Quantum Computing for High Energy Collider

Myeonghun Park

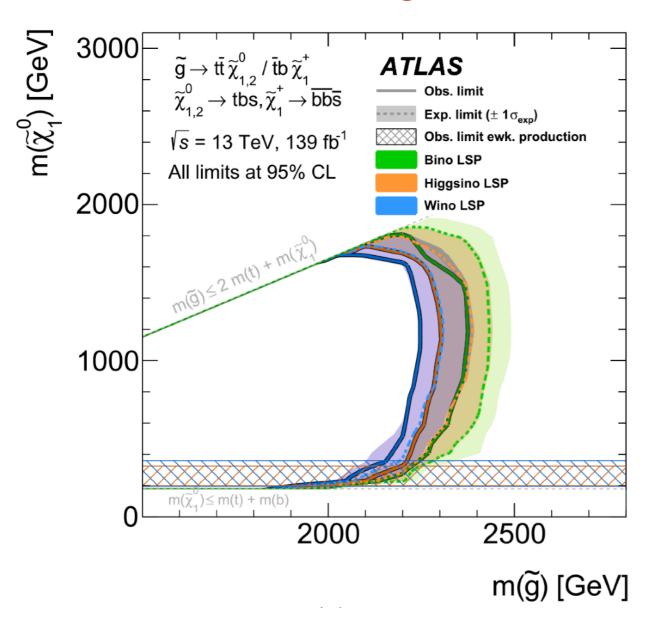
based on arXiv:2111.07806 with Minho Kim, Pyungwon Ko, Jae-hyeon Park

and arXiv:HOPE.SOON by MP, Ahmed, +

IBS-PNU Workshop 2022

Thanks to the LHC

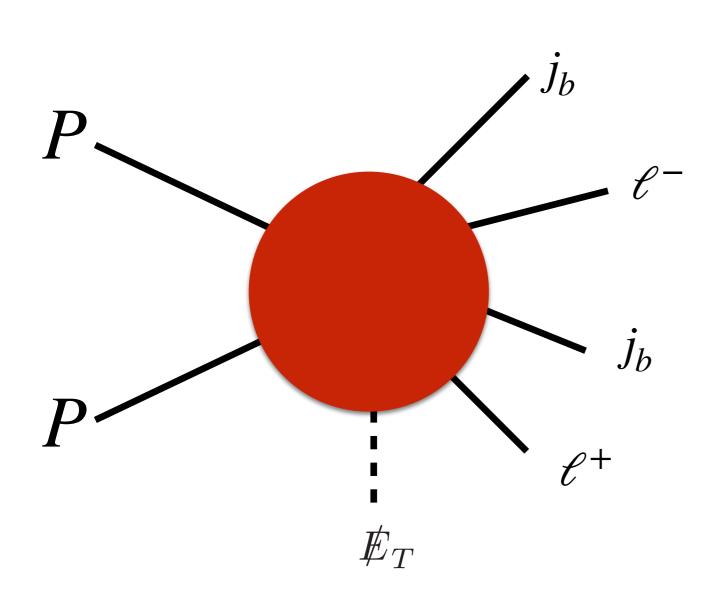
The old king is dead!!?

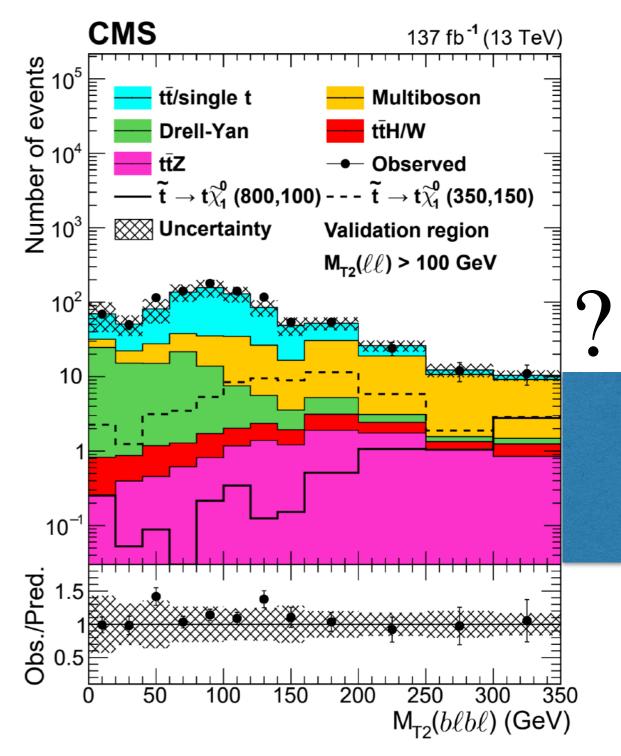


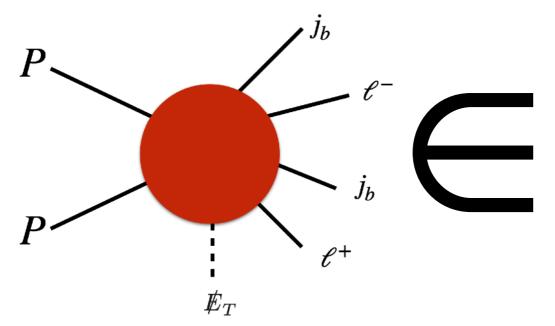
Hunt for new physics afterwards "Bottom-up approach"

- 1. Anomaly detection (different from SM expectations)
 - Need to have precise tools (importance of Monte Carlo Tools)
 - Modern Machine Learning is focusing on!
- 2. Try to interpret a new signal with **various** model assumptions or **Model-independent way**
 - 1) Find out a relevant **event-topology** (how observed particles are produced) (feynman diagram without specific spin assignment.)
 - 2) Determine parameters (spin, mass) with various methods
 Current (mass, spin) measurement methods are based on a specific event-topology.
- 3. With "observed feynman-diagram", we can fit it to a relevant BSM model(s)

