Nuclei in the Cosmos (NIC XVII)

Contribution ID: 170

Type: Poster

Insight to the Explosion Mechanism of Core Collapse Supernovae Through γ -ray Spectroscopy of 46 Cr

Tuesday, 19 September 2023 18:25 (5 minutes)

Currently, the explanation behind the explosion mechanism of core collapse supernovae is yet to be fully understood. New insight to this phenomena may come through observations of 44 Ti cosmic γ rays; this technique compares the observed flux of cosmic 44 Ti γ rays to that predicted by state-of-the-art models of supernova explosions. In doing so, the mass cut point of the star can be found, a key hydrodynamic property of supernova that provides an understanding of the material that is either ejected from the explosion or bound to the residual neutron star or black hole. However, a road block in this procedure comes from a lack of precision in the nuclear reactions that destroy 44 Ti in supernovae, most notably the reactions 44 Ti(α, p) 47 V and 45 V(p, γ) 46 Cr. Therefore, this study aims to better understand the 45 V(p, γ) 46 Cr reaction by performing γ -ray spectroscopy of 46 Cr with the aim of identifying proton-unbound resonant states.

The experiment was conducted at the ATLAS facility at Argonne National Laboratory, using the GRETINA+FMA setup. A beam of 120-MeV ³⁶Ar ions are impinged onto a ~200 μ g·cm⁻² thick ¹²C target, producing ⁴⁶Cr via the fusion-evaporation reaction ¹²C(³⁶Ar,2n). The cross section for producing ⁴⁶Cr, in this reaction, is estimated to be in the μ b range. Nevertheless, with the power of the GRETINA+FMA setup, we show that it is possible to cleanly identify γ rays in ⁴⁶Cr. These include decays from previously unidentified states above the proton-emission threshold, corresponding to resonances in the ⁴⁵V + *p* system. This represents the state-of-the-art for in-beam γ ray studies for full spectroscopy up to the excitation energy region relevant for astrophysical burning.

Primary author: COUSINS, Christopher (University of Surrey)

Co-authors: Dr KENNINGTON, Adam (University of Surrey); REED, B.J. (University of Surrey); MULLER-GATERMANN, C. (Argonne National Laboratory); PAXMAN, C. (University of Surrey); Dr CAMPBELL, Chris (Lawrence Berkeley National Laboratory); O'SHEA, Connor (University of Surrey); SEWERYNIAK, D (Argonne National Laboratory); DOHERTY, Daniel (University of Surrey); WILSON, G.L. (Argonne National Laboratory, University of Massachusetts Lowell); LOTAY, Gavin (University of Surrey); HENDERSON, J. (University of Surrey); Dr LI, Jingang (Lawrence Berkeley National Laboratory); JOSE, Jordi (UPC Barcelona); CHIPPS, K.A. (Oak Ridge National Laboratory); CANETE, L. (University of Surrey); MOUKADDAM, M. (Universite de Strasbourg); SI-CILIANO, M. (Argonne National Laboratory); CARPENTER, M.P. (Argonne National Laboratory); REGAN, P.H. (University of Surrey); PAIN, S.D. (Oak Ridge National Laboratory); ZHU, Shaofei (Argonne National Laboratory); CATFORD, W.N. (University of Surrey)

Presenter: COUSINS, Christopher (University of Surrey)

Session Classification: Poster session (Core-collapse supernovae, mergers and the r-process)

Track Classification: Core-collapse supernovae, mergers and the r-process