Perspectives on understanding the substructure of multiquark hadrons in lattice QCD

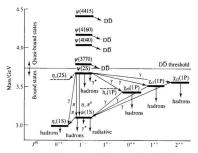
Anthony Francis

Special thanks go to B. Colqhoun, P. de Forcrand, R. J. Hudspith, R. Lewis and K. Maltman

IBS-PNU Joint Workshop on Particle Physics and Cosmology 부산 (Busan), South Korea, 09.12.2022

based on: [2203.16583][2203.03230]

JHEP 05 (2022) 062 [2106.09080]

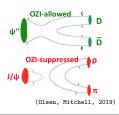

Phys.Rev.D 102 (2020) 114506 [2006.14294]

Phys.Rev.D 99 (2019) 5, 054505 [1810.10550]

Phys.Rev.Lett. 118 (2017) 14, 142001 [1607.05214]

Heavy spectrum pre *B***-factories** - A success story

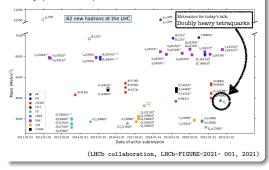
Charmonium before B-factories



V(r)

1980 - 2002 : no new charmonium states

Before the advent of *B*-factories the study of heavy particles, in particular charmonia, can be seen as success story:


- o predicted and measured masses agree
- o potential model works well
- o OZI-rule applies, no exceptions

Heavy spectrum today - a situational overview

Many new heavy hadrons observed, e.g. 62 at LHCb (\sim 12 tetra-/pentaquarks)

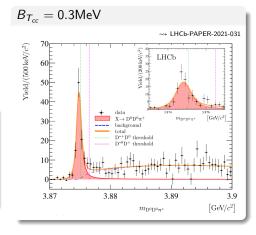
- ∘ In 2003: $X(3872) \rightsquigarrow c\bar{c}d\bar{u}$ discovered at Belle
- o 4-/5-quark states **not expected** in quark models.
- o Many predicted quark model states not found.

... many not explained in theory

building blocks
$q_{(i,c)}, \ \overline{q}_{(i,c)}$
$[qq]_{(i,j,c)} \& q/\bar{q}$
$[qq\bar{q}]_{(i,j,k,c)} \& q/\bar{q}$
$[Q\bar{Q}]_{(i,j)},[q\bar{q}]_{(i,j)},$
$[qqq]_{(i,j,k)}$
$[Q\bar{q}]_{(i,j)},\ [qar{Q}]_{(i,j)},$
$[qqQ]_{(i,j,k)}, \dots$

In the following:

- o Goal: Non-perturbative insights into exotic hadrons in full QCD
- o · · ·


A new family of tetraquarks? - observation of T_{cc}^+ at LHCb

Narrow state observed in $D^0D^0\pi^+$

- o Fitted to P-wave BW
- $\circ \ \delta \textit{m} = -273 \pm 61 \pm 5^{+11}_{-14} \textit{keV}/\textit{c}^2$ below D^0D^{*+} threshold
- $\circ \ \Gamma = 410 \pm 165 \pm 43^{+18}_{-38} \, keV$

consistent with $cc\bar{u}\bar{d}$ tetraquark

- o Possible family of states: $bc\bar{u}\bar{d}$, $bb\bar{u}\bar{d}$, $bb\bar{\ell}\bar{s}$,
- QN: $I(J^P) = 0(1^+)$
- Recent discussion in theory, both in pheno and lattice
 - → predictions, binding mechanism

In the following:

- o Goal: Non-perturbative insights into exotic hadrons in full QCD
- o Doubly heavy tetraquarks as new QCD states and diquarks as effective d.o.f's in QCD

Diquarks - (possible) attractive building blocks for ordinary and exotic hadrons

Diquarks - an attractive concept

"The concept of diquarks is almost as old as the quark model, and actually predates QCD [1]" ightharpoonup arXiv:2203.16583; [1] PR 155, 1601 (1967)

- Successful for low-lying baryons and exotic hadrons.
 - \circ Well founded in QCD with many predictions.
 - \circ But, experimental evidence has been elusive.
- Light diquarks:
 - o special "good" $(\bar{3}_F, \bar{3}_c, J^P = 0^+)$ configuration
 - o quarks on "good" diquarks attract each other
 - $\circ\,$ large mass splitting in good, bad and not-even-bad
 - o non-vanishing size or compact?
- ullet HQSS-limit: A diquark acts as an antiquark $[QQ] \leftrightarrow ar{Q}$.

 \leadsto currently one motivation for T_{QQ} -type hadrons, next slide

3 types of diquark:

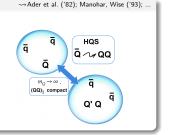
good, bad and not-even bad

Diquark operator:

$$D_{\Gamma} = q^{c} C \Gamma q'$$

$$\Rightarrow c, C = \text{charge conjugation}$$

$$\Rightarrow \Gamma \text{ acts on Dirac space}$$

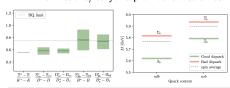

J^P	С	F	Ор: Г
0+	3	3	$\gamma_5, \gamma_0\gamma_5$
1+	3	6	γ_i , σ_{i0}
$^{0-}$	3	6	1 , γ_0

The case for doubly heavy tetraquarks - Diquarks and $qq'\bar{Q}\bar{Q}'$

Revisit ideas for stable multiquarks based on diquarks

- o Effective q q interaction in "good" diquarks
- \circ HQS $(Q \sim b)$ relates $[\bar{Q}\bar{Q}]_3 \leftrightarrow Q$
- $\circ \ [ar{Q}ar{Q}]_3^{m_Q o\infty}$ becomes compact
- o Combine (HH)+(II) diquarks into tetraquarks:

$$oxed{\{qq'\}[ar Qar Q']=(qC\gamma_5q')(ar QC\gamma_iar Q'):=T_{QQ'}}$$



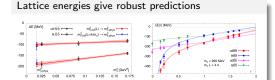
Model expectations:

- Wave-fct, prefer $J^P(T_{QQ'}) = 1^+$
- ∘ HQS, prefer $\bar{b}\bar{b}$ ⇒ heavier $[\bar{Q}\bar{Q}']$ more binding
- o Diquark, prefer $\{ud\}$ type \Rightarrow lighter $\{qq'\}$ more binding

