Electromagnetic Couplings of Axions

based on

arXiv:2205.02605,

PoS EPS-HEP2021 (2022) 178,

J. High Energ. Phys. 06, 123 (2021)

by Anton Sokolov & Andreas Ringwald

CTPU-PTC Seminar
IBS-CTPU Korea
16/11 2022

OUTLINE OF THE TALK

- Why considering axions?
- Electric-magnetic duality symmetry & axion electrodynamics
- Quantum Electro-Magneto-Dynamics (QEMD)
- Electromagnetic interactions of axions
- Theoretical motivations for new couplings
- Hadronic axion models with magnetic monopoles
- Novel experimental signatures

WHY AXIONS

Dark matter



CP conservation in strong interactions

$$n = d$$

axions

$$\begin{aligned} d_n &= 2.4 \, (1.0) \cdot 10^{-16} \, \bar{\theta} \, e \cdot \text{cm} \\ |d_n| &< 1.8 \cdot 10^{-26} e \cdot \text{cm} \end{aligned} \implies |\bar{\theta}| \lesssim 10^{-10} \end{aligned}$$

Why is there no electric dipole moment ?! Why $ar{ heta} \simeq 0\, ?!$

ELECTRIC-MAGNETIC DUALITY SYMMETRY

• SO(2) invariance of free Maxwell equations:

$$egin{align*} oldsymbol{
abla} oldsymbol{
ab$$

In the Lagrangian approach:

$$S_{ ext{EM}}ig[\mathbf{A^T}ig] \ = rac{1}{2}\int d^4x \left\{ \left(\dot{\mathbf{A}}^{ ext{T}}
ight)^2 - \left(oldsymbol{
abla} imes \mathbf{A}^{ ext{T}}
ight)^2
ight\} \quad ext{preserves SO(2):}$$
 inv. wrt $\delta \mathbf{A}^{ ext{T}} = - heta oldsymbol{
abla}^{-2} oldsymbol{
abla} imes \dot{\mathbf{A}}^{ ext{T}} \quad ext{as} \qquad \mathcal{L} o \mathcal{L} + df/dt$

AXION-PHOTON COUPLING

$$\mathcal{L}_{a\gamma} = -\frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu} = g_{a\gamma\gamma} a \vec{E} \vec{H}$$

ullet Equations of motion $\,\delta S[A_{\mu}] = 0\,$:

$$oldsymbol{
abla} \cdot \mathbf{E} =
ho - g_{a\gamma\gamma} \mathbf{H} \cdot oldsymbol{
abla} a \, ,$$

$$\nabla \cdot \mathbf{H} = 0$$
,

$$oldsymbol{
abla} imesoldsymbol{\mathbf{E}}=-rac{\partial\mathbf{H}}{\partial t}\,,$$

$$oldsymbol{
abla} imes oldsymbol{ ext{H}} = rac{\partial \mathbf{E}}{\partial t} + \mathbf{J} - g_{a\gamma\gamma} igg(\mathbf{E} imes oldsymbol{
abla} a - rac{\partial a}{\partial t} \mathbf{H} igg) \, .$$

$$g_{a\gamma\gamma} = rac{e^2}{8\pi^2 f_a} \cdot \left(rac{E}{N} - 1.92
ight)$$

KSVZ:
$$E/N = 5/3 - 44/3$$

DFSZ:
$$E/N = 8/3$$

 \rightarrow break SO(2)

• (Pseudo)scalar fields coupled to $F_{\mu\nu}F^{\mu\nu}$ or $F_{\mu\nu}\tilde{F}^{\mu\nu}$ break duality symmetry. Can they break it differently?

CHANGE OF A VIEWPOINT

- Due to the duality invariance of the free EM field, absolute directions in the electric-magnetic plane have no physical meaning

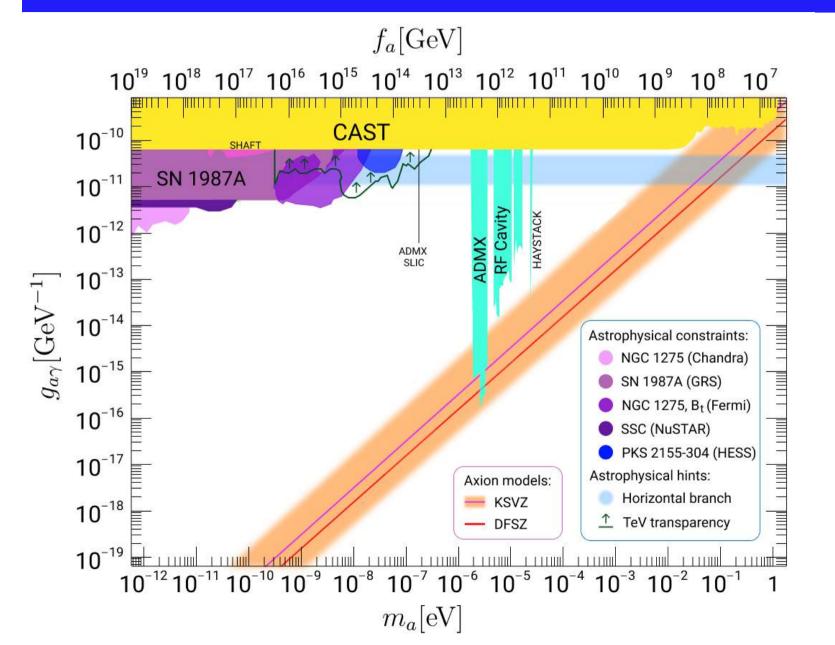
 one can think of the SM particles as "magnetic monopoles" of the dual potential.
- In such a dual picture, the EM field is derived from a dual four-potential:

$$\mathbf{E} = -\mathbf{
abla} imes \mathbf{B} \,, \quad \mathbf{H} = -\dot{\mathbf{B}} - \mathbf{
abla} B_0$$

- Consider again $\mathcal{L}_{a\gamma} = -\frac{1}{4} \bar{g}_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu} = \bar{g}_{a\gamma\gamma} a \vec{E} \vec{H}$
- ullet Equations of motion $\,\delta S[B_\mu] = 0\,\,$:

$$oldsymbol{
abla}\cdot\mathbf{E}=0\,,\;\;oldsymbol{
abla}\cdot\mathbf{H}=ar{g}_{a\gamma\gamma}\mathbf{E}\cdotoldsymbol{
abla}a\,,\;\;\;oldsymbol{
abla} imes\mathbf{E}=-rac{\partial\mathbf{H}}{\partial t}+ar{g}_{a\gamma\gamma}igg(\mathbf{H} imesoldsymbol{
abla}a+rac{\partial a}{\partial t}\mathbf{E}igg)\,,\;\;\;oldsymbol{
abla} imes\mathbf{H}=rac{\partial\mathbf{E}}{\partial t}\mathbf{E}$$