Example: anomaly



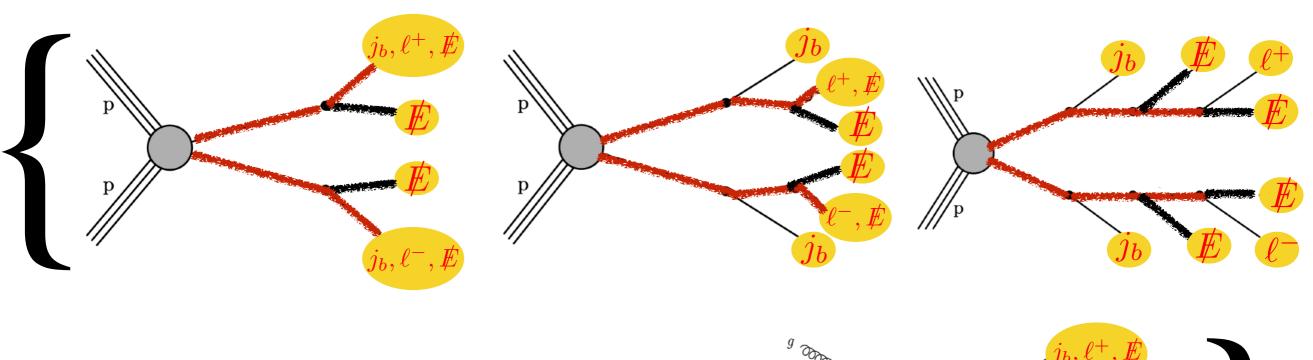


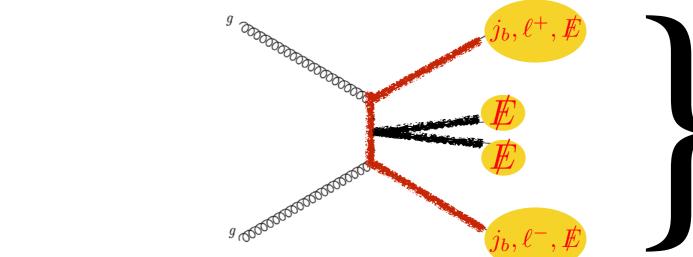


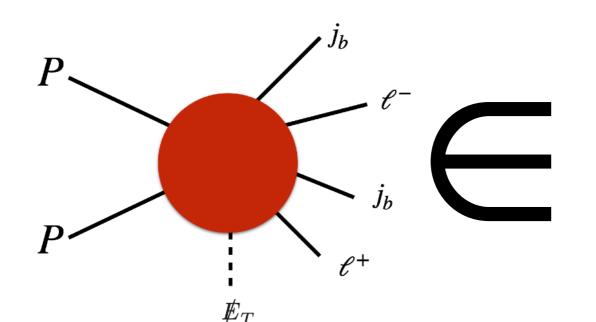
{Various event-topologies}

Red: Decaying particle

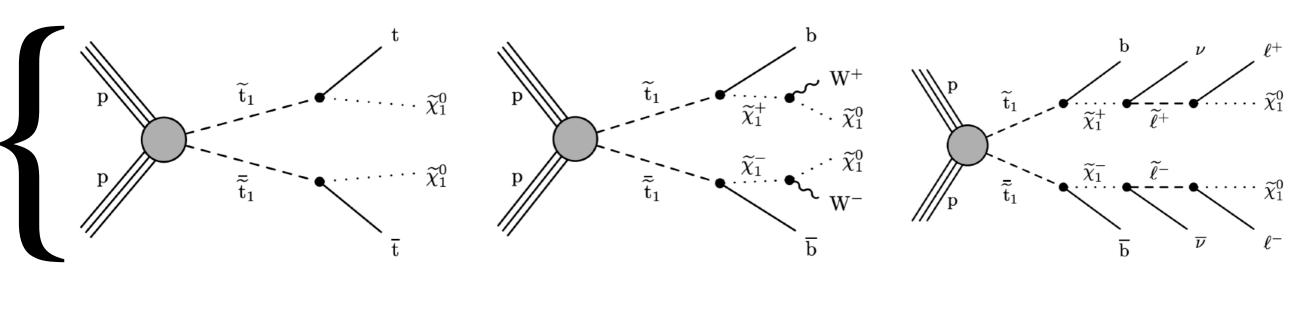
Black: stable particle

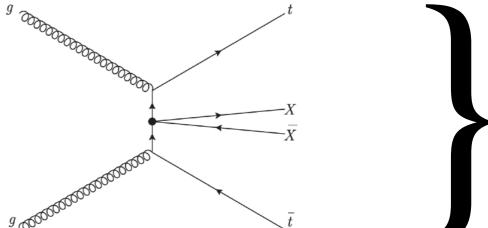






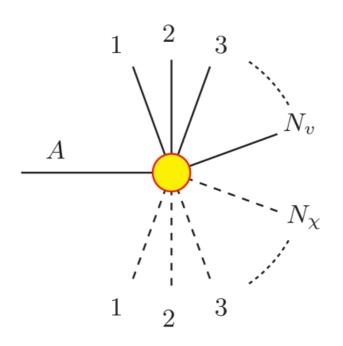
Most of event-toplogies are based on (previously) favored models





NP-hard

- Identifying an event-topology is a "combinatorial problem".
 - One needs to assign observed particles into the decay of some particle.

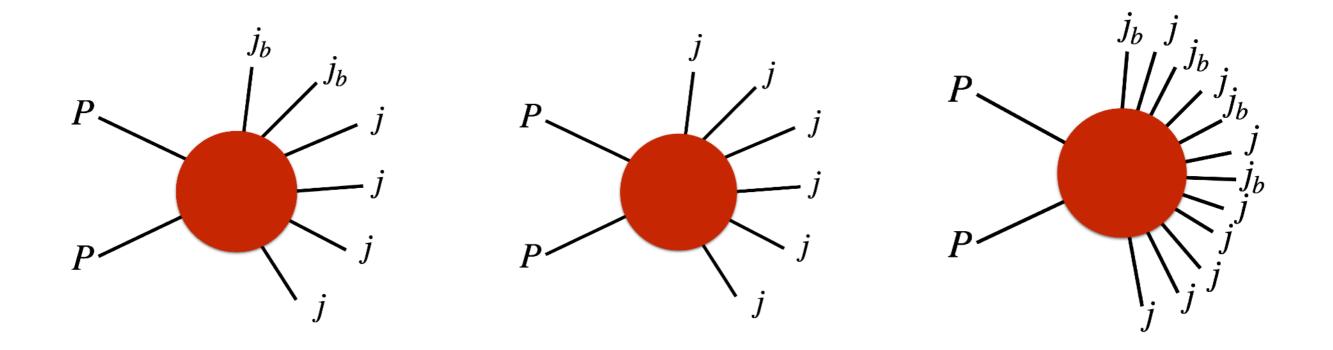


	N_χ						
$\overline{N_v}$	1	2	3	4	5		
1	1	2	4	8	16		
2	2	7	20	55	142		
3	4	20	78	270	860		
4	8	55	270	1138	4294		

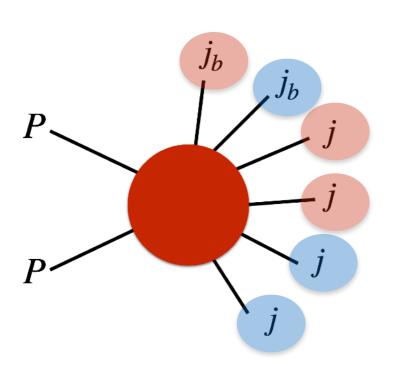
even though we restricted "resonance" (A) scenario, there are $\mathcal{O}(6000)$ event-topologies.

- Considering "missing energy (invisible particles)" are rather difficult due to "undetermined" number of invisible particles.
 - From now on, I will focus on reconstructible events (no MET)

Our examples (multi-jets)



- 1. Under the a simple assumption: $pp \to X, Y \to \{j_x\} \cup \{j_y\}$ (No prejudices on X and Y)
- 2. Find a right **combination** to reconstruct X and Y particles.

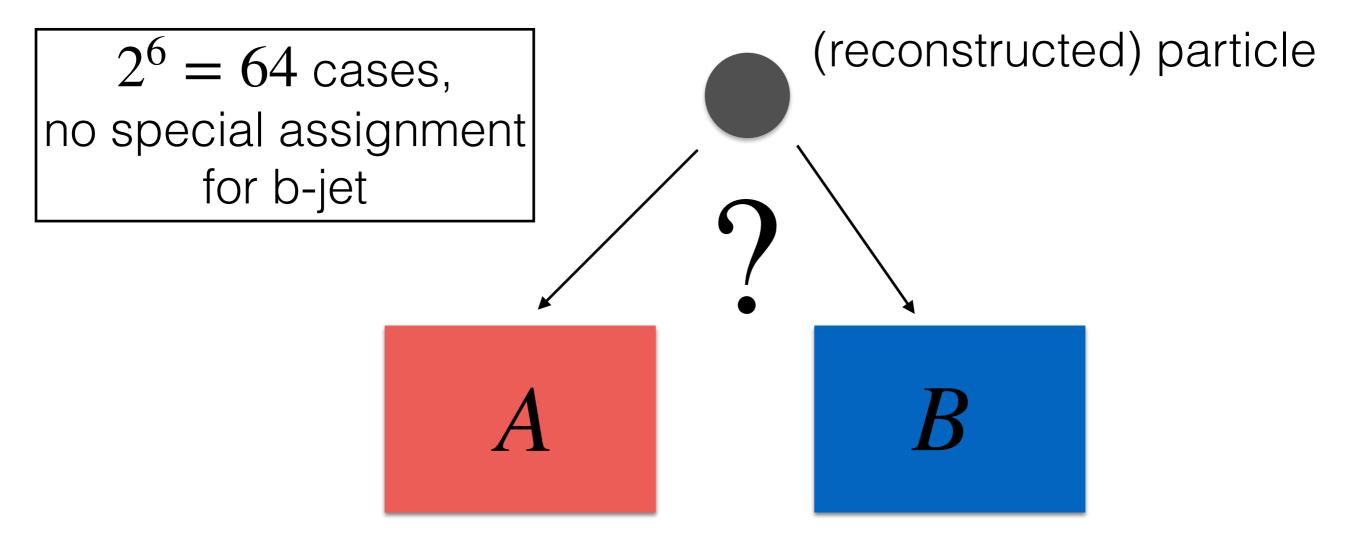


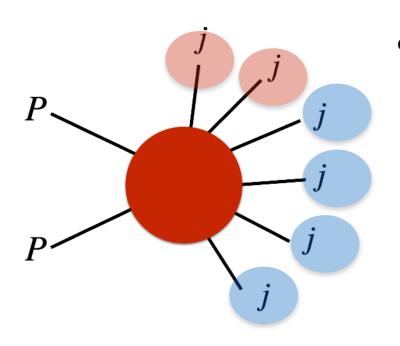
Standard example of six jets

$$pp \rightarrow t\bar{t} \rightarrow \{j_b, (W \rightarrow jj)\} \cup \{j_b, (W \rightarrow jj)\}$$