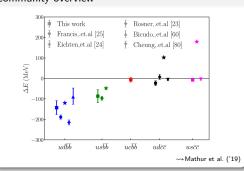
Binding opportunity in model

o PDG mesons/baryons provide constraints

Doubly heavy tetraquarks - deeply bound $J^P=1^+$ T_{bb} and $T_{bb}^{\ell s}$


HQ spin symmetry - good diquark (HQS-GDQ) picture predictions:

- $\circ \ \mathit{J^P} = 1^+ \ \mathit{ground state} \\ \ \mathsf{tetraquark}$
- o Deeper binding with:
 - \rightarrow heavier Q in $[\bar{Q}'\bar{Q}]$
 - \rightarrow lighter q in $\{qq'\}$


All observed on the Lattice!

 $bb\bar{q}\bar{q}'$ are a focal point \rightarrow All efforts observe deeply bound $bb\bar{u}\bar{d}$

- · Junnarkar, Mathur, Padmanath ('18)
- · Leskovec, Meinel, Plaumer, Wagner ('19)
- · HadronSpectrum Coll. ('17)
- · Mohanta, Basak ('20)
- · Colquhoun, AF, Hudspith, Lewis, Maltman ('17, '18, '20)

Community overview

~ AF et al. ('17, '18'

Tetraquarks on the lattice

 $qq'\bar{Q}'\bar{Q}$ ground state tetraquarks? Do they exist in QCD? What would their binding mechanism/properties be?

Goal: Test HQS-GDQ picture predictions

- ullet Calculate $\Delta E = E_{ ext{tetra}} E_{ ext{meson-meson}}$ e.g. in $bbar{u}ar{d}$, $bbar{\ell}ar{s}$
- ullet Perform survey in m_{quark} , flavor, quantum number, ...
- Verify, quantify predictions of binding mechanism

2 main lattice approaches followed

1. Based on potential

 $\begin{array}{l} \bullet \;\; {\sf Static\; quarks} \; (m_Q = \infty) \\ \hline {\sf Ansatz \;\; and \;\; {\sf Schr\"{o}dinger}} \;\; {\sf equation} \\ {\sf to\; predict\; energies} \end{array}$

 $\leadsto bb\bar{u}\bar{d}$, Bicudo et al. ('17,'19)

 HAL QCD method Lattice potentials used to determine scattering properties

→HAL QCD ('16,'18)

2. Based on spectrum

Finite volume energy levels
 Lattice energies equated to (un)observed states.

```
\leadstoAF et al. ('17,'18, '20), Hughes et al. ('17), 
Junnarkar et al. ('18), Leskovec et al. ('19), Mohanta et al. ('20)
```

Scattering analysis
 Lattice energies converted to scattering phase shifts

→HadSpec ('18,'20)

Spectrum based methods a more direct and systematics are easier to control.

Lattice tetraquarks - 3+1 step recipe

The main tool is to adopt a variational approach

Lattice GEVP gives access to finite volume energy states (masses, overlaps).

Beware: Operator overlaps do not necessarily connect to the naively expected structures. Be careful when equating lattice correlators with trial-wave functions.

Step I: Set up a basis of operators, here $J^P=1^+$

Diquark-Antidiquark:

$$D = \left(\left. (q_a)^T (C\gamma_5) q_b' \right. \right) \times \left[\bar{Q}_a (C\gamma_i) (\bar{Q'}_b)^T - a \leftrightarrow b \right]$$

Dimeson: $M = (\bar{b}_a \gamma_5 u_a) (\bar{b}_b \gamma_i d_b) - (\bar{b}_a \gamma_5 d_a) (\bar{b}_b \gamma_i u_b)$

Step II: Solve the GEVP and fit the energies

$$F(t) = \begin{pmatrix} G_{DD}(t) & G_{DM}(t) \\ G_{MD}(t) & G_{MM}(t) \end{pmatrix}, \quad F(t)\nu = \lambda(t)F(t_0)\nu ,$$

$$G_{\mathcal{O}_1\mathcal{O}_2} = \frac{C_{\mathcal{O}_1\mathcal{O}_2}(t)}{C_{PP}(t)C_{VV}(t)} , \ \lambda(t) = Ae^{-\Delta E(t-t_0)} .$$

 \rightarrow $\Delta E = E_{\text{tetra}} - E_{\text{thresh}}$ in case of binding correlator $(C_{\mathcal{O}_1 \mathcal{O}_2}(t))/(C_{PP}(t)C_{VV}(t))$.

Most use these operators, but a larger basis has been worked out.

 \Rightarrow Need to be used by more groups.

→ HadronSpectrum Coll. ('17)

Current state-of-the-art

Step III: Finite volume corrections

Large energy shifts are possible due to the finite lattice volume.

Scenario I: Scattering state

The finite volume energy belongs to a scattering state, the corrections go as

$$E_{b,L} \sim E_{b,\infty} \cdot \left[1 + \frac{a}{L^3} + \mathcal{O}(\frac{1}{L^4})\right]$$

→ M. Hansen

Scenario II: Stable state

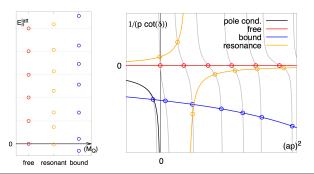
The corrections are exponentially suppressed with $\kappa = \sqrt{E_{b,\infty}^2 + p^2}$

$$E_{b,L} \sim E_{b,\infty} \cdot \left[1 + Ae^{-\kappa L}\right]$$

With a single volume available:

- In a bound state corrections are
 ~ exp(binding momentum)
 → strong supp. m_{had} =heavy
- In a scattering state expect large deviation around threshold

With multiple volumes available:


- Track mass dependence
 → decide bound/scatt. state
- Power law corrections might be too small to resolve

Future step for community

Step IV: Finite volume / Scattering analysis

Limitation: Small GEVP without f.vol analysis ok for deeply bound states. Insufficient to tell apart free, resonant or virtual bd. states.