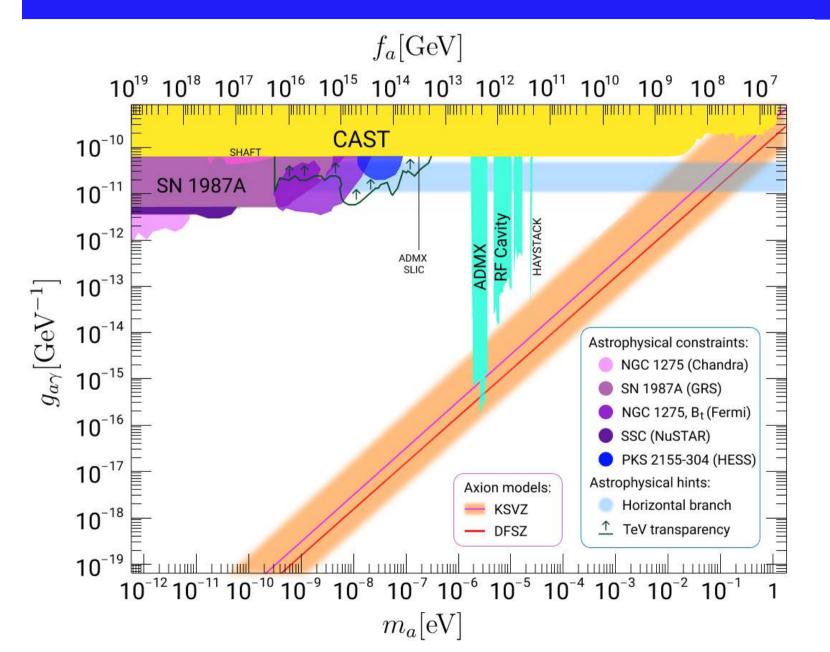
AXION-PHOTON COUPLING: PARAMETER SPACE



$$\mathcal{L}_{a\gamma} = -\frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu}$$
$$= g_{a\gamma\gamma} a \vec{E} \vec{H}$$

- axion-photon conversion in external magnetic field (astro, LSW, high-massaxion haloscopes)
- Primakoff effect: axion production in stars (helioscopes, HB stars)
- extra axion-induced magnetic field component in external magnetic field (low-mass-axion haloscopes)

AXION-PHOTON COUPLING: THEORY



$$\mathcal{L}_{a\gamma} = -\frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu}$$
$$= g_{a\gamma\gamma} a \vec{E} \vec{H}$$

$$F_{\mu
u} = \partial_{\mu}A_{
u} - \partial_{
u}A_{\mu}$$

Is this the most general axion-photon Lagrangian consistent with the symmetries?

Axion shift symmetry:

$$a
ightarrow a + 2\pi n\, v_a\,,\, n \in \mathbb{Z}$$

Locality of $\mathcal{L}_{a\gamma}\left[A_{\mu}
ight]$ selects one particular direction in the E-M plane

ZWANZIGER THEORY

- ullet Adopt simplified notations: $(\partial \wedge A)_{\mu
 u} = \partial_{\mu} A_{
 u} \partial_{
 u} A_{\mu}$, $(G)^d = ilde{G}$
- Consider the Lagrangian by Zwanziger which makes the duality symmetry obvious:

$$egin{aligned} \mathcal{L}_{ ext{kin}} &= rac{1}{2n^2} \Big\{ [n \cdot (\partial \wedge B)] \cdot [n \cdot (\partial \wedge A)^d] \ &- [n \cdot (\partial \wedge A)]^2 \ &- [n \cdot (\partial \wedge A)]^2 \ &- [n \cdot (\partial \wedge A)]^2 \ &- [n \cdot (\partial \wedge B)]^2 \Big\} \end{aligned}$$

• The electric-magnetic duality transformations are rotations in (A, B) plane of four-potentials:

$$n \cdot F = n \cdot (\partial \wedge A)$$
 and $n \cdot F^d = n \cdot (\partial \wedge B)$

 \bullet n^{μ} is a fixed four-vector, which does not enter physical observables

QUANTUM ELECTROMAGNETODYNAMICS

1971 ZWANZIGER

$$A_{\mu}$$
 and $B_{\mu} \longleftrightarrow$ photon

$$\mathcal{L} = \mathcal{L}_{kin} \left(A_{\mu}, B_{\mu}, n_{\mu} \right) -$$

$$j_e^{\nu} A_{\nu} - j_m^{\nu} B_{\nu}$$

$$\frac{1977 \text{ ZBN}}{Z(a, b, \chi_{\mu})} = \int \exp \left\{ i \left(\mathcal{S}[\mathbf{A}_{\mu}, \mathbf{B}_{\mu}, \mathbf{n}_{\mu}, \chi, \bar{\chi}] + j_{e}a + j_{m}b \right) \right\}$$

 $\times \mathcal{D}\mathbf{A}_{\mu} \mathcal{D}\mathbf{B}_{\mu} \mathcal{D}\chi \mathcal{D}\bar{\chi}$

- TWO vector-potentials describe ONE particle photon
- theory is Lorentz-invariant, kinetic part is dual-invariant
- theory is generally not CP-invariant

EQUATIONS OF MOTION

$$\mathcal{L} = \frac{1}{2n^2} \Big\{ [n \cdot (\partial \wedge B)] \cdot [n \cdot (\partial \wedge A)^d] - [n \cdot (\partial \wedge A)] \cdot [n \cdot (\partial \wedge B)^d] \\ - [n \cdot (\partial \wedge A)]^2 - [n \cdot (\partial \wedge B)]^2 \Big\} - j_e^{\nu} A_{\nu} - j_m^{\nu} B_{\nu} + \mathcal{L}_G$$

Gauge-fixing part:
$$\mathcal{L}_G = -rac{1}{2n^2} \Big\{ [\partial(n\!\cdot\!A)]^2 + [\partial(n\!\cdot\!B)]^2 \Big\}$$

Differential operator factorizes \longrightarrow effectively 1st order system!

Impose boundary conditions
$$\longrightarrow$$
 $\partial_{\mu}F^{\mu\nu}=j_{e}^{\
u}\,,\,\,\partial_{\mu}F^{d\ \mu\nu}=j_{m}^{\
u}\,.$

All dimension-five operators consistent with the symmetries:

$$egin{aligned} \mathcal{L} &= \mathcal{L}_{ ext{kin}} \left(A \, , B \, , n \,
ight) \ &- rac{1}{4} \, g_{a_{AA}} a \, ext{tr} \Big\{ (\partial \wedge A) \, (\partial \wedge A)^d \Big\} \, - rac{1}{4} \, g_{a_{BB}} \, a \, ext{tr} \Big\{ (\partial \wedge B) \, (\partial \wedge B)^d \Big\} \ &- rac{1}{2} \, g_{a_{AB}} a \, ext{tr} \Big\{ (\partial \wedge A) \, (\partial \wedge B)^d \Big\} \ &- \left(ar{\jmath}_e + rac{e^2 a}{4 \pi^2 v_a} \, j_m^\phi
ight) \cdot (A - \partial \phi) - j_m \cdot B \end{aligned}$$

$$(\partial \wedge A)_{\mu
u} = \partial_{\mu} A_{
u} - \partial_{
u} A_{\mu}$$
 , $(G)^d = ilde{G}$

Kinetic part

Anomalous axion-photon interactions, CP-conserving

Anomalous axion-photon interaction, CP-violating

Witten effect induced axion-photon interaction, includes j_m^ϕ - current of 't Hooft-Polyakov monopoles

All dimension-five operators consistent with the symmetries:

$$egin{aligned} \mathcal{L} &= \mathcal{L}_{ ext{kin}}\left(A\,,B\,,n\,
ight) \ &-rac{1}{4}\,g_{a_{AA}}a\, ext{tr}\Big\{(\partial\wedge A)\,(\partial\wedge A)^d\Big\}\,-rac{1}{4}\,g_{a_{BB}}\,a\, ext{tr}\Big\{(\partial\wedge B)\,(\partial\wedge B)^d\Big\} \ &-rac{1}{2}\,g_{a_{AB}}a\, ext{tr}\Big\{(\partial\wedge A)\,(\partial\wedge B)^d\Big\} \ &-\left(ar{j}_e+rac{e^2a}{4\pi^2v_e}\,j_m^\phi
ight)\!\cdot(A-\partial\phi)-j_m\!\cdot\!B \end{aligned}$$

$$(\partial \wedge A)_{\mu
u} = \partial_{\mu} A_{
u} - \partial_{
u} A_{\mu}$$
 , $(G)^d = ilde{G}$

Kinetic part

Anomalous axion-photon interactions, CP-conserving

Anomalous axion-photon interaction, CP-violating

Witten effect induced axion-photon interaction, includes j_m^ϕ - current of 't Hooft-Polyakov monopoles

• This Effective Field Theory is valid for any axion or axion-like particle.

