Nuclei in the Cosmos (NIC XVII)

Contribution ID: 89 Type: Poster

Direct Measurement of the 14O(α ,p)17F Cross Section

Tuesday, 19 September 2023 17:20 (5 minutes)

 $14O(\alpha,p)17F$ is one of the important reactions that strongly affects the light curves of Type I X-ray burst models [1]. The reaction rate is known to determine the break-out path from the hot CNO cycle to the rp-process at sufficiently high temperatures (T9 > 0.5) [2]. However, its large uncertainty due to the lack of experimental measurements causes difficulties in the precise demonstration of astrophysical observables.

In order to constrain the reaction rate, a direct measurement of the $14O(\alpha,p)17F$ cross section was performed at CNS RI beam separator (CRIB), RIKEN. A 14N beam with the energy of 8.40 MeV/u and H2 gas cell target were used to produce the 14O beam. As a reaction target and charged particle detector, the Texas Active Target Time Projection Chamber (TexAT) was used [3]. The detector was developed at Texas A&M University, and upgraded to TexAT_v2 at the Center for Exotic Nuclear Studies (CENS), Institute for Basic Science (IBS) to optimize the detection efficiency for the (α,p) cross section measurement. The energy and position resolution of detected charged particles from the reaction are enhanced thanks to the three-dimensional tracking of the particles. Along with segmented silicon and CsI(Tl) detectors around the field cage, the TexAT enables measuring more precise cross sections as a function of center-of-mass energy. In order to manage about 2500 channels from various detectors, the GET electronics is used with the GANIL data acquisition system [4]. Details of the experimental setup and the results of preliminary analysis of the experiment will be discussed.

References

- [1] R. H. Cyburt et al., Astrophys. J. 830, 55 (2016).
- [2] R. K. Wallace and S. E. Woosley, Astro. J. Suppl. Ser. 45, 389 (1981).
- [3] E. Koshchiy et al., Nucl. Inst. and Meth. A 957, 163398 (2020).
- [4] E. C. Pollacco et al., Nucl. Inst. and Meth. A 887, 81 (2018).

Primary authors: PARK, Chaeyeon (EWHA Womans University / CENS(IBS)); Dr AHN, Sunghoon(Tony) (Center for Exotic Nuclear Studies, Institute for Basic Science)

Co-authors: CHEN, Alan (Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada); KIM, Aram (Korea University); PSALTIS, Athanasios (Triangle Universities Nuclear Laboratory, Duke University, Durham, NC, USA); MOON, Byul (Center for Exotic Nuclear Studies, Institute for Basic Science); HONG, Byungsik (Korea University); KIM, Chanhee (Department of Physics, Sungkyunkwan University, Suwon, Republic of Korea); PARKER, Cody E (Cyclotron Institute, Texas A&M University, College Station, TX, USA); KIM, Dahee (Center for exotic nuclear studies, Institute Basic Science); BARDAYAN, Daniel W (Department of Physics & Astronomy, University of Notre Dame, Notre Dame, IN, USA); ROGACHEV, Grigory V (Cyclotron Institute, Texas A&M University, College Station, TX, USA); GU, Gyoungmo (Sungkyunkwan University); YAMAGUCHI, Hidetoshi (Center for Nuclear Study, University of Tokyo, Tokyo, Japan); LEE, Hyeji (Department of Physics, Tokyo Institute of Technology, Tokyo, Japan); HAHN, Insik (Center for Exotic Nuclear Studies, IBS); BISHOP, Jack (Cyclotron Institute, Texas A&M University, College Station, TX, USA); OKAWA, Kodai (Center for Nuclear Study, University of Tokyo, Tokyo, Japan); CHAE, Kyungyuk (Sungkyunkwan University); COGNATA, Marco La (INFN, Laboratori Nazionali del Sud, Catania, Italy); BARBUI, Marina (Cyclotron Institute, Texas A&M University, College Station, TX, USA); SASANO, Masaki (RIKEN Nishina Center, Wako, Saitama, Japan); AVILA, Melina L (Argonne National Laboratory, Argonne, IL, USA); ROOSA, Michael (Cyclotron Institute, Texas A&M University, College

Station, TX, USA); SFERRAZZA, Michele (Département de Physique, Université Libre de Bruxelles, Bruxelles, Belgium); KIM, Minju (Sungkyunkwan university); IWASA, Naohito (Department of Physics, Tohoku University, Sendai, Miyagi, Japan); NGOC DUY, Nguyen (Institute of Postgraduate Program, Van Lang University, Ho Chi Minh City, Vietnam); IMAI, Nobuaki (Center for Nuclear Study, University of Tokyo, Tokyo, Japan); KITAMURA, Noritaka (Center for Nuclear Study, University of Tokyo, Tokyo, Japan); ZHANG, Qian (Center for Nuclear Study, University of Tokyo, Tokyo, Japan); HAYAKAWA, Seiya (Center for Nuclear Study, University of Tokyo, Tokyo, Japan); DO, Seungkyung (Department of Physics, Korea University, Seoul, Republic of Korea); KUBONO, Shigeru (RIKEN Nishina Center, Wako, Saitama, Japan); KIM, Sohyun (Sungkyunkwan University); CHA, Soomi (Center for Exotic Nuclear Studies); BAE, Sunghan (Center for Exotic Nuclear Studies, Institute for Basic Science); NAKA-MURA, Takashi (Department of Physics, Tokyo Institute of Technology, Tokyo, Japan); CHILLERY, Thomas W (Center for Nuclear Study, University of Tokyo, Tokyo, Japan); KOSHCHIY, Yevgen (Cyclotron Institute, Texas A&M University, College Station, TX, USA); KIM, Yunghee (Center for Exotic Nuclear Studies, Institute for Basic Science, Daejeon, Republic of Korea)

Presenter: PARK, Chaeyeon (EWHA Womans University / CENS(IBS))

Session Classification: Poster session (Novae and X-ray bursts, Type IA supernova and the p-process)

Track Classification: Novae and X-ray bursts