Extension: Connect energies to scattering phase shifts via finite volume quantisation conditions (Lüscher-formalism).

- o connect (many) f.vol states to scattering parameters (sketch: BW)
- o resonance: extra state(s) appear, lowest state close to threshold

A lattice study of T_{cc} with unphysical quark masses

- Caveat: $E_B(T_{cc})$ < 1MeV requires highly precise calculations at the physical point with control over extra systematics (e.q. isospin breaking)
- o Possible solution: Mapping of the pole trajectory with quark mass
- o *Milestone:* Virtual bound state in T_{cc} at $m_{\pi}=280 \text{MeV}$ found.
- Alternative paths? Not clear. Mapping from GEVP overlaps is difficult due to ambiguous identification of trial operators.

Binding energy

FIG. 3. The pole in the scattering amplitude related to T_{cc} in the complex energy plane: our lattice result at the heavier charm quark mass (magenta) and the LHCb result (orange).

A virtual bound state

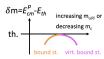


FIG. 4. Sketch of the binding energy for the (virtual) bound state dominated by the molecular component. It is based on a purely attractive potential V(r) and partial wave l=0 within quantum mechanics.

Diquarks - Towards understanding $T_{QQ'}^{qq'}$ and other hadrons

With the state-of-the-art it is already clear:

HQS-GDQ predictions all observed on the Lattice!

Many open questions*

- o Binding mechanism? Flavor dependence?
- o Role of diquarks?
- Structure of $T_{QQ'}^{qq'}$?
- o Consequences for other hadrons?

HQS-GDQ picture in $T_{QQ'}^{qq'}$ is just one example where diquarks play a crucial role in understanding the hadron spectrum. \sim [2203.16583][2203.03230]

Need for fully non-perturbative insight

Towards a clearer understanding and footing in QCD using lattice calculations

- 1. diquark formalism: Find gauge invariant probe
- 2. diquark spectrum: Fundamental properties
- **3.** diquark structure: Probe q q interaction

Surveyed $T_{QQ'}^{qq'}$ candidates

observed (>1 group) no deep binding observed (1 group) not clear (>1 group)

clear (>1 group)	
channel	deeply bound
$J^P = 1^+$	bbūd bcūd
	bbℓ <u>s</u> bcℓ <u>s</u>
	bsūd csūd
	bbūc bbsc
	ccū₫ ccℓ̄s̄
	$bbar{b}ar{b}$
$J^{P} = 0^{+}$	bbūū ccūū
	bbūā bcūā
	$bbar\ellar s$ $bcar\ellar s$
	bbss ccss
	bsūā csūā
	bbūc bbsc
	bbcc ccūd
	$bbar{b}ar{b}$

*some answers via step IV

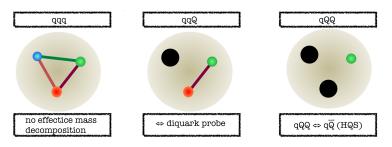
Diquark spectroscopy

"[Diquark] mass differences are fundamental characteristics of QCD"

→ Jaffe, arXiv:hep-ph/0409065 (2005)

Diquarks on the lattice - a gauge invariant probe

- A problem for the lattice is that diquarks are colored, i.e. not-gauge invariant.
 - o Could fix a gauge, but then properties are gauge-dependent (masses, sizes,...)


→ lattice and Dyson-Schwinger, see e.g. [15-20] in 2106.09080

- Alternative: Static spectator quark Q ($m_Q \to \infty$) cancels in mass differences.
 - o Diquark properties exposed in a gauge-invariant way.

→ hep-lat/0510082, hep-lat/0509113, hep-lat/0609004, arxiv:1012.2353

$$C_{\Gamma}(t) \sim \exp\left[-t\left(m_{D_{\Gamma}} + m_{Q} + \mathcal{O}(m_{Q}^{-1})
ight)
ight]$$

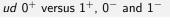
⇒ Lattice osbervable: Diquark embedded in a static-light-light baryon!

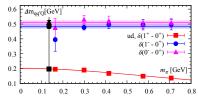
→ picture of baryons from Hosaka, 2013

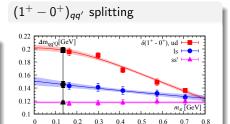
Lattice spectroscopy - diquark-(di)quark differences

We consider mass differences of qq'Q baryons:

$$C_{\Gamma}^{qq^\prime\,Q}(t)-C_{\gamma_5}^{qq^\prime\,Q}(t)$$


Special status of good diquark observed


- o Good ud diquark lowest in spectrum
- o Pattern repeated in ℓs and ss'


... and of a qq'Q baryon with a light-static meson

$$C^{qq'Q}_{\Gamma=\gamma_5}(t)-C^{q'ar{Q}}_{\gamma_5}(t)$$

 $Qqq' - \bar{Q}q'$ splittings

Diquark spectroscopy - comparing results

• We want to compare our results with phenomenology

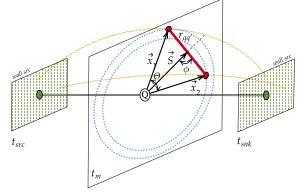
 \leadsto more details in extra info slides

- $\circ\,$ Key resource: (Jaffe '05, arXiv:hep-ph/0409065), updated with PDG 2021 input
- o For pheno estimates combine charm and bottom hadron masses such that leading $\mathcal{O}(1/m_Q)$ (Q=c,b) cancel
- The main spectroscopy results are summarised as:

All in [MeV]	$\delta E_{\rm lat}(m_\pi^{\rm phys})$	δE_{pheno}	δE _{pheno}	δEcharm pheno
$\delta(1^{+}-0^{+})_{ud}$	198(4)	206(4)	206	210
$\delta(1^+ - 0^+)_{\ell s}$	145(5)	145(3)	145	148
$\delta(1^+ - 0^+)_{ss'}$	118(2)			
$\delta(Q[ud]_{0^+} - \bar{Q}u)$	319(1)	306(7)	306	313
$\delta(Q[\ell s]_{0^+} - ar{Q}s)$	385(9)	397(1)	397	398
$\delta(Q[\ell s]_{0^+} - \bar{Q}\ell)$	450(6)			

 \leadsto use the bottom estimate for static \leadsto use charm-bottom difference as estimate for deviation from static $\Rightarrow \lesssim \mathcal{O}(7) \text{MeV}$ deviation

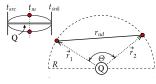
• Overall, very good agreement observed.