All dimension-five operators consistent with the symmetries:

$$egin{aligned} \mathcal{L} &= \mathcal{L}_{ ext{kin}}\left(A\,,B\,,n\,
ight) \ &-rac{1}{4}\,g_{a{\scriptscriptstyle A}{\scriptscriptstyle A}}a\, ext{tr}\Big\{(\partial\wedge A)\,(\partial\wedge A)^d\Big\}\,-rac{1}{4}\,g_{a{\scriptscriptstyle B}{\scriptscriptstyle B}}\,a\, ext{tr}\Big\{(\partial\wedge B)\,(\partial\wedge B)^d\Big\} \ &-rac{1}{2}\,g_{a{\scriptscriptstyle A}{\scriptscriptstyle B}}a\, ext{tr}\Big\{(\partial\wedge A)\,(\partial\wedge B)^d\Big\} \ &-\left(ar{j}_e+rac{e^2a}{4\pi^2v_e}\,j_m^\phi
ight)\!\cdot\!(A-\partial\phi)-j_m\!\cdot\!B \end{aligned}$$

$$(\partial \wedge A)_{\mu
u} = \partial_{\mu} A_{
u} - \partial_{
u} A_{\mu}$$
 , $(G)^d = ilde{G}$

Kinetic part

Anomalous axion-photon interactions, CP-conserving

Anomalous axion-photon interaction, CP-violating

Witten effect induced axion-photon interaction, includes j_m^ϕ - current of 't Hooft-Polyakov monopoles

- This Effective Field Theory is valid for any axion or axion-like particle.
- ullet The Witten-effect induced interaction is generalized to the case of dynamical magnetic charges and is no longer given by $aF{\cdot}F^d$ term.

All dimension-five operators consistent with the symmetries:

$$egin{aligned} \mathcal{L} &= \mathcal{L}_{ ext{kin}} \left(A \, , B \, , n \,
ight) \ &- rac{1}{4} \, g_{a_{AA}} a \, ext{tr} \Big\{ (\partial \wedge A) \, (\partial \wedge A)^d \Big\} \, - rac{1}{4} \, g_{a_{BB}} \, a \, ext{tr} \Big\{ (\partial \wedge B) \, (\partial \wedge B)^d \Big\} \ &- rac{1}{2} \, g_{a_{AB}} a \, ext{tr} \Big\{ (\partial \wedge A) \, (\partial \wedge B)^d \Big\} \end{aligned}$$

$$-\left(\overline{j}_e+rac{e^2a}{4\pi^2v_a}\,j_m^\phi
ight)\!\cdot\left(A-\partial\phi
ight)-j_m\!\cdot\! B$$

$$(\partial \wedge A)_{\mu
u} = \partial_{\mu} A_{
u} - \partial_{
u} A_{\mu}$$
 , $(G)^d = ilde{G}$

Kinetic part

Anomalous axion-photon interactions, CP-conserving

Anomalous axion-photon interaction, CP-violating

Witten effect induced axion-photon interaction, includes j_m^ϕ - current of 't Hooft-Polyakov monopoles

- This Effective Field Theory is valid for any axion or axion-like particle.
- The Witten-effect induced interaction is generalized to the case of dynamical magnetic charges and is no longer given by $aF\cdot F^d$ term.
- One of the extra mass in the theories with monopoles, although such mass can arise

WITTEN-EFFECT INDUCED INTERACTION

Oyons cause CP-violation in QEMD, if there exists a dyon with charges (q,g), but no dyon with (-q,g) charges. In this case, the absolute charges of dyons allowed by the quantization condition introduce a CP-violating parameter θ into the theory:

$$q_i = \left(n_i^e + rac{ heta}{2\pi} n_i^m
ight)\!\cdot\! e\,, \quad n_i^e, n_i^m \in \mathbb{Z}\,. \qquad \longrightarrow \qquad heta \in [0,2\pi)$$

The interaction part of the Zwanziger Lagrangian becomes:

$${\cal L}_{int} \supset - \, igg(\overline{j}_e + rac{e^2 heta}{4\pi^2} \, j_m igg) {\cdot} A \, - \, j_m {\cdot} B \, .$$

- Oue to gauge invariance, $\, heta\,$ cannot be promoted to a field, unless we introduce new degrees of freedom into the theory.
- ullet 't Hooft-Polyakov magnetic monopoles carry an instanton degree of freedom ϕ , which allows one to introduce a variable heta in agreement with the high-energy phase of the theory:

$${\cal L}_{int} \supset \ - \left(ar{j}_e + rac{e^2 a}{4\pi^2 v_a} \, j_m^\phi
ight) \cdot (A - \partial \phi) - j_m \! \cdot \! B \, .$$

Outcome Automatically account for the Rubakov-Callan effect due to the \bar{j}_e $\partial \phi$ term.

AXION MAXWELL EQUATIONS

Classical equations of motion corresponding to our Lagrangian are the axion Maxwell equations:

$$\partial_{\mu}F^{\mu\nu} - g_{aAA} \partial_{\mu}a F^{d\mu\nu} + g_{aAB} \partial_{\mu}a F^{\mu\nu} - \frac{e^{2}a}{4\pi^{2}v_{a}} j_{m}^{\phi\nu} = \bar{j}_{e}^{\nu} ,$$

$$\partial_{\mu}F^{d\mu\nu} + g_{aBB} \partial_{\mu}a F^{\mu\nu} - g_{aAB} \partial_{\mu}a F^{d\mu\nu} = j_{m}^{\nu} ,$$

$$(\partial^{2} - m_{a}^{2}) a = -\frac{1}{4} (g_{aAA} + g_{aBB}) F_{\mu\nu}F^{d\mu\nu} - \frac{1}{2} g_{aAB}F_{\mu\nu}F^{\mu\nu}$$

In the experimentally relevant case, in terms of electric and magnetic fields:

$$\nabla \times \mathbf{B}_{a} - \dot{\mathbf{E}}_{a} = g_{a\mathrm{AA}} \left(\mathbf{E}_{0} \times \nabla a - \dot{a} \mathbf{B}_{0} \right) + g_{a\mathrm{AB}} \left(\mathbf{B}_{0} \times \nabla a + \dot{a} \mathbf{E}_{0} \right) ,$$

$$\nabla \times \mathbf{E}_{a} + \dot{\mathbf{B}}_{a} = -g_{a\mathrm{BB}} \left(\mathbf{B}_{0} \times \nabla a + \dot{a} \mathbf{E}_{0} \right) - g_{a\mathrm{AB}} \left(\mathbf{E}_{0} \times \nabla a - \dot{a} \mathbf{B}_{0} \right) ,$$

$$\nabla \cdot \mathbf{B}_{a} = -g_{a\mathrm{BB}} \mathbf{E}_{0} \cdot \nabla a + g_{a\mathrm{AB}} \mathbf{B}_{0} \cdot \nabla a ,$$

$$\nabla \cdot \mathbf{E}_{a} = g_{a\mathrm{AA}} \mathbf{B}_{0} \cdot \nabla a - g_{a\mathrm{AB}} \mathbf{E}_{0} \cdot \nabla a ,$$

$$\left(\partial^{2} - m_{a}^{2} \right) a = \left(g_{a\mathrm{AA}} + g_{a\mathrm{BB}} \right) \mathbf{E}_{0} \cdot \mathbf{B}_{0} + g_{a\mathrm{AB}} \left(\mathbf{E}_{0}^{2} - \mathbf{B}_{0}^{2} \right) ,$$

where we separated external fields sustained in the detector and axion-induced fields.