(when A and B have same mass)

• Right answer is $(n_A, n_B) = (3,3)$

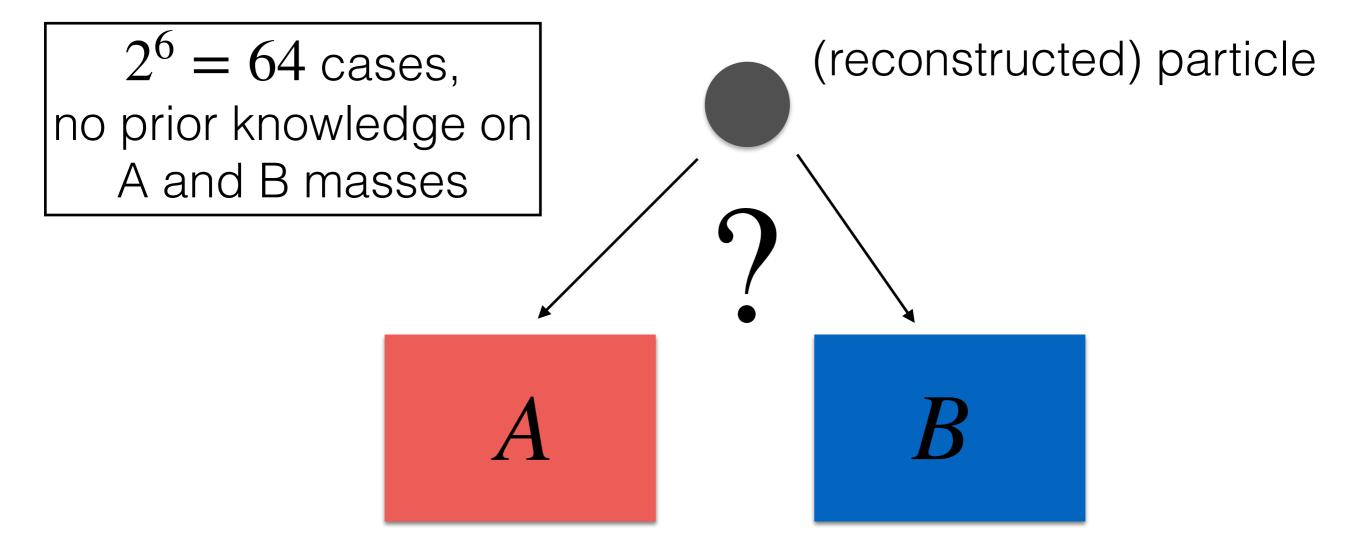


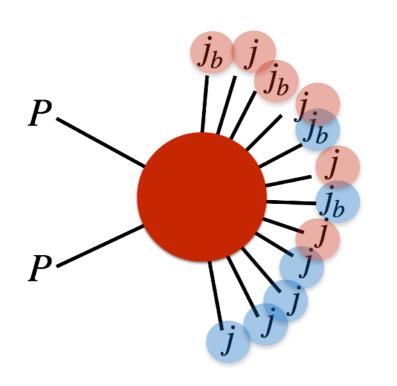


Different mother particles

$$pp \to ZH \to \{j,j\} \cup \{(W \to jj), (W^* \to jj)\}$$

• Right answer is $(n_A, n_B) = (2,4)$



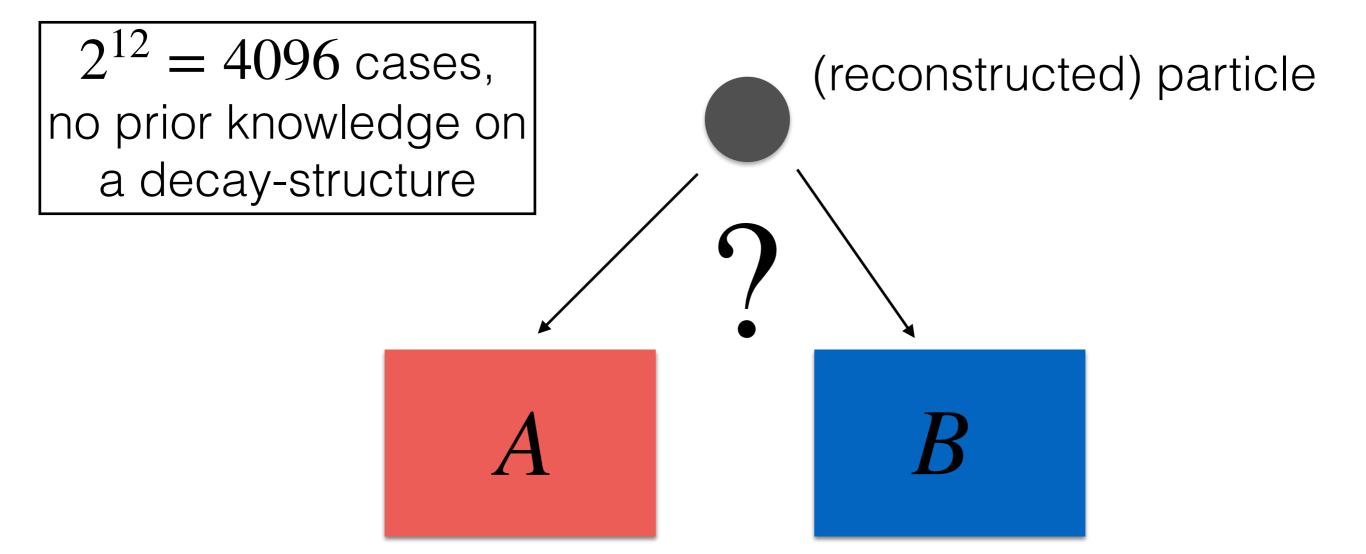


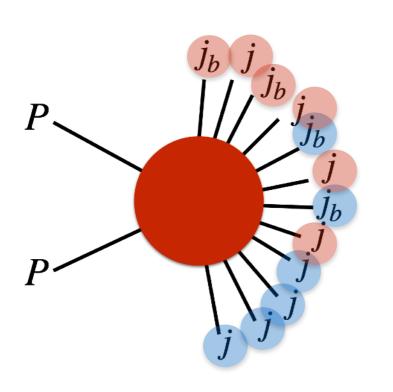
Complicate situation (12 jets)

$$pp \to o\tilde{o} \to \{t, \bar{t}\} \cup \{t, \bar{t}\}$$

$$o \to t\bar{t} \to \{j_b, (W \to jj)\} \cup \{j_b, (W \to jj)\}$$

$$\tilde{o} \to t\bar{t} \to \{j_b, (W \to jj)\} \cup \{j_b, (W \to jj)\}$$



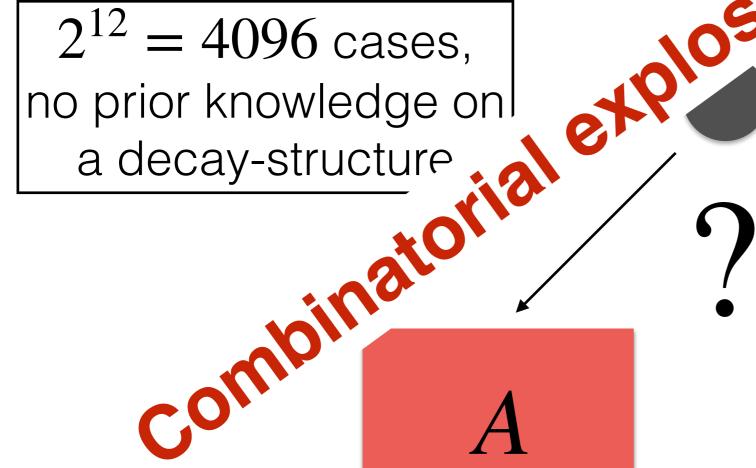


Complicate situation (12 jets)

$$pp \to o\tilde{o} \to \{t, \bar{t}\} \cup \{t, \bar{t}\}$$

$$o \to t\bar{t} \to \{j_b, (W \to jj)\} \quad (W \to jj)\}$$

$$\tilde{o} \to t\bar{t} \to \{j_b, (W \to jj)\}$$



(reconstructed) particle

An algorithm?