Diquark structure

Diquarks - spatial correlations

We access (good) diquark structure information through density-density correlations:

$$C^{dd}_{\Gamma}(\vec{x}_1,\vec{x}_2,t) = \left\langle \mathcal{O}_{\Gamma}(\vec{0},2t) \; \rho(\vec{x}_1,t) \rho(\vec{x}_2,t) \; \mathcal{O}^{\dagger}_{\Gamma}(\vec{0},0) \right\rangle := \rho_2(r_{ud},S,\phi;\Gamma)$$


ightsqrtail $ho_\Gamma=q^c C \Gamma q$ and $ho(\vec{x},t)=\bar{q}(\vec{x},t) \gamma_0 q(\vec{x},t)$, $t_m=(t_{snk}+t_{src})/2$ to minimize excited states

Main tool: Correlations between two light quarks' relative positions to the static quark.

- ${\it S},~r_{\it ud}$ fixed: Distance between static quark ${\it Q}$ and closer of the two light quarks ${\it q},{\it q}'$ is
 - o Minimized for $\phi = \pi$, possible disruption due to Q is largest
 - $\circ~$ Maximized for $\phi=\pi/2,$ possible disruption due to $\it Q$ is smallest

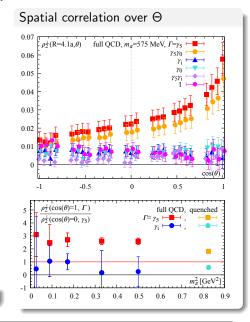
Good diquark attraction

Setting $\phi = \pi/2$:

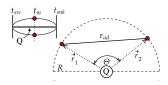
•
$$|\vec{x}_1| = |\vec{x}_2| = R$$
, use R, Θ :
 $\rho_2^{\perp}(R, \Theta) = \rho_2(r_{ud}, S, \pi/2)$

• Attraction visible through increase in ρ_2^\perp for small Θ at any fixed R

Two limiting cases for the two quarks:


$$\circ$$
 cos(Θ) = 1 on top of each other

$$\circ \; \mathsf{cos}(\Theta) = -1$$
 opposite each other

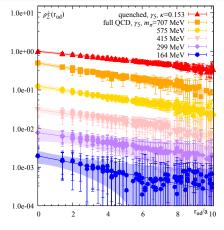

"Lift" as qualitative criterion:

$$\frac{\rho_2^{\perp}(R,\Theta=0,\Gamma)}{\rho_2^{\perp}(R,\Theta=\pi/2,\gamma_5)}$$

Increase observed in good diquark only

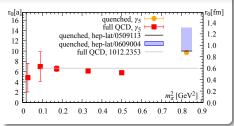
Good diquark size

• Distance between quarks:


$$r_{ud} = R\sqrt{2(1-\cos(\Theta))}$$
 \rightarrow different visualisation

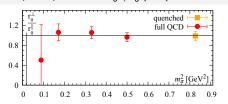
- $\rho_2^{\perp}(R, r_{ud}) \sim \exp(-r_{ud}/r_0)$ \sim "characteristic size" r_0
- Need to control:
 - interference from Q

 → we limit analysis to r_{ud} < R
 periodicity effects
 - \sim periodicity effects \sim in practice we find $L = 5r_0$
- Further checks: $A(R, r_{ud} = 0) \sim \exp(-R/R_0)$


Data well described by (single) exponential Ansatz

Spatial correlation over r_{ud}

- \circ $r_{ud}=0$ normalised, offset for each m_{π}
- o all R shown simultaneously
- o combined fits over $\forall R$ with shared r_0


Size dependence $r_0(m_\pi)$

Good diquark size:

- Agreement w/ prev. quenched and dynamical studies
- Refinement through our results
- $\circ~r_0\simeq \mathcal{O}(0.6)$ fm weak m_π dependence
- $r_{\text{diquark}} \sim r_{\text{hadron}}$, (using: arXiv:1604.02891)

Shape dependence $r_0^\perp/r_0^\parallel(m_\pi)$

Good diquark shape:

- \circ Get radial and tangential radii r_0^{\parallel} , r_0^{\perp}
- \circ Ratio $r_0^{\perp}/r_0^{\parallel}$ sensitive to distortions
 - = 1, spherical
 - eq 1, prolate/oblate
- \circ Ratio $\simeq 1$ for all $m_\pi \Rightarrow$ spherical
- o Consistent w/ scalar, J = 0, shape

Summary - Understanding heavy multiquarks

Lattice QCD approach to exotic hadrons, tetraguarks and diguarks

- o QCD interactions without approximations
- o Firm lattice evidence for doubly heavy tetraquarks, esp. $bb\bar{u}\bar{d}$, $bb\bar{\ell}\bar{s}$
- Broad agreement with a description based on a diquark+HQS model
- o Gauge invariant approach to diquarks
- \circ Special status of "good" diquark confirmed, δE =198(4) MeV
- o q-q attraction in good diquark observed, $r_0 \simeq \mathcal{O}(0.6) \text{fm} \sim r_{\text{hadronic}}$

Outlook

- o Pin down T_{bc} with high precision
- o Refine diquark and tetraquark models
- Tetraquark diquark content / structure?
 Diquarks in light(er) baryons? ...

Exciting discoveries ahead? $T_{bc} = bc \bar{u} \bar{d}$, $J^P = 1^+$ Lattice QCD ΔE_{totro}[MeV] AF et al. ('19) Hudspith, AF et al. ('20) Padmanath et al. ('21) Meinel et al. ('2) -100 50 $\eta d\bar{c}\bar{b}$ I = 0 $J^P = 1^+$ 100 ding [MeV] -100-200Chiral models QCD sum rules -300

Thank you for your attention.