THEORETICAL MOTIVATION FOR NEW COUPLINGS

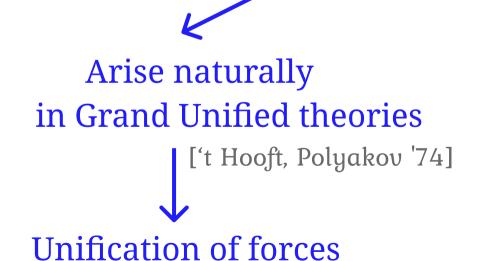
- Let us construct the UV-complete axion models which yield the new electromagnetic couplings $g_{a{\scriptscriptstyle BB}}$ and $g_{a{\scriptscriptstyle AB}}$.
- We will see that such models are theoretically well-motivated due to the quantization of the electric charge observed in nature.
- ullet We will calculate the couplings g_{aBB} and g_{aAB} in terms of the parameters of the models and see that they dominate the conventional g_{aAA} coupling.
- We will infer phenomenological consequences of the new couplings.

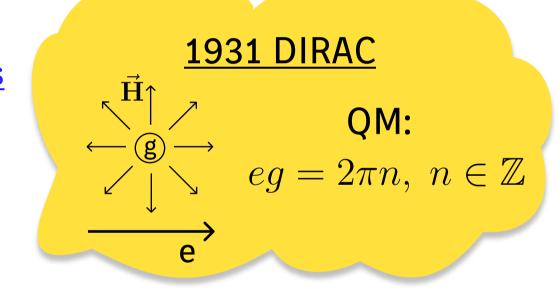
MAGNETIC MONOPOLES

Quantization of charge

$$\frac{1}{2}$$
 $\frac{2}{3}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{2}{3}$?

• Explained if there exist <u>magnetic monopoles</u>



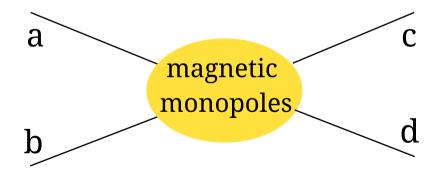


Arise in any consistent quantum gravity theory with quantized charges

[Banks, Seiberg '11]

INDIRECT EFFECTS OF MONOPOLES

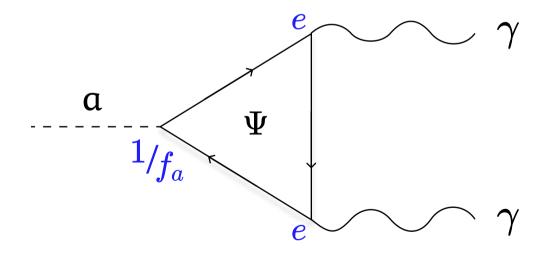
- Polchinski: "existence of magnetic monopoles seems like one
 of the safest bets that one can make about physics not yet seen" [Polchinski '02]
- But: the mass is not known and many models predict superheavy monopoles
- Solution: look for the <u>indirect</u> effects of monopoles



What about axion-photon interactions?

AXION-PHOTON COUPLING — MODELS

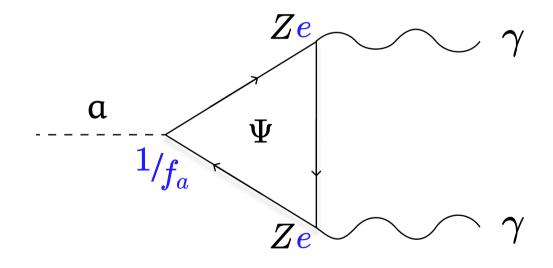
$$g_{a\gamma\gamma} \; = \; C_{a\gamma\gamma} \cdot rac{e^2}{8\pi^2 f_a}$$



- DFSZ-like models: Ψ is from Standard model

AXION-PHOTON COUPLING — MODELS

$$g_{a\gamma\gamma} \; = \; C_{a\gamma\gamma} \cdot rac{e^2}{8\pi^2 f_a}$$

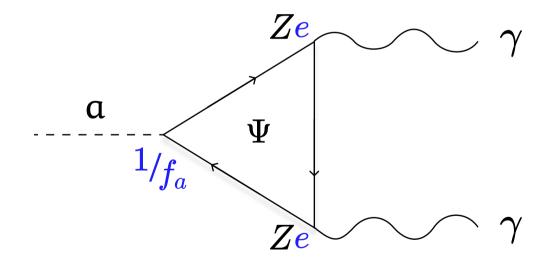


- DFSZ-like models: Ψ is from Standard model
- KSVZ-like (hadronic) models: Ψ is a new heavy particle carrying charge Z

Adler-Bardeen theorem \Rightarrow no higher order corrections in e

AXION-PHOTON COUPLING — MODELS

$$g_{a\gamma\gamma} \ = \ C_{a\gamma\gamma} \cdot rac{e^2}{8\pi^2 f_a}$$

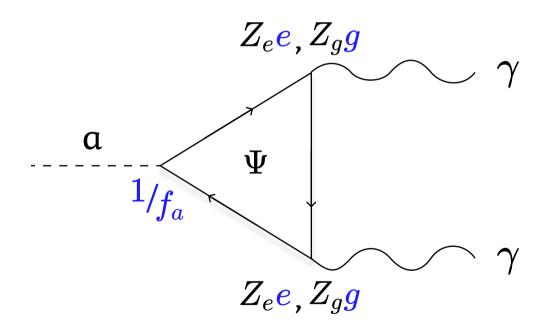


- DFSZ-like models: Ψ is from Standard model
- KSVZ-like (hadronic) models: Ψ is a new heavy particle carrying charge Z

Adler-Bardeen theorem \Rightarrow no higher order corrections in e

AXION-PHOTON COUPLING — GENERAL HADRONIC MODEL

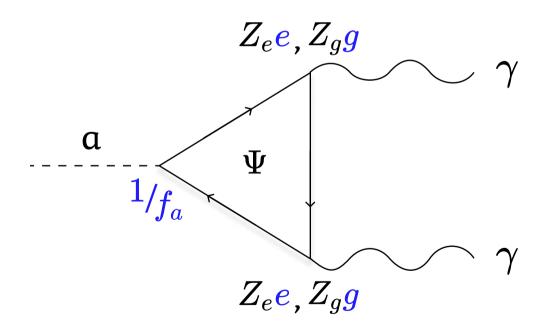
$$g_{a\gamma\gamma} \ = \ C_{a\gamma\gamma} \cdot rac{g^2}{8\pi^2 f_a}$$



. Most general hadronic models: $\Psi \text{ is a new heavy particle} \\ \text{ with charges } Z_e \text{ and } Z_g$