- With the only assumption of $2 \rightarrow (2 \rightarrow n)$ process
 - No special treatment on any flavor-tagged particle
 - No assumption on masses, M_A and M_B
 - No assumption on any decaying structure
- What could be a good guide line?
 - BTW, have been any works on this subject?

A Classic algorithm

- Hemisphere method: a seed-based method
- Divide multi-jets into two categories, (e.g. $pp o ilde{g}, ilde{g}$)

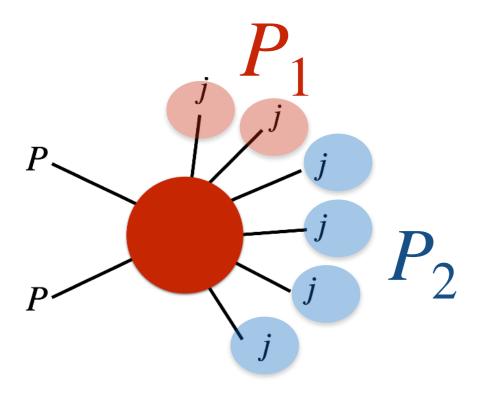
A particle with highest p_T

A particle with largest $p\Delta R$ with a seed

With a proper metric d, decide which hemisphere it belongs

CMS hemisphere TDR,

Non-geometric algorithm



• $2 \to 2$ process: $\{p_i\} \to P_1 \cup P_2$ Using a binary operation $x_i \in \{0,1\}$

 $P_2 \quad \text{For } p_i \text{ to be either} \\ \text{in } P_1 (x_i = 1) \text{ or in } P_2 (x_i = 0)$

$$P_1 = \sum_{i} p_i x_i$$
, $P_2 = \sum_{i} p_i (1 - x_i)$

$$H = (P_1^2 - P_2^2)^2 = (M_A^2 - M_B^2)^2$$

• Try to **minimize** the mass difference $H = (M_A^2 - M_B^2)^2$

How can we deal with the case of $M_A \neq M_B$?

- $M_A \neq M_B$ case can come from
 - 1) Different particle, namely $A \neq B$ (e.g. $pp \rightarrow HZ$)
 - 2) Non-negligible width of A and B
 - 3) Non-negligible smearing effects (mostly from jet) (e.g. $pp \rightarrow \tilde{o}\tilde{o} \rightarrow 12j$)
- We can apply ML regularization method (penalty term)

$$H = (P_1^2 - P_2^2)^2 \to (P_1^2 - P_2^2)^2 + \lambda(P_1^2 + P_2^2)$$

Calculate this "energy function" through all combinatorics!

Minimization using Ising model

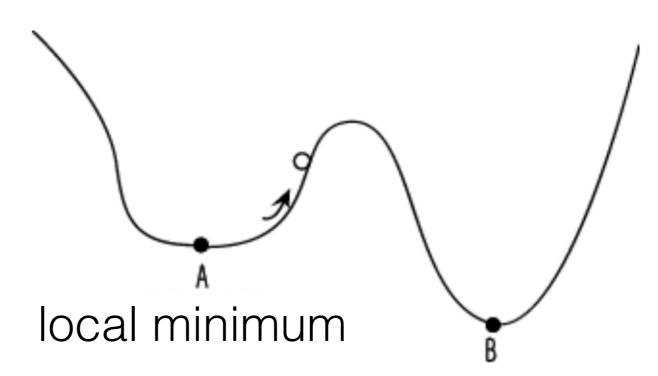
. If we replace $x_i \in \{1,0\} \to \frac{1+s_i}{2}$ with $s_i \in \{+1,-1\}$

$$H = (P_1^2 - P_2^2)^2 \to H + \lambda (P_1^2 + P_2^2)$$

$$= \sum_{i,j} \left(C_{ij} + 2\lambda S_{ij} \right) s_i s_j + \sum_i \left(J_i - 2\lambda \sum_j S_{ij} \right) s_i$$

here C_{ij} and S_{ij} are functions of four-vectors.

"Classic" minimization method (for Ising hamiltonian)



Simulated annealing

global minimum

- Go to the next spin state $s_n \to s_{n+1}$ 1) If $E_n > E_{n+1}$: go to the lower energy
 - 2) If $E_n < E_{n+1}$, go with a probability of $e^{-\frac{E_{n+1}-E_n}{k_BT}}$ to **jump out**

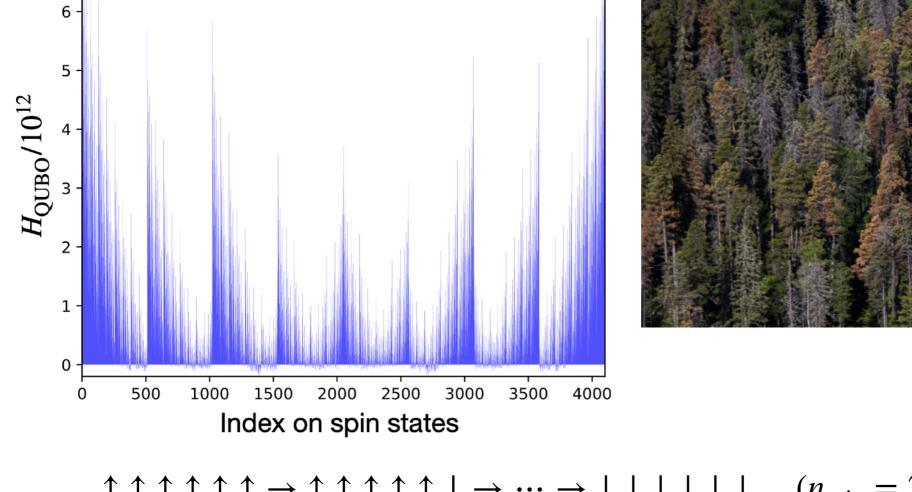
(With large T, SA can jump out local minimum. Gradually we decrease T)

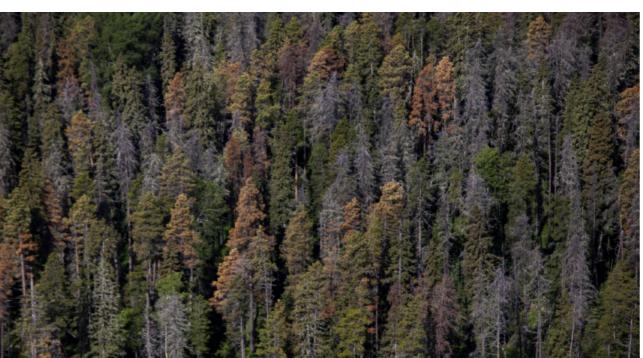
But our "mindless"

=minimally assumed Collider example is not so easy
for a classical algorithm to minimize

Combinatorial complexity arises (in a random Ising model)

