP studies



Conceptual Design of STARK

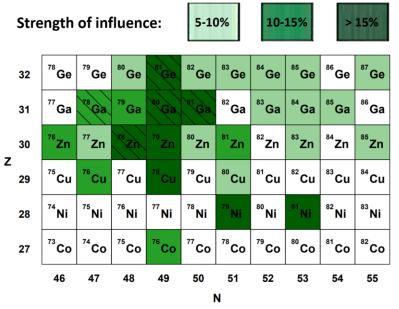


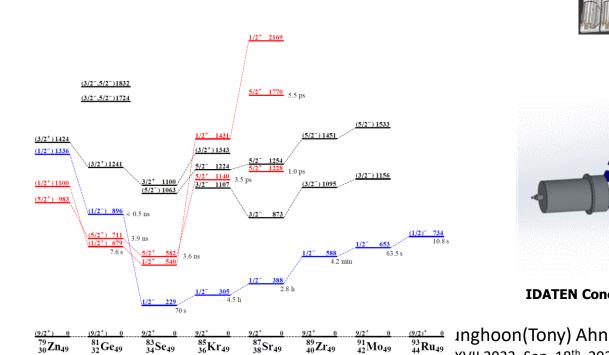


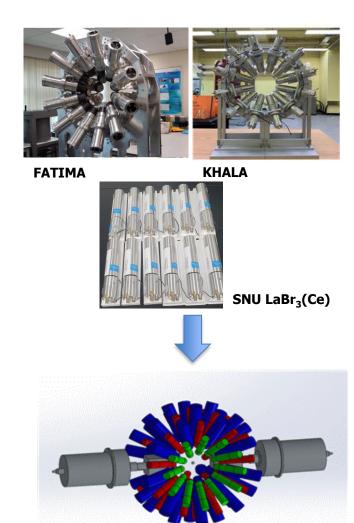


Bp-Time_of_Flight Mass Measurements at FRIB

Bρ-Time_of_Flight Mass Measurements at FRIB

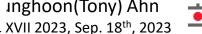



Neutron Number

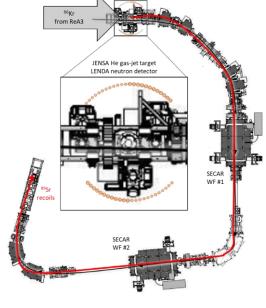

Spectroscopic properties of low-lying states using IDATEN

IDATEN: International Detector Assembly for fast-Timing measurements of Exotic Nuclei

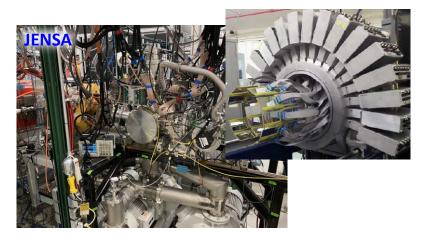
- Array of 84 LaBr₃(Ce) detectors
- Collaboration among FATIMA (36), KHALA (36) and SNU (12)
- Construction Proposal approved by RIKEN RIBF PAC22 (2021)
- 3 IDATEN proposals accepted in RIKEN RIBF PAC23 (2022)
- Electronics system development in progress (2023)
- Commissioning experiment planned on 2024

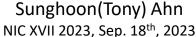


IDATEN Conceptual Design



Research Collaborations at FRIB


- 86Kr(α,xn) cross sections measurement using SECAR at FRIB
 - Title: " (α,xn) Cross sections for neutrino driven wind nucleosynthesis using SECAR"
- First JENSA RIB measurement of an X-ray-burst (α,p) cross section close to the Gamow peak at FRIB: 26 Al (α,p) 29 Si
 - JENSA gas-jet target and the superORRUBA silicon detector array
- 86Kr(α,n) reaction in the weak r-process using MUSIC and LENDA
 - Key reaction related to the weak r-process
- ²⁰Mg(βpα)¹⁵O reaction measurement using GADGET-II
 - sensitivity of astrophysical models to the $^{15}O(\alpha,\gamma)^{19}Ne$ reaction rate.