AXION-PHOTON COUPLING — GENERAL HADRONIC MODEL

$$g_{a\gamma\gamma} \ = \ C_{a\gamma\gamma} \cdot rac{g^2}{8\pi^2 f_a}$$

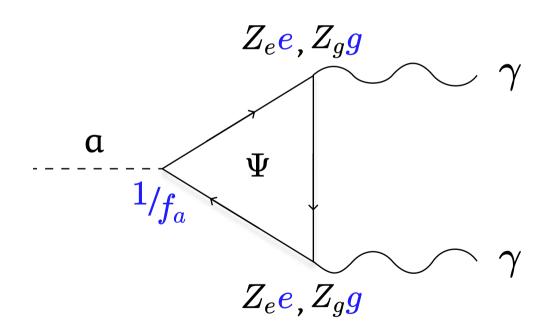


. Most general hadronic models: $\Psi \text{ is a new heavy particle} \\ \text{ with charges } Z_e \text{ and } Z_g$

$$oldsymbol{\cdot} \quad g = rac{2\pi n}{e} \gg \epsilon$$

AXION-PHOTON COUPLING — GENERAL HADRONIC MODEL

$$g_{a\gamma\gamma} \ = \ C_{a\gamma\gamma} \cdot rac{g^2}{8\pi^2 f_a}$$



. Most general hadronic models: $\Psi \text{ is a new heavy particle} \\ \text{ with charges } Z_e \text{ and } Z_g$

$$oldsymbol{\cdot} \quad g = rac{2\pi n}{e} \gg e$$

Adler-Bardeen theorem \Rightarrow no higher order corrections in g

MAGNETIC ANOMALY COEFFICIENTS

· Magnetic couplings dominate low energy physics of hadronic axion

$${\cal L}_{a\gamma\gamma} = - ilde{g}_{a\gamma\gamma} a ec{E} ec{H}$$

$$ilde{g}_{a\gamma\gamma} = rac{M}{N} \cdot rac{g^2}{8\pi^2 f_a} \,, \quad M = \sum_{\psi} \! M_{\psi} = \sum_{\psi} \! Z_g^2(\psi) \cdot d(C_{\psi})$$

- $\cdot\,M_\psi$ magnetic anomaly coefficients
- \cdot $d(C_{\psi})$ dimension of the color representation of ψ

COMPARISON WITH KSVZ MODELS

 \cdot Consider a simple conventional hadronic model with one new heavy quark having $Z_e=1/3$:

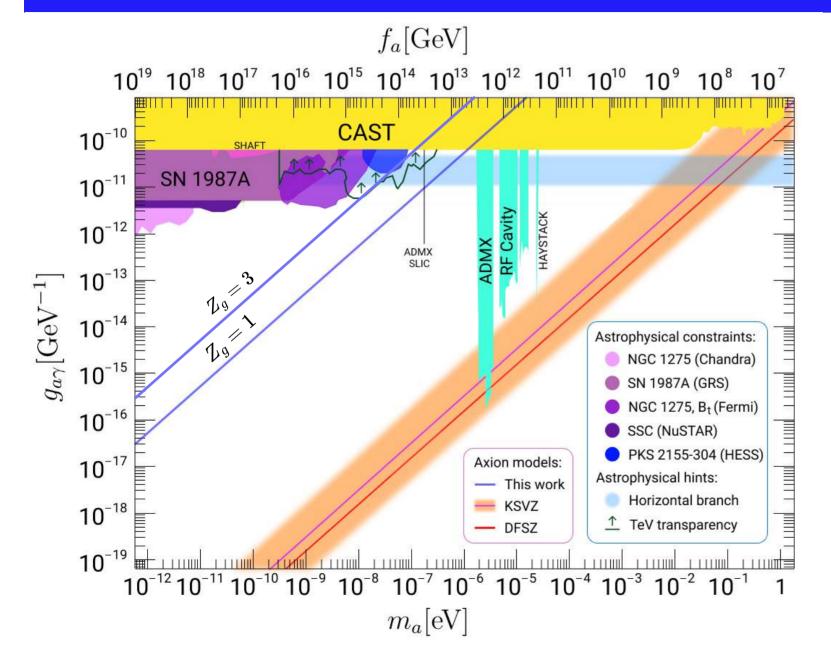
$$g_{a\gamma\gamma} = rac{e^2}{8\pi^2 f_a} \cdot \left(rac{E}{N} - 1.92
ight) = -rac{e^2}{8\pi^2 f_a} \cdot 1.26$$

· Compare with the result of the general hadronic model:

$$ilde{g}_{a\gamma\gamma} = rac{g^2}{8\pi^2 f_a} \cdot rac{M}{N} = -g_{a\gamma\gamma} \cdot rac{g^2}{e^2} \cdot rac{M/N}{1.26} \, = -g_{a\gamma\gamma} \cdot 2 \cdot 10^5 Z_g^2 \, .$$

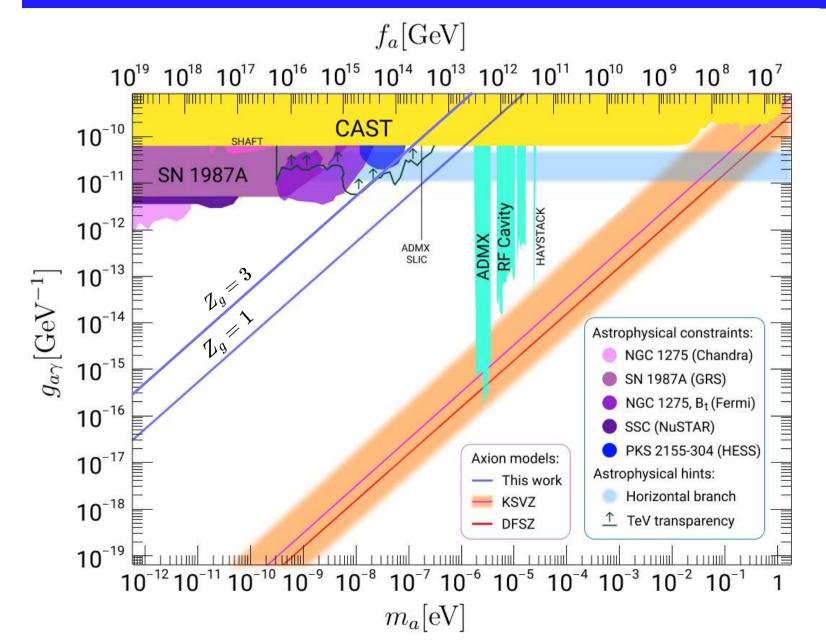
where we took into account $g=6\pi/e$

COMPARISON PLOT



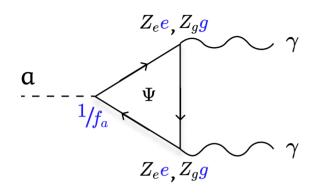
 Axion-photon coupling is hugely enhanced

COMPARISON PLOT



- Axion-photon coupling is hugely enhanced
- In the strong sector,
 the model is analogous
 to KSVZ ⇒
 - same CDM abundance
 - same EDM coupling

MIXED ELECTRIC-MAGNETIC ANOMALY COEFFICIENT



$$g_{a{\scriptscriptstyle AB}} = rac{D}{N} \cdot rac{eg}{8\pi^2 f_a} \, ,$$

$$D = \sum_{\psi} D_{\psi} = \sum_{\psi} Z_e(\psi) Z_g(\psi) \cdot d(C_{\psi}) \,.$$

- \cdot D_{ψ} magnetic anomaly coefficients
- \cdot $d(C_{\psi})$ dimension of the color representation of ψ
- CP violation is transfered from heavy dyons to axion-photon interactions

APPARENT CONTRADICTION?

• Previously in the literature, there has been a claim that the main contribution to $g_{a\gamma\gamma}$ is necessarily quantized in units $\propto e^2$.