Landscape of energy distribution





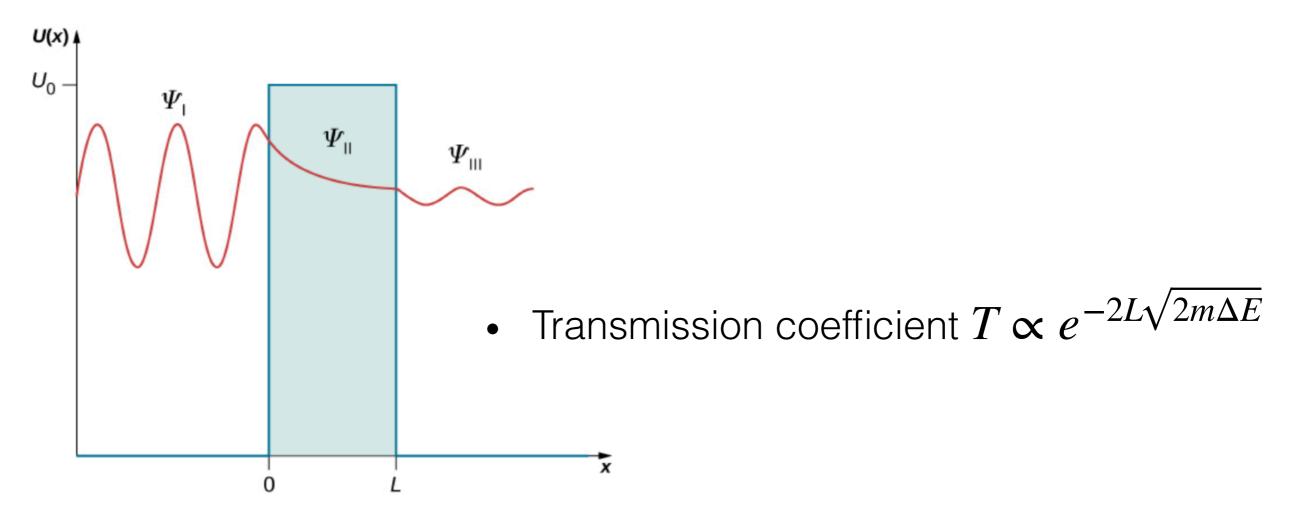
$$\uparrow \uparrow \downarrow \rightarrow \cdots \rightarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \qquad (n_{\text{spin}} = 2^{12} = 4096)$$

Simulated Annealing cannot jump this random potential!

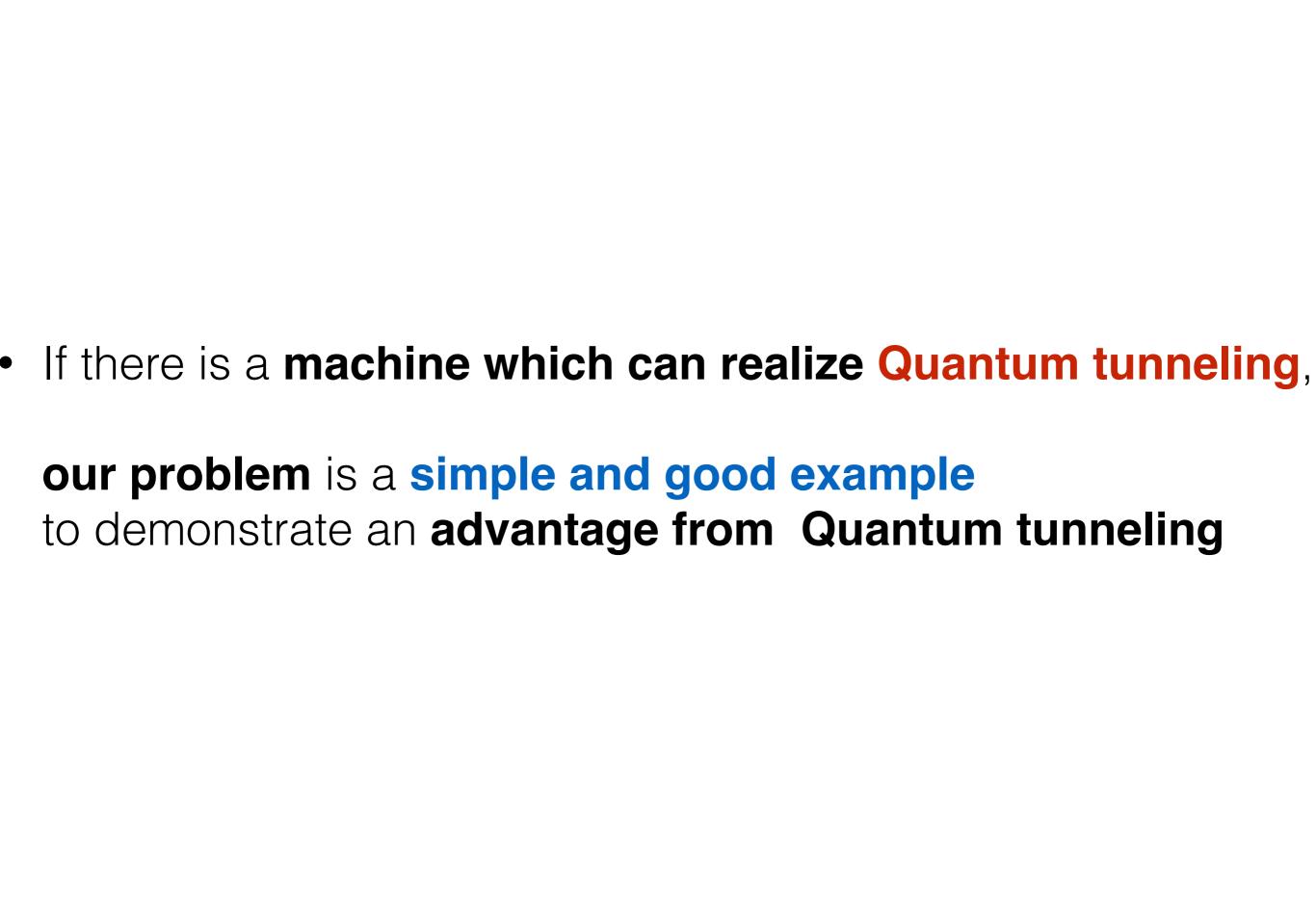
Any solution?

The Quantum thing...

In the undergraduate QM lecture, we learned / teach



- 1) The effect of energy difference ΔE becomes mild
- 2) Effective for shallow barrier L!

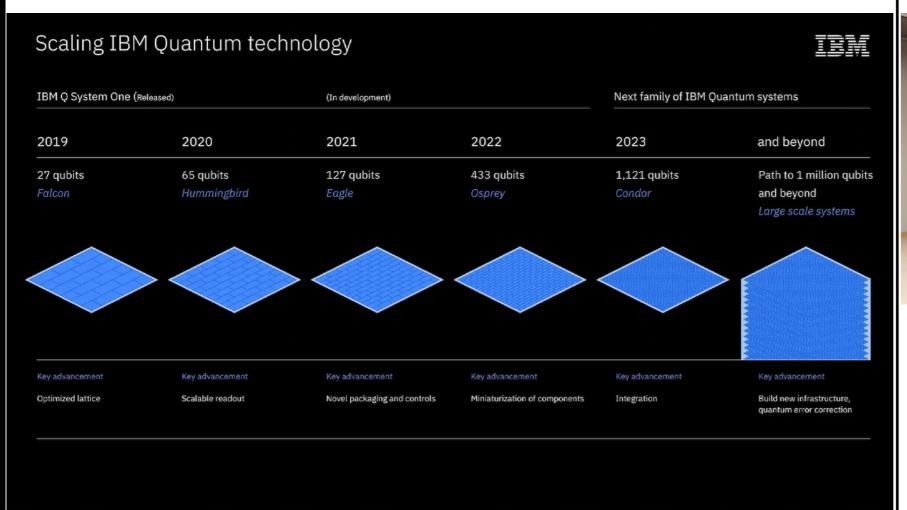


Quantum Computer

• Gate type: IBM just announced **433 qubit** QPU. (using entanglement, superposition)

Quantum annealer: over 5000 qubits (Here)

currently 433 Qubits (IBM Osprey)