Further material

Summary - Understanding heavy multiquarks

Lattice QCD approach to exotic hadrons, tetraquarks and diquarks

o QCD interactions without approximations, gauge invariant approach to diquarks

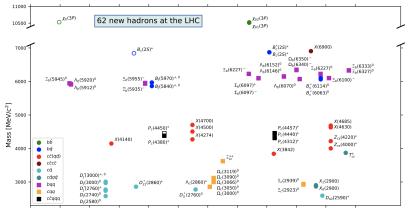
Doubly heavy tetraquarks

- \circ Lattice evidence for doubly heavy tetraquarks, esp. $bb\bar{u}\bar{d}$, $bb\bar{\ell}\bar{s}$
- o Broad agreement with a description based on a diquark+HQS model
- Lattice studies focussing on consolidating and estimating systemtatics
- o First studies of tetraquark structure using scattering phase shifts ongoing

Diquark spectroscopy

- o Special status of "good" diquark confirmed, attraction of 198(4)MeV over "bad"
- o Chiral and flavor dependence modelled through simple Ansatz
- Very good agreement with phenomenological estimates

Diquark structure


- $\circ \ q-q$ attraction in good diquark induces compact spatial correlation
- \circ Good diquark size $r_0 \simeq \mathcal{O}(0.6) \mathrm{fm} \sim r_{\mathsf{meson, baryon}}$, weakly m_π dependent
- o Good diquark shape appears nearly spherical

Outlook

- o Results provide support for the good diquark picture
- o Hope to refine diquark and tetraquark model parameters
- o Refinement towards diquarks in light baryons? Tetraquark diquark content? ...

Heavy spectrum today - a success story turned challenge to theory

- o In 2003: $X(3872) \rightsquigarrow c\bar{c}d\bar{u}$ discovered at Belle
- \circ X(3872) is the first (heavy) **tetraquark** signal that has been confirmed persistently
- \circ Since then many exotic states and especially $\mathcal{O}(12)$ heavy 4-/5-quark states observed

2011-01-01 2012-01-01 2013-01-01 2014-01-01 2015-01-01 2016-01-01 2017-01-01 2018-01-01 2019-01-01 2020-01-01 2021-01-01 2022-01-01 Date of arXiv submission

(LHCb collaboration, LHCb-FIGURE-2021- 001, 2021)

A gauge invariant probe - lattice calculation details

• Lattice correlator: Diquark embedded in a static-light-light baryon

$$C_{\Gamma}(t) = \sum_{\vec{x}} \left\langle [D_{\Gamma}Q](\vec{x},t) \ [D_{\Gamma}Q]^{\dagger}(\vec{0},0) \right\rangle$$

 \rightsquigarrow static quark=Q and $D_{\Gamma} = q^c C \Gamma q$ \rightsquigarrow flavor combinations ud, ℓs , ss' \rightsquigarrow static-light mesons $[\bar{Q}\Gamma q]$

setting up on the lattice - we recycle

- \circ $n_f=2+1$ full QCD, $32^3 \times 64$, a=0.090fm, $a^{-1}=2.194$ GeV (PACS-CS gauges)
- \circ $m_\pi=164,299,415,575,707\,{
 m MeV}$, $m_s\simeq m_s^{
 m phys}$, propagators re-used from before
- \circ Quenched gauge $a \simeq 0.1 {
 m fm}, ~ m_\pi^{
 m valence} = 909 \, {
 m MeV}$, to match hep-lat/0509113

Diquark spectroscopy - phenomenological estimates

We want to compare our results with phenomenology

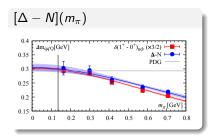
- Key resource: (Jaffe '05, arXiv:hep-ph/0409065), updated with PDG 2021 input
- o For pheno estimates use charm and bottom hadron masses where leading $\mathcal{O}(1/m_Q)$ (Q=c,b) can be cancelled

Four estimates considered:

$$\circ \ \delta(1^{+} - 0^{+})_{ud} : \left[\frac{1}{3} \left(2M(\Sigma_{Q}^{*}) + M(\Sigma_{Q}) \right) - M(\Lambda_{Q}) \right]$$

$$\circ \ \delta(1^{+} - 0^{+})_{us} : \left[\frac{2}{3} \left(M(\Xi_{Q}^{*}) + M(\Sigma_{Q}) + M(\Omega_{Q}) \right) - M(\Xi_{Q}) - M(\Xi_{Q}') \right]$$

$$\circ \ \delta(Q[ud]_{0^{+}} - \bar{Q}u) : \left[M(\Lambda_{Q}) - \frac{1}{4} \left(M(P_{Qu}) + 3M(V_{Qu}) \right) \right]$$

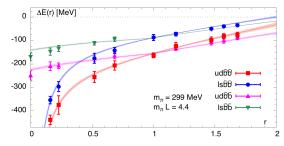

 $\leadsto P_{Qu}, V_{Qu}$ are the ground-state, heavy-light mesons

$$\circ \delta(Q[us]_{0^+} - \bar{Q}s)$$
:

$$M(\Xi_Q) + M(\Xi_Q') - \frac{1}{2}(M(\Sigma_Q) + M(\Omega_Q)) - \frac{1}{4}(M(P_{Qs}) + 3M(V_{Qs}))$$

 $\leadsto P_{Qs}, V_{Qs}$ are the ground-state, heavy-strange mesons

△-Nucleon mass difference


Measured the mass difference of $\Delta - N$

- Prediction: $\delta(\Delta N) = 3/2 \times \delta(1^+ 0^+)_{ud}$
- o Same Ansatz as before
- \circ Prediction holds well, even at fairly large m_π

A tunable system - opportunity together with pheno

AF et al. ('18)

*5 parameter pheno-Ansatz in Appendix

- \circ E.g. scans in $m_{b'}$ map out the heavy quark mass dependence.
- o Away from physical masses the binding mechanism can be probed.
- \rightarrow Mass dependence can be confronted with model predictions.
- \rightarrow System can be tuned continuously from the bound to the resonant or non-interacting regimes.
- → Requires robust control of finite volume spectrum.

Review of doubly heavy tetraquarks in lattice QCD

Confirm and predict doubly heavy tetraquarks non-perturbatively

Tetraquarks as ground states? What would their binding mechanism/properties be?

