2023_ibs_schoollecturenote:lecture_3_-_normalizing_flows http://localhost/~starlight/dokuwiki/doku.php?id=202...

Normalizing Flows

Density Estimation and generate model using neural networks learning coordinate transformation from known base
distribution to unknown data distribution (only have samples).

Two ways:

e Parametrizing transformation directly using neural network
T(Z) = NN(z;0)

e neural network learning transformation directly
¢ Planar Flow (x + tanh x)
e Sylvester flow (NN based)
e Masked Autoregressive flows
¢ Parametrizing tangent of transformation trajectory

1 —
T(2) :/ dtNN(m;H),i.e.,ili—i = NN(z;0)
0

¢ neural networks learning infinitesimal transformations.
¢ continuous normalizing flows

Continuous Normalizing Flows

Within the general class of normalizing flows, we have to choose an optimal implementation for smoothly upsampling
star particles. Continuous normalizing flows \citep[CNF;][]{ NEURIPS2018_69386f6b,grathwohl2019ffjord} are a good
candidate with an inductive bias suitable for this problem because the transformation smoothly deforms the base
distribution to the target distribution.

More specifically, CNF learns the following infinitesimal transformation,

g::y —y+ F(y,t) - dt,
g{lzﬂ%g—F(g,t)-dt.

Here, the function F' is a neural network representing the derivative dy / dt of the trajectory of transformed variables at

a latent time . The full chain of transformations is the integral of this infinitesimal transformation, and it is described by
a neural ordinary differential equation \citep[neural ODE;][]{NEURIPS2018_69386f6b},

L5(6) = F(2), 1),

i

Note that if dt is finite, the transformation g is essentially a residual block at a given time, ¥ — y + F (), where F
is the difference between the inputs and outputs of the transformation. Therefore, the neural ODE is considered as a
generalization of residual networks for normalizing flows \citep{haber2018learning,pmlr-v80-
lu18d,Haber_2018,ruthotto2020deep}, and the parameter ¢ takes the role of the flow index in the chain.

The Jacobian determinant of the transformation can be obtained by solving the following form of the Fokker-Planck
equation with zero diffusion \citep{ NEURIPS2018_69386f6b}, describing the time evolution of log probability
log p(y(t);t) along the trajectory ¥ (t) at time ¢:

Hosp(7(0:) = x|

oF
dt '

0y (t)

The trace computation of this equation is often a bottleneck during the training, so Hutchinson's trace estimator

1/2 23. 8. 4.12:53



2023_ibs_schoollecturenote:lecture_3_-_normalizing_flows http://localhost/~starlight/dokuwiki/doku.php?id=202...

\citep{ grathwohl2019ffjord} can be used to speed up the training. In our case, the cost of evaluating the trace is
manageable since we train CNFs for 3D densities; we explicitly evaluate the trace during the training.

solving equation of motion

Mean square error minimization

df df |2
L= BOMP =[5~ +d-
; ; dz dv
N
dac _ (aw, af df) i
dai 1 df(n) dﬁ(”) d’l)gn)

Solve linear system

szaj + Bz =0
where
M i df _df
iy —
n=1 dvl(.n) d'u;.n)

23. 8. 4.12:53