Quantum Annealer

Temperature: below 1.5×10^{-2} K

dimension: $3m \times 2.1m \times 3m$

Weight: 3800kg

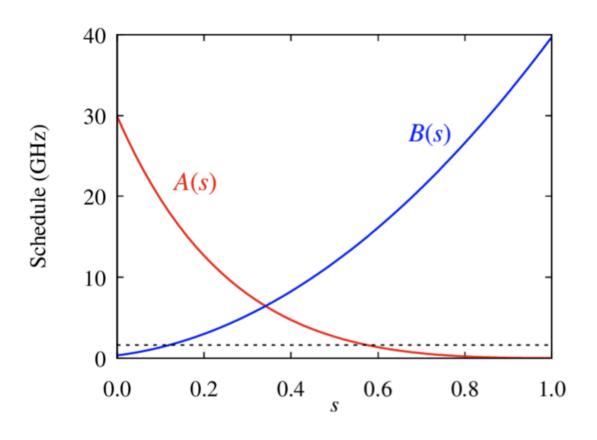
Power: (max) 25kW

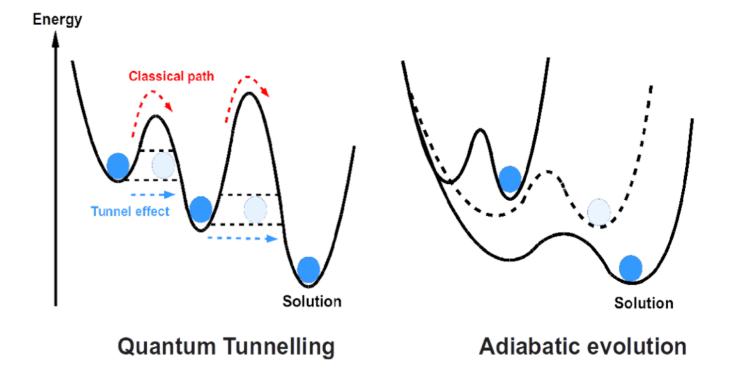
Quantum Annealing method

• With H_0 , one can "mimic" the High Temperature in SA. (disorder spin state, linear combination of all states)

$$H_{\mathrm{QA}} = A(s)\,H_0 + B(s)\,H_{\mathrm{QUBO}} \quad \text{with } H_0 = \sum \sigma_i^x \text{ and } H_{\mathrm{QUBO}} = \sum J_{ij}\sigma_i^z\sigma_j^z + \sum h_i\sigma_i^z$$

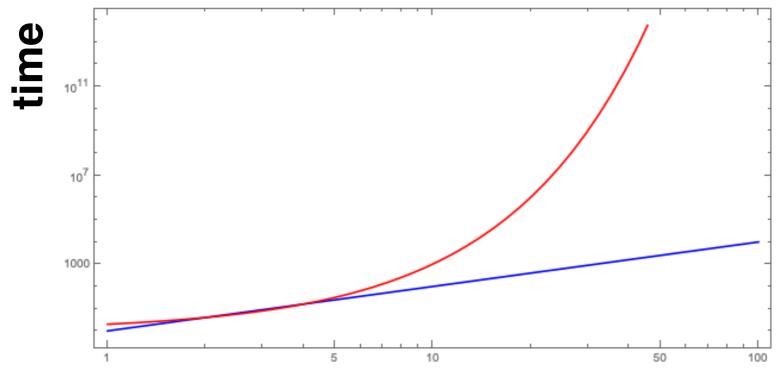
(T. Kadowaki and H. Nishimori, Quantum annealing in the transverse Ising model, 1998)





(small) Quantum advantage

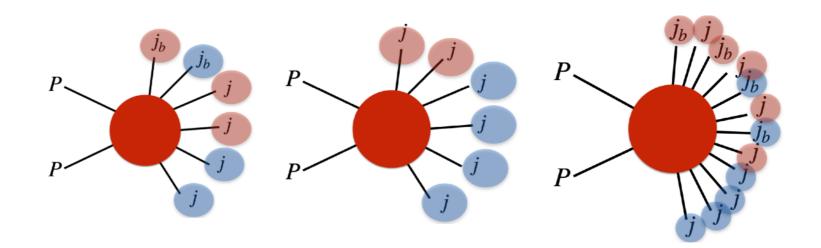
• QA v.s. Brute-force scanning: The required time (mostly preparation time $T_{\rm QUBO}$) of QA machine: $T_{\rm QUBO} = \mathcal{O}(n^2)$ The complete scanning with n input takes $\mathcal{O}(2^n)$



number of particles

(big) Quantum advantage

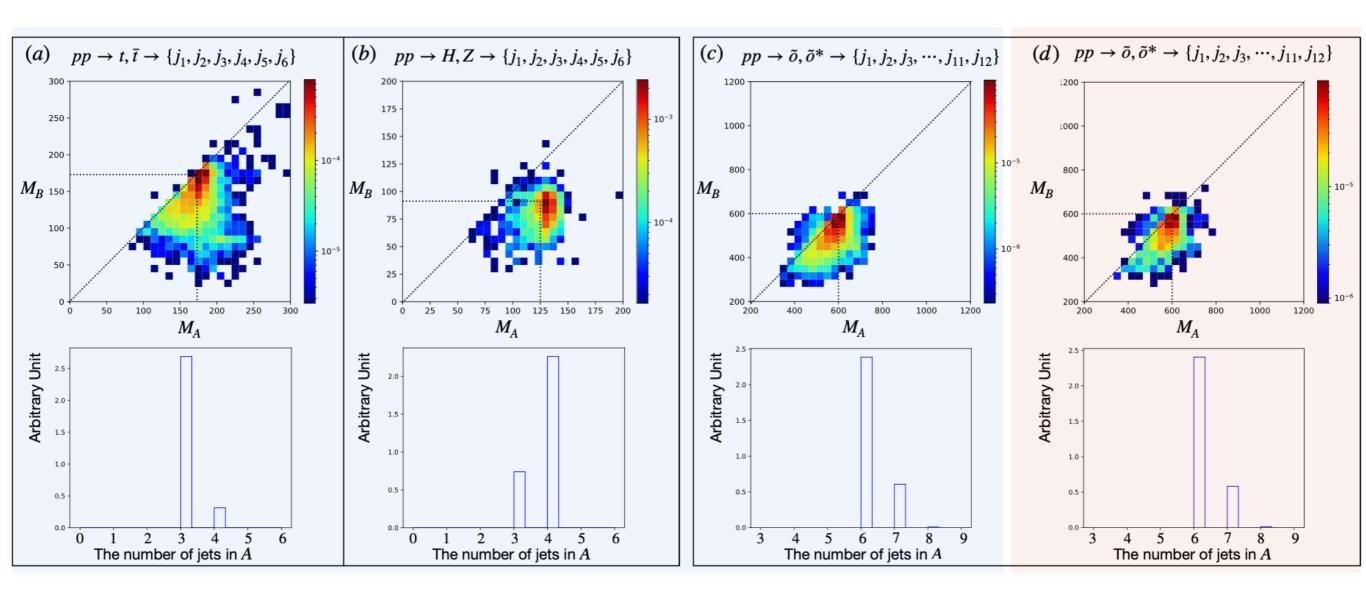
QA v.s. SA



Pranage	$pp ightarrow t\bar{t}$ (2 $ ightarrow$ 6)	$pp \rightarrow HZ$ $(2 \rightarrow 6)$	$pp \rightarrow \tilde{o}\tilde{o}^*$ (2 \rightarrow 12)
Quantum annealing	100%	100%	74.3%
Simulated annealing	36.7%	45.7%	1%

Percentage to get a **global minimum energy state** (**does not guarantee** a true combinatorial assignment)