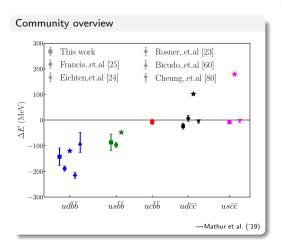
HQS-GDQ picture, consequences for $qq'\bar{Q}'\bar{Q}$ tetraquarks:

- \circ $J^P = 1^+$ ground state tetraquark below meson-meson threshold
- \circ Deeper binding with heavier quarks in the ar Q' ar Q diquark
- \circ Deeper binding for lighter quarks in the qq' diquark

Ideal for lattice: Diquark dynamics and HQS could enable $J^P=1^+$ ground state doubly heavy tetraquarks with flavor content $qq'\bar{Q}\bar{Q}'$.

Goal: $\Delta E = E_{\text{letra}} - E_{\text{meson-meson}}$, e.g. in $bb\bar{u}\bar{d}$, $bb\bar{\ell}\bar{s}$ and others \Rightarrow Verify, quantify predictions of binding mechanism in mind.

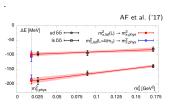
Lattice point of view


- Hidden flavor $qQ\bar{q}'\bar{Q}$ are tetraquark candidates as excitations of $Q\bar{Q}'$.
 - → technical difficulty for lattice calculations, need to resolve many f.vol states.
 - $\leadsto qq'\bar{Q}\bar{Q}'$, i.e. ground state candidates would be better to handle.

In the following

- o Tetraquarks with two heavy (c, b) and two light (ℓ, s) quarks.
- o Lattice evidence for $bb\bar{u}\bar{d}$, $bb\bar{\ell}\bar{s}$.
- o Recent updates on systematics.
- o Survey of candidates status.

What we know: A review of recent lattice studies


What we know: Deeply bound $J^P = 1^+ bb\bar{u}\bar{d}$ and $bb\bar{\ell}\bar{s}$ tetraquarks

Qualitative agreement with pheno

- o All three predictions met:
- $\rightarrow J^P = 1^+$ bound ground state.
- \rightarrow deeper binding with $m_Q \uparrow$.
- \rightarrow deeper binding with $m_q \downarrow$.

\circ bb $\bar{q}\bar{q}'$ are a focal point \rightarrow All efforts observe deeply bound $bb\bar{u}\bar{d}$

- · Junnarkar, Mathur, Padmanath ('18) · Leskovec, Meinel, Plaumer, Wagner ('19)
- · HadronSpectrum Coll. ('17)
- · Mohanta, Basak ('20)
- · Colguboun, AF, Hudspith, Lewis, Maltman ('17, '18, '20)

Overview -possible doubly heavy tetraquark candidates

Surveying candidates

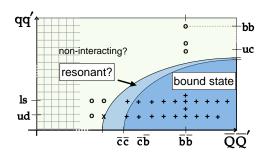
observed (>1 group) no deep binding observed (1 group) not confirmed (>1 group)

channel	deeply bound
$J^P = 1^+$	bbūd bcūd bbls bcls bsūd csūd bbūc bbsc ccūd ccls
$J^{P} = 0^{+}$	bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

Deeply bound states

Focus: strong interaction stable

- $\rightarrow bb\bar{u}\bar{d}$ and $bb\bar{\ell}\bar{s}$ in $J^P=1^+$.
- $\rightarrow cc\bar{q}\bar{q}'$ not deep.
- $\rightarrow bc\bar{q}\bar{q}'$ not clear.
- → further candidates not observed
- \rightarrow none observed in $J^P = 0^+$.
- → Bicudo et al. ('17), AF et al. ('17,'18, '20), HadSpec Coll. ('18), Hughes et al. ('17), Junnarkar et al. ('18), Leskovec et al. ('19), Mohanta et al. ('20)


States above threshold, resonances?

- $ightarrow bbar{u}ar{d}$ in $J^P=1^+$ /w static quarks find a resonance just above threshold. ~→Bicudo et al. ('19)
- \rightarrow No results from other approaches. \rightarrow What about $cs\bar{u}\bar{d}$?
 - → under investigation Hudspith, AF et al.('20), HadSpec ('20)

Shallow binding?

- \circ $cc\bar{u}\bar{d}$ now observed by LHCb, robust lattice post-diction?
- → Work to remove current limitations.

A tunable system - binding diagram

- Mapping out the flavor/mass binding diagram.
- \rightarrow (Un-)binding transition?
- \rightarrow Connecting resonance?

- \circ Surveying more J^{PC} candidates
- \rightarrow Other binding mechanisms?
- ightarrow More exotica? ($cs\bar{u}ar{d}$, $cc\bar{c}ar{c},\dots$)

Task: Establish the finite volume spectra and perform scattering analysis

 \rightarrow What is the resonant/bound nature of the tetraquark candidates?

Recent lattice updates - a glimpse at the community trends

Chiral limit

Majority of studies have performed extrapolations to m_{phys} .

Continuum limit

Few studies have taken (partial) continuum limits.

Finite volume

o Initial volume scaling in one study.

 \rightarrow More work needed!

Operator choice

- o One study uses non-local sinks, but local sources.
- o Two studies use a large basis in w-l approach.

 $\rightarrow \text{More work needed!}$

Ground state systematics

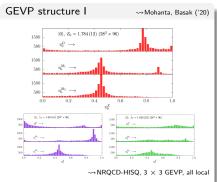
- The systematic due to the approach-from-below in w-l correlators is assessed through a box-sink construction.

 \times Hudspirth, AF et al. ('20)
- \circ Corrections to energies (\propto 25MeV) in w-l approach. \rightarrow **Need careful re-evaluation!**

Structure properties

- Study in potential approach.
- o Studies using overlaps caution required.