[Agrawal et al. '17]

The argument proceeds as follows:

1)
$$\mathcal{L}\supsetrac{ag_s^2}{32\pi^2f_a}\,G^{a\,\mu
u}G^{d\,a}_{\mu
u}$$
 inv. wrt $a o a+2\pi nv_a\,,\;n\in\mathbb{Z}$ \Rightarrow $f_a=v_a/N_{
m DW}\,,\;N_{
m DW}\in\mathbb{Z}$

$$2) \quad \mathcal{L}\supset -\frac{1}{4}\,g_{a\gamma\gamma}\,a\,F^{\mu\nu}F^d_{\mu\nu} \qquad \text{inv. wrt} \qquad a\to a+2\pi n v_a\,,\,\,n\in\mathbb{Z} \quad \Rightarrow \quad g_{a\gamma\gamma}=\frac{E}{N_{\rm DW}}\frac{e^2}{4\pi^2f_a}\,,\,\,E\in\mathbb{Z}$$

(note that $N_{\mathrm{DW}}=2N$)

The second line takes advantage of the Witten effect:

$$heta_{
m em}\cdotrac{e^2}{16\pi^2}\int\! d^4x\,F^{\mu
u}F^d_{\mu
u}$$
 is physically relevant due to monopoles/topology

NO CONTRADICTION!

 In the framework of QED, we have no choice but to identify the two structures

$$heta_{
m em} \cdot rac{e^2}{16\pi^2} \int d^4x \ rac{F^{\mu
u}F^d_{\mu
u}}{} \qquad \qquad extstylength{ t US} \qquad \qquad -rac{1}{4} \ g_{a\gamma\gamma} \ a \ rac{F^{\mu
u}F^d_{\mu
u}}{}$$

- Such formalism is justified if the magnetic monopoles are treated semi-classically
- A more general formalism of QEMD allows us to see the dynamical effects of monopoles and thus leads to new couplings which are not subject to the arguments from a semi-classical treatment
- In QEMD, the Witten-effect induced coupling is still quantized:

$${\cal L} \;\supset\; -\left(\overline{j}_e + rac{e^2 a}{4\pi^2 v_a}\, j_m^\phi
ight) \cdot \left(A - \partial \phi
ight) \;, \quad j_m^\phi \propto n_m g \,, \; n_m \in {\mathbb Z} \,.$$

All dimension-five operators consistent with the symmetries:

$$egin{aligned} \mathcal{L} &= \mathcal{L}_{ ext{kin}}\left(A\,,B\,,n\,
ight) \ &-rac{1}{4}\,g_{a_{AA}}a\, ext{tr}\Big\{(\partial\wedge A)\,(\partial\wedge A)^d\Big\}\,-rac{1}{4}\,g_{a_{BB}}\,a\, ext{tr}\Big\{(\partial\wedge B)\,(\partial\wedge B)^d\Big\} \ &-rac{1}{2}\,g_{a_{AB}}a\, ext{tr}\Big\{(\partial\wedge A)\,(\partial\wedge B)^d\Big\} \ &-\left(ar{j}_e+rac{e^2a}{4\pi^2v_e}j_m^\phi
ight)\!\cdot (A-\partial\phi)-j_m\!\cdot\! B \end{aligned}$$

$$(\partial \wedge A)_{\mu
u} = \partial_{\mu} A_{
u} - \partial_{
u} A_{\mu}$$
 , $(G)^d = ilde{G}$

Kinetic part

Anomalous axion-photon interactions, CP-conserving

Anomalous axion-photon interaction, CP-violating

Witten effect induced axion-photon interaction, includes j_m^ϕ - current of 't Hooft-Polyakov monopoles

This Effective Field Theory is valid for any axion or axion-like particle. In each particular UV model, one can calculate the coefficients $g_{a{\scriptscriptstyle AA}}$, $g_{a{\scriptscriptstyle BB}}$ and $g_{a{\scriptscriptstyle AB}}$.

General feature due to the quantization condition: $g_{abb}\gg |g_{aAb}|\gg g_{aAA}$.

AXION MAXWELL EQUATIONS

Classical equations of motion corresponding to our Lagrangian are the axion Maxwell equations:

$$\partial_{\mu}F^{\mu\nu} - g_{aAA} \partial_{\mu}a F^{d\mu\nu} + g_{aAB} \partial_{\mu}a F^{\mu\nu} - \frac{e^{2}a}{4\pi^{2}v_{a}} j_{m}^{\phi\nu} = \bar{j}_{e}^{\nu} ,$$

$$\partial_{\mu}F^{d\mu\nu} + g_{aBB} \partial_{\mu}a F^{\mu\nu} - g_{aAB} \partial_{\mu}a F^{d\mu\nu} = j_{m}^{\nu} ,$$

$$(\partial^{2} - m_{a}^{2}) a = -\frac{1}{4} (g_{aAA} + g_{aBB}) F_{\mu\nu}F^{d\mu\nu} - \frac{1}{2} g_{aAB}F_{\mu\nu}F^{\mu\nu}$$

In the experimentally relevant case, in terms of electric and magnetic fields:

$$\nabla \times \mathbf{B}_{a} - \dot{\mathbf{E}}_{a} = g_{a\mathrm{AA}} \left(\mathbf{E}_{0} \times \nabla a - \dot{a} \mathbf{B}_{0} \right) + g_{a\mathrm{AB}} \left(\mathbf{B}_{0} \times \nabla a + \dot{a} \mathbf{E}_{0} \right) ,$$

$$\nabla \times \mathbf{E}_{a} + \dot{\mathbf{B}}_{a} = -\underline{g_{a\mathrm{BB}}} \left(\mathbf{B}_{0} \times \nabla a + \dot{a} \mathbf{E}_{0} \right) - \underline{g_{a\mathrm{AB}}} \left(\mathbf{E}_{0} \times \nabla a - \dot{a} \mathbf{B}_{0} \right) ,$$

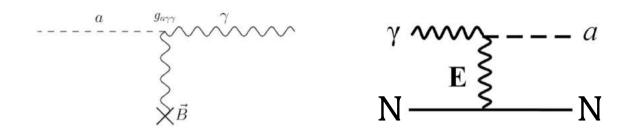
$$\nabla \cdot \mathbf{B}_{a} = -\underline{g_{a\mathrm{BB}}} \mathbf{E}_{0} \cdot \nabla a + \underline{g_{a\mathrm{AB}}} \mathbf{B}_{0} \cdot \nabla a ,$$

$$\nabla \cdot \mathbf{E}_{a} = g_{a\mathrm{AA}} \mathbf{B}_{0} \cdot \nabla a - \underline{g_{a\mathrm{AB}}} \mathbf{E}_{0} \cdot \nabla a ,$$

$$\left(\partial^{2} - m_{a}^{2} \right) a = \left(g_{a\mathrm{AA}} + g_{a\mathrm{BB}} \right) \mathbf{E}_{0} \cdot \mathbf{B}_{0} + g_{a\mathrm{AB}} \left(\mathbf{E}_{0}^{2} - \mathbf{B}_{0}^{2} \right) ,$$

where we separated external fields sustained in the detector and axion-induced fields.