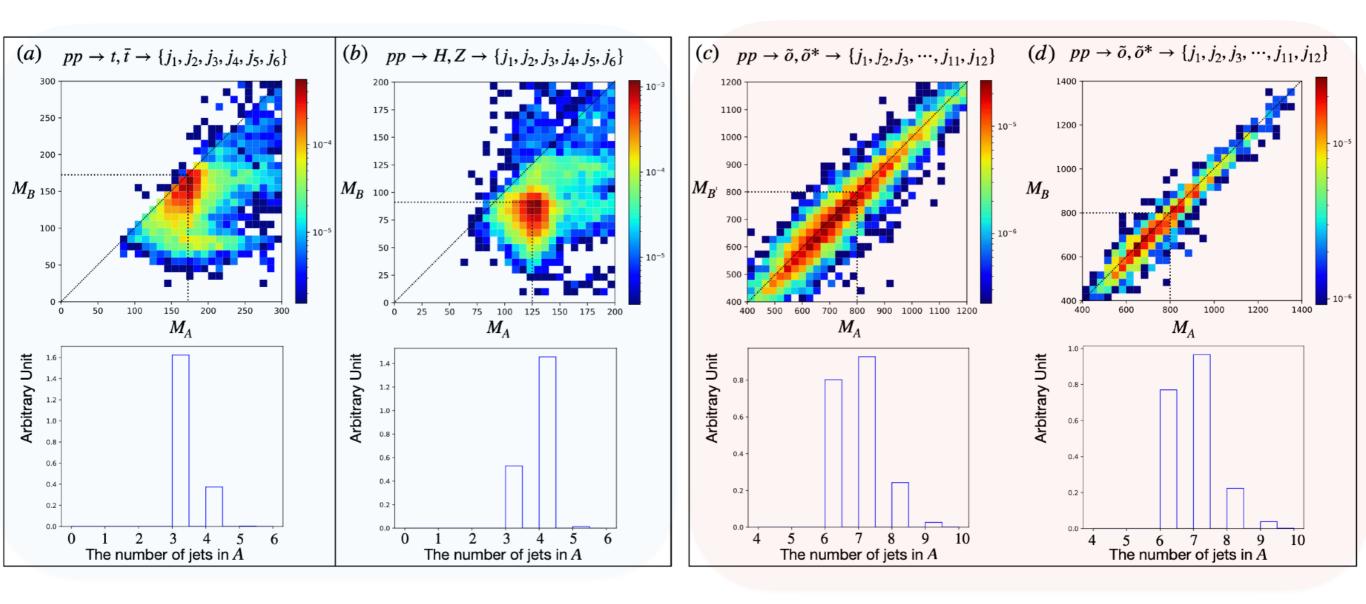
results



Madgraph → Pythia (ISR/FSR/MPI turned off) → Fast Detector

* a to c: brute force scanning for $H_{\rm QUBO}$ to check the fidelity of our algorithm For d, we use D-Wave computer (expensive...)

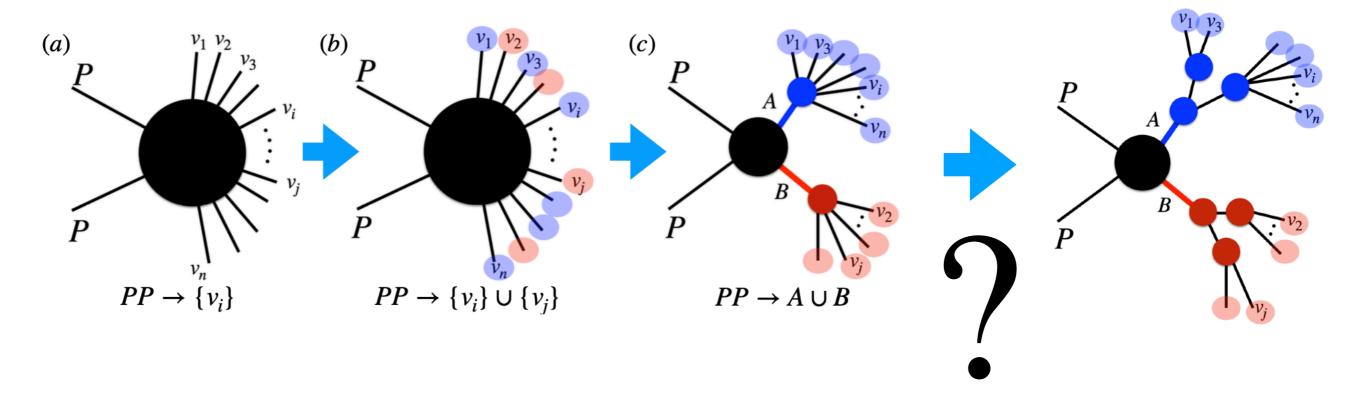
results



Madgraph → Pythia (ISR/FSR/MPI turned ON) → Fast Detector

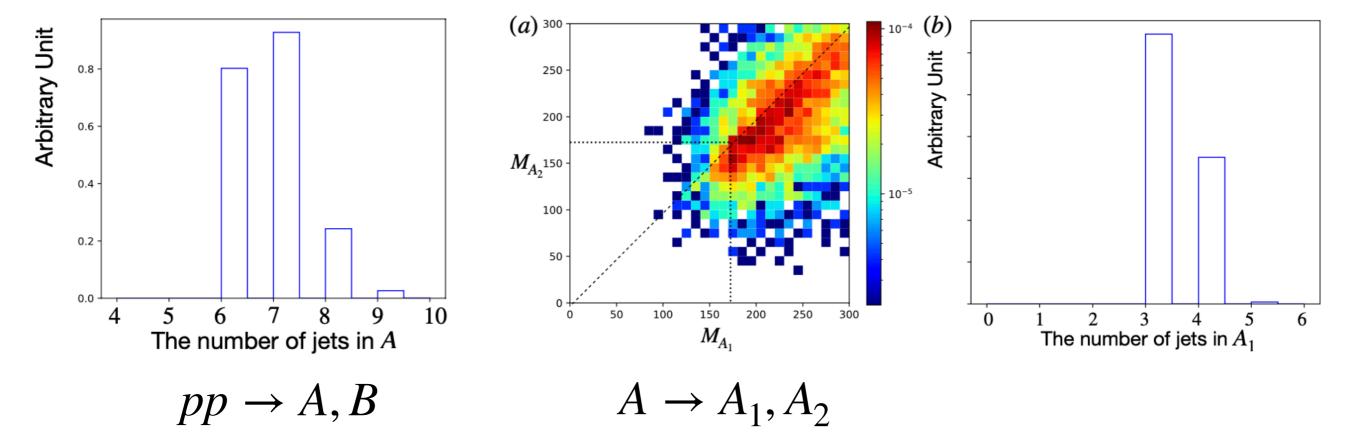
(As we give a priority to hardest jets, effect of hard ISR is emerging in the high energy scale, here $2m_{\tilde{o}} = 1.2 \text{TeV}$)

Sequential algorithm



$$H_{ ext{QUBO}}^{(A)} = \sum_{ij=1}^{\ell} J_{ij}^{\prime \alpha} s_i^{\alpha} s_j^{\alpha} + \sum_{i=1}^{\ell} h_i^{\prime \alpha} s_i^{\alpha},$$
 $H_{ ext{QUBO}}^{(B)} = \sum_{ij=1}^{m} J_{ij}^{\prime \beta} s_i^{\beta} s_j^{\beta} + \sum_{i=1}^{m} h_i^{\prime \beta} s_i^{\beta},$

For 12 hard-jets production, it would be worthy if we can check whether this is four-tops events or not!



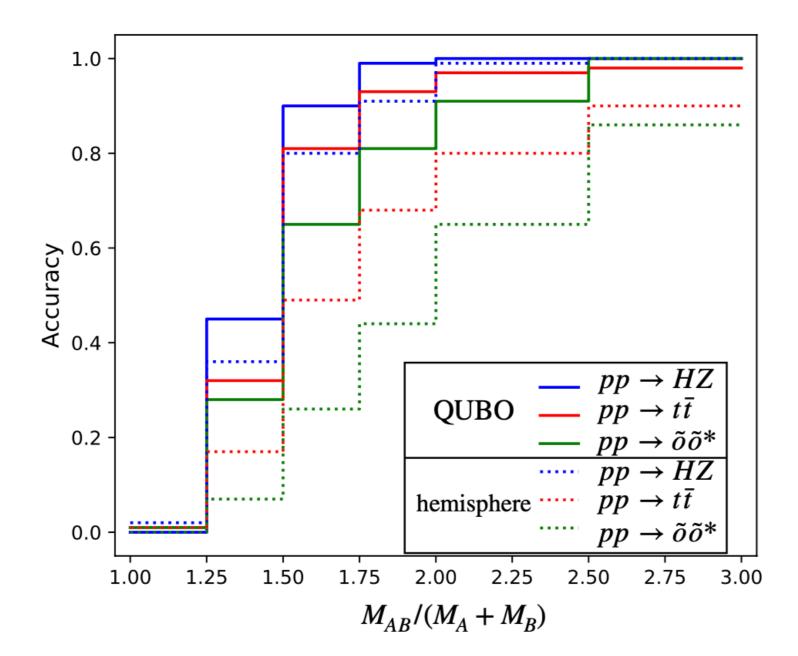
• We can "guess" that $A_i=t(\bar{t})$ as their **mass** and **number** of children are identical to the case of a top-quark.