 \leadsto Wagner et al. ('21)


→ Mohanta, Basak('20); Wagner et al. ('21)

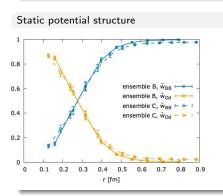
Deeper dive into recent updates: Structure properties


Structure properties - estimating overlaps from GEVPs

in principle: overlaps from GEVP give structure insight

- o Idea: Overlaps give relative strengths of interpolating operator structures
- o Caveat: Need well-defined operator structures.
 - → Combining local sources with non-local sinks makes this ambiguous.
- o Possible solution: Hermitian GEVP, e.g. via distillation approach

Diquark-type structure dominant


Relative weights:

 \sim 77% Dimeson vs. \sim 23% Diquark-type

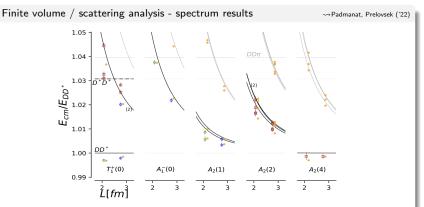
Structure properties - from the static potential

in principle: optimal trial states give structure insight

- Idea: Read off structure from weights of optimised trial states in Schrödinger Equation with lattice potential
- Caveat: Operator normalisation not trivial. Only clear connection when using static quarks. Potential needs to be interpolated
 - → Estimating systematics can be difficult.

- \circ $bb\bar{u}\bar{d}$ structure mixture
- o Distance dependence:
 - $r \lesssim$ 0.2fm: diquark-type dominance
 - $r \gtrsim 0.3$ fm: dimeson dominance
- Relative weights:
 - \sim 60% Dimeson vs. \sim 40% Diquark-type

~→Wagner ('21)


The Full Program: A first lattice study of T_{CC}

A virtual bound state? - A lattice study of T_{CC} with unphysical quark masses

recall: performing the full finite volume analysis enables deeper insight

- Idea: Many lattice determined energy eigenstates are converted to scattering phase shifts via finite volume quantisation conditions.
- o Goal: The extraction of the pole properties in the complex plane
- \circ Caveat: The $E_B <$ 1MeV of T_{CC} requires highly precise calculations at the physical point with many extra systematics under control (e.q. isospin breaking)
- o Possible solution: Mapping of the pole trajectory with quark mass
- o *Milestone:* The study of Padmanath, Prelovsek ('22) is a first step in this direction. They find a virtual bound state in T_{CC} at $m_{\pi}=280 \text{MeV}$.

A virtual bound state? - A lattice study of T_{CC} with unphysical quark masses

→distillation, only meson-meson operators used

- o One lattice spacing a = 0.086 fm
- $\circ~$ Two lattice volumes available, $\simeq 2~\text{fm}$ and $\simeq 3~\text{fm}$
- o One $m_{\pi}=280$ MeV with 2 possible valence charm quark probes, one slightly below and one slightly above the physical charm quark mass.

A virtual bound state? - A lattice study of T_{CC} with unphysical quark masses

recall: performing the full finite volume analysis enables deeper insight

- Idea: Many lattice determined energy eigenstates are converted to scattering phase shifts via finite volume quantisation conditions.
- o Goal: The extraction of the pole properties in the complex plane.
- Caveat: The $E_B < 1$ MeV of T_{CC} requires highly precise calculations at the physical point with many extra systematics under control (e.q. isospin breaking)
- o Possible solution: Mapping of the pole trajectory with quark mass
- o *Milestone:* The study of Padmanath, Prelovsek ('22) is a first step in this direction. They find a virtual bound state in T_{CC} at $m_{\pi}=280 \text{MeV}$.

Binding energy

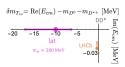


FIG. 3. The pole in the scattering amplitude related to T_{cc} in the complex energy plane: our lattice result at the heavier charm quark mass (magenta) and the LHCb result (orange).

A virtual bound state

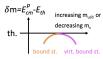
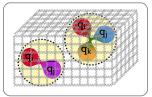



FIG. 4. Sketch of the binding energy for the (virtual) bound state dominated by the molecular component. It is based on a purely attractive potential V(r) and partial wave l=0 within quantum mechanics.

Lattice QCD calculates strongly coupled QFT using supercomputers

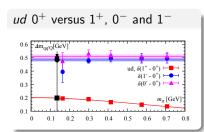
Connection to physics

- $(\rightarrow$ renormalisation $Z_{NP})$
- ightarrow chiral/phys.point limit $m_\pi
 ightarrow m_{ exttt{phys}}$
- \rightarrow volume limit $L \rightarrow \infty$
- \rightarrow continuum limit $a \rightarrow 0$

Consistent approach at all energies

- ightarrow time is made imaginary t
 ightarrow it
- \rightarrow lattice space-time, cut-off a^{-1}
- ightarrow importance sampling, HMC

Systematic effects to control[!]


- \rightarrow cut-off $\mathcal{O}(a, a^2)$
- ightarrow heavy quarks $\mathcal{O}(aM_Q)$
- \rightarrow finite volume effects $\mathcal{O}(m_{\pi}L)$

o Spectrum encoded in hadron correlators, e.g. masses and decay constants:

$$C_{\mathcal{O}_1\mathcal{O}_2}(t,\mathsf{p}=0) = \sum_{\mathsf{x}} \langle \mathcal{O}_1(\mathsf{x},t) \mathcal{O}_2^\dagger(0,0) \rangle \leadsto \sum_i \frac{\langle 0|\mathcal{O}_1|n\rangle \langle n|\mathcal{O}_2|0\rangle}{2m_i} \mathrm{e}^{-m_i t}$$

- $ightarrow m_0 = m_{ ext{qround}}$ ground state, approached asymptotically t
 ightarrow large
- $\rightarrow f_i$ from $\langle 0|\mathcal{O}_i|n\rangle$

Lattice spectroscopy - diquark-diquark differences

We consider mass differences of qq'Q baryons:

$$C_{\Gamma}^{qq^\prime\,Q}(t)-C_{\gamma_5}^{qq^\prime\,Q}(t)$$

 $\rightsquigarrow Q$ drops out

→ measures diquark-diquark mass difference

Bad-good diquark splitting:

- o Special status of good diquark observed
- Good 0⁺ ud diquark lies lowest in the spectrum
- o Bad 1⁺ ud diquark 100-200 MeV above
- $\circ~0^-$ and 1^- ud diquarks ~ 0.5 GeV above
- \circ Pattern repeated in ℓs and ss'

$\Delta m_{aa'Q}(m_{\pi})$ dependence:

- \circ Chiral limit: \sim const
- o Heavy-quark limit: decreases $\sim 1/(m_{q_1}m_{q_2})$, with $m_\pi \sim (m_{q_1}+m_{q_2})$

$$\delta(1^+ - 0^+)_{q_1q_2} = A/\left[1 + (m_\pi/B)^{n \in 0,1,2}\right]$$

Lattice spectroscopy - diquark-quark differences

We consider mass differences of a qq'Q baryon and a light-static meson:

$$\boxed{ C_{\Gamma=\gamma_5}^{qq'Q}(t) - C_{\gamma_5}^{q'\bar{Q}}(t) } \\ \sim Q \text{ drops out} \\ \sim \text{ diquark-quark mass difference}$$

 $\Delta m_{qq'Q}(m_{\pi})$ dependence:

 Chiral vs. heavy-quark limiting behaviours, as before

 $Qqq' - \bar{Q}q'$ splittings

$$\delta(Q[q_1q_2]_{0^+} - \bar{Q}q_2) = C \left[1 + (m_\pi/D)^{n \in 0,1,2}\right]$$

Diquark-quark splitting:

- o Established mass differences between a good diquark and an [anti]quark
- o May prove useful in identifying favourable tetra-, pentaquark channels
- Omits possible distortions through additional light quarks, Pauli-blocking, spin-spin interactions ...

Diquarks on the lattice - a gauge invariant probe

- A problem for the lattice is that diquarks are colored, i.e. not-gauge invariant.
- o Could fix a gauge, but then properties are gauge-dependent (masses, sizes,...)

 \leadsto lattice and Dyson-Schwinger, see e.g. [15-20] in 2106.09080

- ullet Alternative: Static spectator quark Q $(m_Q o \infty)$ cancels in mass differences.
 - o Diquark properties exposed in a gauge-invariant way.

→ hep-lat/0510082, hep-lat/0509113, hep-lat/0609004, arxiv:1012.2353

$$oxed{C_{\Gamma}(t) \sim \exp\left[-t\left(m_{D_{\Gamma}} + m_{Q} + \mathcal{O}(m_{Q}^{-1})
ight)
ight]} }
ightarrow t
ightarrow ext{large, } m_{Q}
ightarrow ext{large}$$

• Lattice correlator: Diquark embedded in a static-light-light baryon

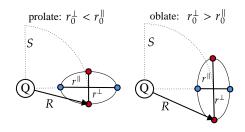
$$\begin{split} C_{\Gamma}(t) &= \sum_{\vec{x}} \left\langle [D_{\Gamma} Q](\vec{x},t) \; [D_{\Gamma} Q]^{\dagger}(\vec{0},0) \right\rangle \\ & \leadsto \mathsf{static} \; \mathsf{quark} = Q \; \mathsf{and} \; D_{\Gamma} = q^{\mathsf{c}} \mathsf{C} \Gamma q \\ & \leadsto \mathsf{flavor} \; \mathsf{combinations} \; ud, \; \ell s, \; ss' \\ & \leadsto \mathsf{static-light} \; \mathsf{mesons} \; [\bar{Q} \Gamma q] \end{split}$$

Clearer understanding by studying the diquark ...

- spectrum: [diquark] mass differences are fundamental characteristics of QCD (Jaffe '05, arXiv:hep-ph/0409065)
- 2. spatial correlations: study attraction and special status of the "good" diquark
- 3. structure: estimate size and shape of the "good" diquark

Size dependence $r_0(m_\pi)$ $r_0[fm]$ $r_0[a]_1$ quenched, γ5 16 1.4 full QCD, γ₅ + 14 quenched, hep-lat/0509113 12 quenched, hep-lat/0609004 1.0 10 full QCD, 1012.2353 0.8 8 0.6 6 0.4 4 2 0.2 0.3 0.5 0.8 0.1 0.6 09

Good diquark size:


- Agreement w/ prev. quenched and dynamical
- $\circ \ \ Refinement \ through \ our \ results$
- \circ $\mathit{r}_0 \simeq \mathcal{O}(0.6)$ fm weak m_π dependence

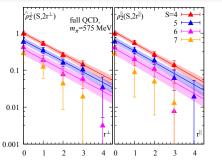
 $\rightarrow \sim r_{\text{meson, baryon,}} \text{ arXiv:} 1604.02891$

$r_0(m_\pi)$ dependence:

- $\circ m_{q,q'} \uparrow \text{ should produce more compact object}$
- But, diquark attraction works opposite
- $\circ~$ Former effect dominates at large $m_\pi?$
- But, in quenched diquarks definitely larger...

Shape of good diquarks - studying wavefunction "oblateness"

Tangential and radial spatial correlation decay


As opposed to before $R \neq fixed$:

$$\circ \ \phi = \pi \colon \quad \text{radial correlation,}$$

$$\text{size} \leadsto r_0^{||}$$

$$\circ \ \phi = \pi/2 \colon \text{tangential correlation,}$$

$$\text{size} \leadsto r_0^{\perp}$$

$$\circ \ r_0^{\perp}/r_0^{||} \ \text{gives information on shape:} \\ = 1, \ \text{spherical} \\ \neq 1, \ \text{prolate/oblate}$$

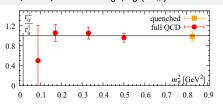
- Probe J = 0 nature of good diquark (spherical, S-wave expectation)
- Diquark polarisation through static quark?

Oblateness results at $m_\pi=575 { m MeV}$

Goal:

$$\circ$$
 r_0^{\perp} , r_0^{\parallel} at fixed S

Technical issue:


o (||) as before:
$$R = S$$

$$(\bot) \text{ different: } R = \sqrt{(r^{\perp})^2 + S^2}$$

Solution:

- o Introduce "nuisance" parameter R₀
- o Adjusted in figure
- Parallel lines $\rightsquigarrow r_0^{\perp} = r_0^{\parallel}$

Shape dependence $r_0^\perp/r_0^\parallel(m_\pi)$

- $r_0^{\perp}/r_0^{\parallel}(m_{\pi})$ dependence:
 - \circ Ratio $\simeq 1$ for all $m_\pi \Rightarrow$ spherical
 - \circ Consistent w/ scalar, J = 0, shape
 - No diquark polarisation through Q observed