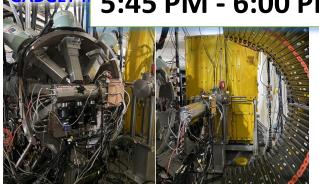
SECAR beamline

Research Collaborations at FRIB

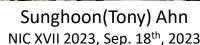
- 86Kr(α,xn) cross sections measurement using SECAR at FRIB
 - Title: "(α,xn) Cross sections for neutrino driven wind nucleosynthesis using SECAR"
- First JENSA RIB measurement of an X-ray-burst (α,p) cross section close to the

Gamow peak at FRIB: 26 Al(α ,p) 29 Si

JENSA gas-jet target and the superOF

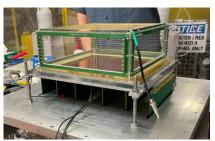

[Session 11.2 – Nuclear properties for astrophysics]

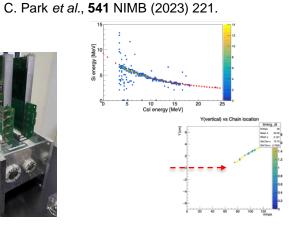
2:00 PM - 2:30 PM by Kelly Chipps


- ⁸⁶Kr(α,n) reaction in the weak r-process using iviosic and LENDA
 - Key reaction related to the weak r-process
- ²⁰Mg(βpα)¹⁵O reaction measurement using GADGET-II

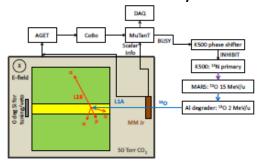
SECAR beamline

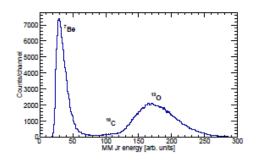
[Session 3.1 – Nuclear reaction rates and stellar abundances] 5:45 PM - 6:00 PM by Tyler Wheeler

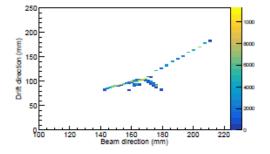


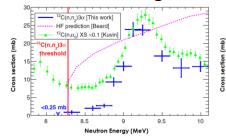

Research Collaborations at Texas A&M

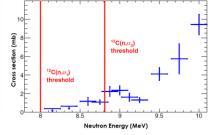
- TexAT_v2 commissioning experiment using ¹⁴N/¹⁴O beam
 - √ TexAT Upgrade (TexAT v2)
 - ✓ High beam rate test with the new field cage



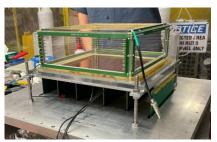




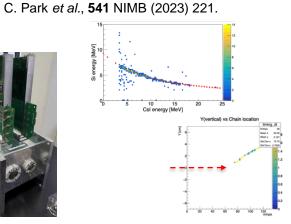

- beta-delayed charged particle spectroscopy of ¹³O
 - ✓ 3α +p events from the decay of excited states in $^{13}N^*$
- J. Bishop et al. PRL 130 (2023) 222501

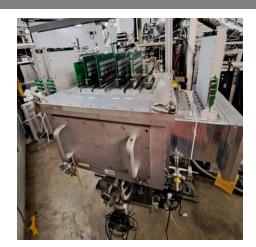


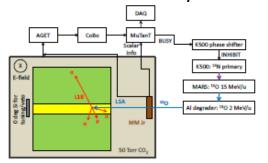
- **Enhancements from neutron/proton Upscattering**
 - ✓ The measured cross sections are significantly suppressed near the threshold in comparison to HF predictions.

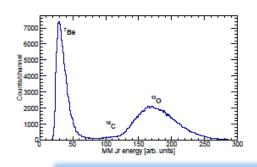


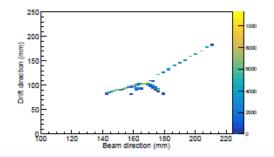
J. Bishop et al., Nat.Commun. 13 (2022) 2151.