AXION-PHOTON CONVERSION IN EXTERNAL FIELD



Axion-photon conversion can be calculated using the axion equation of motion:

$$\left(\partial^2-m_a^2
ight)a\,=\,\left(g_{aAA}\,+g_{aBB}
ight){f E}{f \cdot}{f B}+g_{aAB}\left({f E}^2-{f B}^2
ight)$$

• The two couplings g_{aAA} , g_{aBB} enter the equation symmetrically, which means that the conversion probability has the usual form, but $g_{aAA} \longrightarrow g_{aBB}$

HALOSCOPE EXPERIMENTS FOR LOW-MASS AXION DM

For axion DM detection, leaving only the dominant terms on the right-hand side, we obtain:

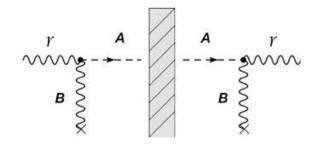
$$egin{aligned} oldsymbol{
abla} imes oldsymbol{\mathrm{B}}_a - \dot{\mathbf{E}}_a &= 0\,, \\ oldsymbol{
abla} imes oldsymbol{\mathrm{E}}_a + \dot{\mathbf{B}}_a &= -g_{a\mathrm{BB}} \left(\mathbf{B}_0 imes oldsymbol{
abla} a + \dot{a} oldsymbol{\mathrm{E}}_0 \right) + g_{a\mathrm{AB}} \dot{a} oldsymbol{\mathrm{B}}_0\,, & m_a L \ll 1 \\ oldsymbol{
abla} imes oldsymbol{\mathrm{B}}_a &= 0\,, & m_a - \mathrm{axion\ mass} \\ oldsymbol{
abla} imes oldsymbol{\mathrm{E}}_a &= 0\,, & L - \mathrm{detector\ size} \end{aligned}$$

This is to be contrasted with the conventional axion Maxwell equations used for axion DM detection:

$$egin{aligned} oldsymbol{
abla} imes oldsymbol{\mathrm{B}}_a - \dot{\mathbf{E}}_a &= -g_{a\mathrm{A}\mathrm{A}}\dot{a}\mathbf{B}_0, \\ oldsymbol{
abla} imes \mathbf{E}_a + \dot{\mathbf{B}}_a &= 0, \\ oldsymbol{
abla} imes \mathbf{B}_a &= 0, \\ oldsymbol{
abla} imes \mathbf{E}_a &= 0, \\ oldsymbol{
abla} imes \mathbf{E}_a &= 0, \end{aligned}$$

The models with and without super heavy monopoles have completely different low energy phenomenology! One should aim to measure both electric and magnetic axioninduced fields.

LSW EXPERIMENTS



For LSW experiments, the effect can be calculated using the axion equation of motion:

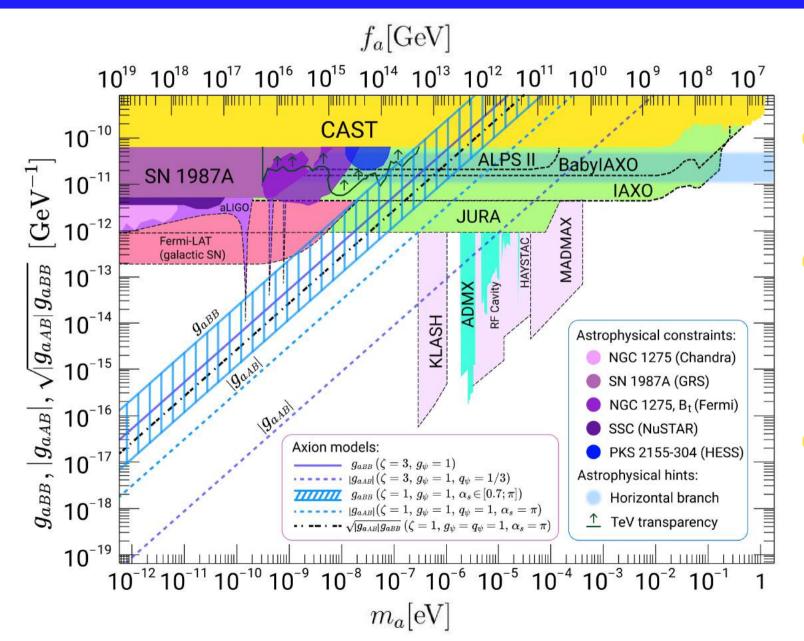
$$ig(\partial^2-m_a^2ig)a\,=\,\left(g_{aAA}\,+g_{aBB}
ight){f E}{f \cdot}{f B}+g_{aAB}\left({f E}^2-{f B}^2
ight)$$

The effect depends on the polarization of the incoming light:

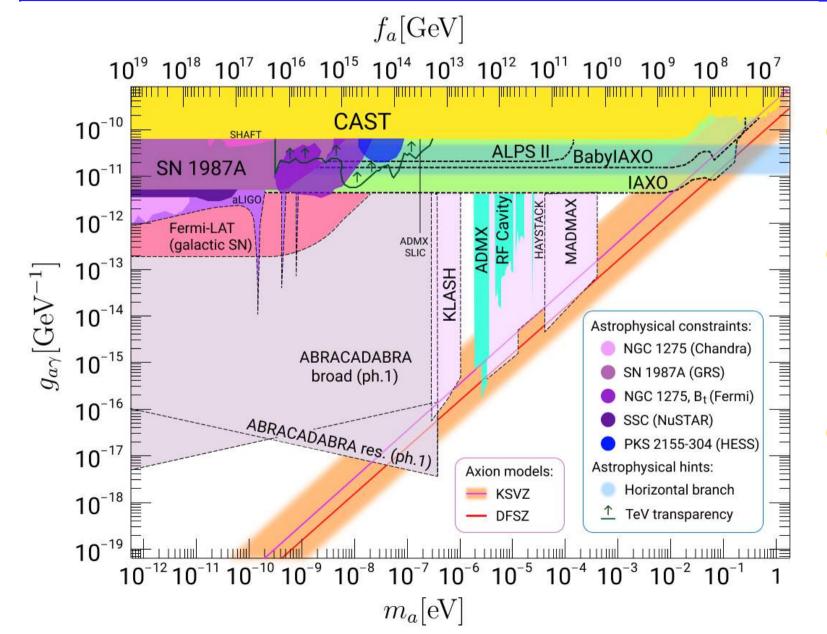
$$P(\gamma_{\parallel} \to a \to \gamma) \simeq 16 \frac{(g_{aBB}\omega B_0)^4}{m_a^8} \sin^4\left(\frac{m_a^2 L_{B_0}}{4\omega}\right),$$

$$P(\gamma_{\perp} \to a \to \gamma) \simeq 16 \frac{(g_{aAB}\omega B_0)^2 (g_{aBB}\omega B_0)^2}{m_a^8} \sin^4\left(\frac{m_a^2 L_{B_0}}{4\omega}\right)$$

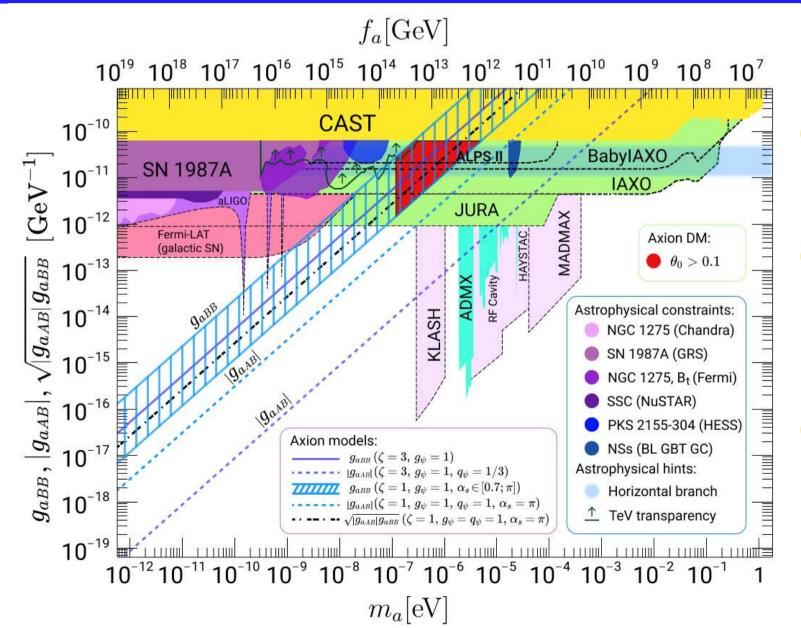
This means that in the case of a signal detected in both channels, one can compare the theoretically derived ratio of CP-violating and CP-conserving couplings in a given model with the experiment.