Bench mark?

- There are not many studies on identifying event-topology.
 (as far as I have searched... if I missed, plz let me know)
- Hemisphere method: seed-based algorithm (our algorithm is seedless one)

Pro	νιδος		pp o HZ Eq. (7b)	$egin{array}{c} pp ightarrow ilde{o} ilde{o}^* \ ext{Eq.} \ (extbf{7c}) \ \end{array}$
Algorithm	QUBO	47.3%	89.5%	15.1%
Aigoriumi	Hemisphere	33.6%	86.2%	5.84%

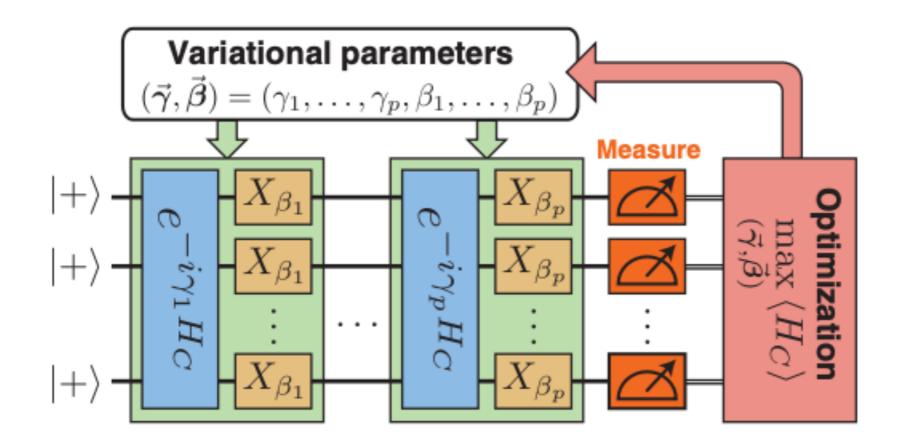
(Parton-level analysis with detector cuts)



- Performance of an algorithm based on "seed" becomes weak when particles are not boosted enough to develop structures.
- Lorentz boost factor $\gamma_A = \frac{E_A}{M_A} = \frac{M_{AB}}{2M_A}$ (for A=B case)

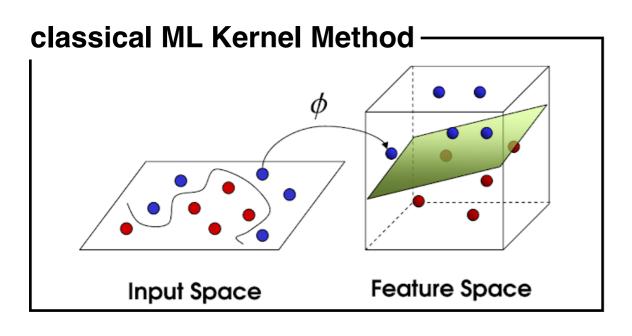
Next step

- I presented a simple quantum annealing method for clustering reconstructed particles.
- Gate-based QC can be used via a variational algorithm.
- We are applying Gate-based QC to this clustering problem.



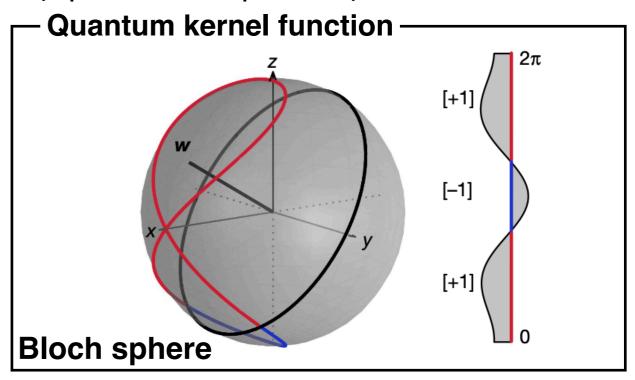
Good part of Gate-Quantum Computing

At the early stage of Machine Learning



 Kernel method can help to separate "non-linearly" distributed inputs linearly!

- N qubits have 2^N data space (qubit = spinor)
- 1) Mapping input data to an exponentially large Quantum Hilbert Space.
- 2) Big memory computing



Conclusion

- As a desperate seeker, we have tried to take advantages of new computing methods, ML, QC, QML.
- In this talk, I presented a **bottom-up** collider algorithm to identify a new physics from a signal (if we can have)
- There could be many examples to demonstrate
 Quantum Supremacy in the field of HEP.
- Stay tuned...

Back up

Effect of additional constraints

$$H = (P_1^2 - P_2^2)^2 \to H + \lambda (P_1^2 + P_2^2)$$

• For different mother particle cases: pp o HZ

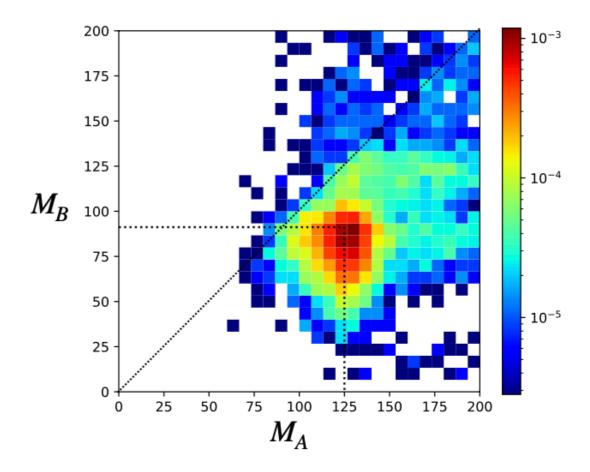
$$H = (P_1^2 - P_2^2)^2$$

$$M_B = (P_1^2 - P_2^2)^2$$

$$M_B = (P_1^2 - P_2^2)^2$$

$$M_A = (P_1^2 - P_2^2)^2$$

$$H \rightarrow H + \lambda \left(P_1^2 + P_2^2 \right)$$

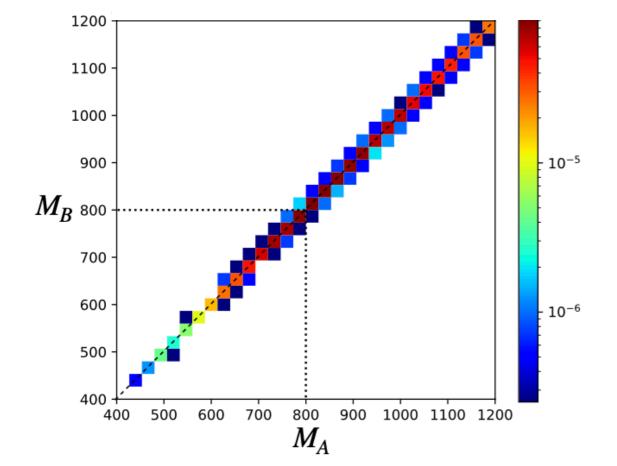


Effect of additional constraints

$$H = (P_1^2 - P_2^2)^2 \to H + \lambda (P_1^2 + P_2^2)$$

• Check smearing effects : $pp o \tilde{o} \tilde{o} o t \bar{t} t \bar{t}$

$$H = \left(P_1^2 - P_2^2\right)^2$$



$$H \rightarrow H + \lambda \left(P_1^2 + P_2^2 \right)$$