Research Collaborations at Texas A&M


- TexAT_v2 commissioning experiment using ¹⁴N/¹⁴O beam
 - √ TexAT Upgrade (TexAT v2)
 - ✓ High beam rate test with the new field cage

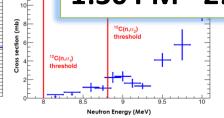






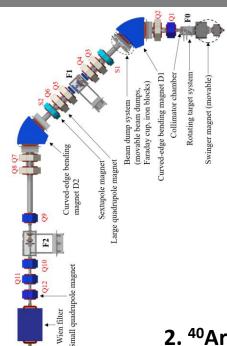
- beta-delayed charged particle spectroscopy of ¹³O
 - ✓ 3α +p events from the decay of excited states in $^{13}N^*$

J. Bishop et al. PRL 130 (2023) 222501



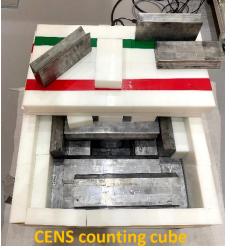
- **Enhancements from neutron/proton Upscatte**
 - ✓ The measured cross sections are significantly su

[Session 11.2 – Nuclear properties for astrophysics] 1:30 PM - 2:00 PM by Grigory Rogachev

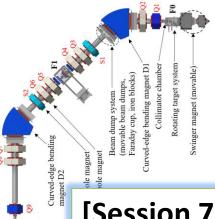


J. Bishop et al., Nat.Commun. 13 (2022) 2151.

Research Collaborations with IRIS, IBS


1. Fast-timing measurement with LaBr₃ detectors

2. ⁴⁰Ar+p and ⁴⁰Ar+d elastic scattering studies



3. Activation method method in inverse kinematics for astrophysical studies with ³⁹Cl

Sunghoon(Tony) Ahn NIC XVII 2023, Sep. 18th, 2023

Research Collaborations with IRIS, IBS

1. Fast-timing measurement with LaBr₃ detectors

[Session 7.2 – New facilities, instruments and tools] 10:45 AM - 11:15 AM by Taeksu Shin

2. ⁴⁰Ar+p and ⁴⁰Ar+d elastic scattering studies

3. Activation method method in inverse kinematics for astrophysical studies with ³⁹Cl

Sunghoon(Tony) Ahn NIC XVII 2023, Sep. 18th, 2023

Summary

· Center for Exotic Nuclear Studies performs RI beam nuclear physics.

"To study properties of exotic nuclei and origin of heavy elements in the universe."

- Nuclear Physics inputs play an important role in nucleosynthesis calculation results.
- Recent sensitivity studies show large uncertainties on the nuclear properties of unstable nuclei.
- → Experimental measurements with rare isotopes are very critical to reduce them.
- Key experimental studies can be performed with RI beams at RIKEN, FRIB and RAON:
 - 1. CENS ap-explorer
 - ✓ Direct (α,p) cross section measurements related to αp -process: (α,p) with ¹⁴O, ²²Mg, ¹⁸Ne, ²¹Na, ¹⁷F beams
 - ✓ Direct measurement of $^{14}O(\alpha,p)^{17}F$ cross section at CRIB
 - ✓ Experiments at RI facilities using AToM-X, STARK with CryoSTAR

2. CENS n*-explorer Project

- ✓ Nuclear structures related to neutron capture reaction rates in s,i,r-process: e.g. (d,d), (d,p) or (d,py) wt ³²Si, ³⁴Si, ³²Mg, ²⁸O beams for i-process
- ✓ Bp-ToF mass measurements related to r-process: nuclear mass around Z=30~40 and N=50~60
- ✓ Direct measurements of (α, n) reaction cross sections which are important for weak r-process e.g. (α, n) wt ⁷⁵Ga, ⁸⁵Br, ⁸⁴Se, ⁸⁷Kr beams using MUSIC, neutron detector, SECAR or AToM-X
- New major horses for nuclear astrophysics studies: TexAT_v2, AToM-X, CryoSTAR, KoBRA Wien Filter, STARK, ASGARD and IDATEN.
- Future plan:
 - √ To complete missions of CENS ap-explorer and CENS n*-explorer
 - √ To build up a interdisciplinary community among nuclear physics, astrophysics and astronomy.
 - ✓ To perform many nuclear astrophysics studies using RAON facility.