- Axion DM could be easier to detect
- Haloscopes with electric sensors would be useful
- ALPS II is sensitive to the QCD axion



- Axion DM could be easier to detect
- Haloscopes with electric sensors would be useful
- ALPS II is sensitive to the QCD axion



- Axion DM could be easier to detect
- Haloscopes with electric sensors would be useful
- ALPS II is sensitive to the QCD axion

$$\bullet [U_M(1) \times SU_M(3)]$$

$$\bullet [U_M(1) \times SU_M(3)]$$

QFT involving electric + magnetic non-Abelian charges is unknown

$$\bullet [U_M(1) \times SU_M(3)]$$

- QFT involving electric + magnetic non-Abelian charges is unknown
- Goddard, Nuyts and Olive made an important observation:

 $\exp(4\pi i \beta_i T_i) = 1 \quad \Rightarrow \quad \beta_i \ \text{ lie in the weight lattice of } G^V$ magnetic charges $\text{Cartan generators of } G \qquad \text{Laglands dual of } G$

$$\bullet [U_M(1) \times SU_M(3)]$$

- QFT involving electric + magnetic non-Abelian charges is unknown
- Goddard, Nuyts and Olive made an important observation

$$\exp(4\pi ioldsymbol{eta}_i T_i) = 1 \;\; \Rightarrow \;\; oldsymbol{eta}_i$$
 lie in the weight lattice of G^V

Laglands dual of G

GNO conjecture:

$$G_M = (G_E)^V$$
$$g_m = 2\pi/g$$

$$(U(1))^V = U(1)$$
 $(SU(3)/\mathbb{Z}_3)^V = SU(3)$

$$\bullet [U_M(1) \times SU_M(3)]$$

$$\bullet [U_M(1) \times SU_M(3)]$$

$$\bullet = \psi$$

Due to the GNO conjecture we introduce: $C_{\mu}=gB_{\mu}+g_{m}B_{\mu}^{a}t^{a}$

$$\bullet [U_M(1) \times SU_M(3)]$$

$$\bullet = \psi$$

Due to the GNO conjecture we introduce: $C_{\mu}=gB_{\mu}+g_{m}B_{\mu}^{a}t^{a}$

Lagrangian of the PQ field Φ and fermion ψ is standard:

$$\mathcal{L} \supset i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi + \bar{\psi}\gamma^{\mu}C_{\mu}\psi + y\left(\Phi\,\bar{\psi}_{L}\psi_{R} + \text{h.c.}\right) - \lambda_{\Phi}\left(|\Phi|^{2} - \frac{v_{a}^{2}}{2}\right)^{2}$$

$$\bullet [U_M(1) \times SU_M(3)]$$

$$\bullet = \psi$$

Due to the GNO conjecture we introduce: $C_{\mu}=gB_{\mu}+g_{m}B_{\mu}^{a}t^{a}$

Lagrangian of the PQ field Φ and fermion ψ is standard:

$$\mathcal{L} \supset i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi + \bar{\psi}\gamma^{\mu}C_{\mu}\psi + y\left(\Phi\,\bar{\psi}_{L}\psi_{R} + \text{h.c.}\right) - \lambda_{\Phi}\left(|\Phi|^{2} - \frac{v_{a}^{2}}{2}\right)^{2}$$

Since monopole ψ has color-magnetic charge, the quantization condition allows for the minimal Dirac magnetic charge value:

$$\min\{g\} = 2\pi/e$$

EFFECTIVE LOW ENERGY LAGRANGIAN

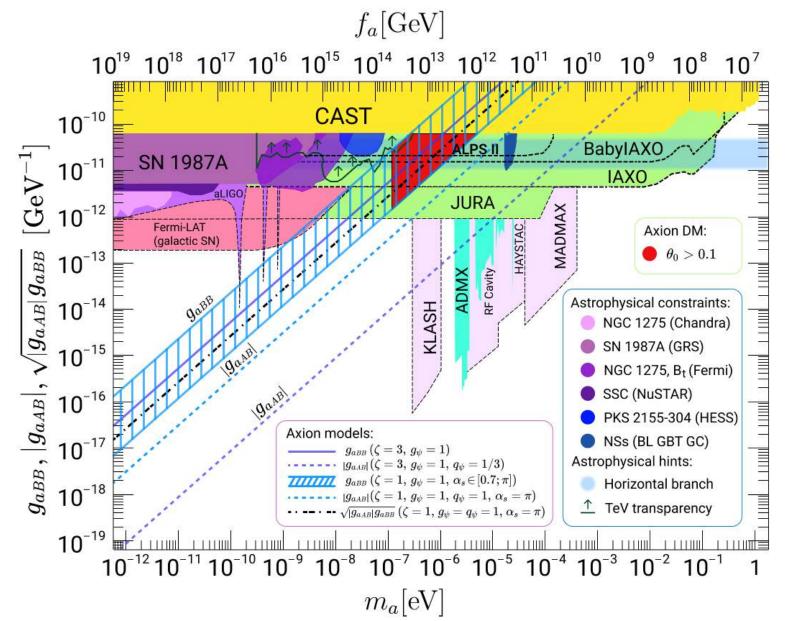
$$\bullet [U_{M}(1) \times SU_{M}(3)]$$

Low energy physics

$$\mathcal{L}_{\text{eff}} \supset -\frac{1}{4} g_{aBB}^0 a F_{\mu\nu}^B \tilde{F}_B^{\mu\nu} - \frac{ag_s^2}{32\pi^2 f_a} G_{\mu\nu}^a \tilde{G}^{a\mu\nu} + \mathcal{L}_{\text{off}}^{\text{off}}$$

$$g_{aBB}^0 = 3\alpha_s^2 / (\pi \alpha f_a)$$
0 in IR

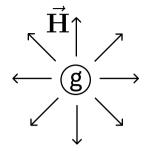
- Non-perturbative calculation
- $\mathscr{C}^{\alpha}_{\mu\nu} = \tilde{\mathscr{G}}^{\alpha}_{\mu\nu}$ for Abelian field strengths
- Abelian dominance of IR QCD suggests that $\mathcal{L}_{\mathrm{off}}$ is small
- · Axion-photon coupling is special



- Axion DM could be easier to detect
- Haloscopes with electric sensors would be useful
- ALPS II is sensitive to the QCD axion

CONCLUSIONS

- Heavy magnetic monopoles can influence low energy physics through axion-photon couplings and thus can be indirectly probed in this way.
- New axion-photon couplings were found in the EFT approach and two classes of UV-complete models featuring these couplings were constructed.
- New axion-photon couplings give unique signatures in haloscopes searching for low-mass ALP dark matter and in some other experiments.
- Axion-photon interaction can violate CP.
- Low-mass axion dark matter could be detected earlier than previously thought.
- We clarified some issues within axion theory, such as axion mass from monopoles, Witten-effect induced axion interaction and quantization of the axion-photon coupling.



THANK YOU FOR YOUR ATTENTION!

