
Normalizing Flows

Density Estimation and generate model using neural networks learning coordinate transformation from known base

distribution to unknown data distribution (only have samples).

Two ways:

• Parametrizing transformation directly using neural network

• neural network learning transformation directly

• Planar Flow (x + tanh x)

• Sylvester flow (NN based)

• Masked Autoregressive flows

• Parametrizing tangent of transformation trajectory

• neural networks learning infinitesimal transformations.

• continuous normalizing flows

Continuous Normalizing Flows

Within the general class of normalizing flows, we have to choose an optimal implementation for smoothly upsampling

star particles. Continuous normalizing flows \citep[CNF;][]{NEURIPS2018_69386f6b,grathwohl2019ffjord} are a good

candidate with an inductive bias suitable for this problem because the transformation smoothly deforms the base

distribution to the target distribution.

More specifically, CNF learns the following infinitesimal transformation,

Here, the function is a neural network representing the derivative of the trajectory of transformed variables at

a latent time . The full chain of transformations is the integral of this infinitesimal transformation, and it is described by

a neural ordinary differential equation \citep[neural ODE;][]{NEURIPS2018_69386f6b},

Note that if is finite, the transformation is essentially a residual block at a given time, , where

is the difference between the inputs and outputs of the transformation. Therefore, the neural ODE is considered as a

generalization of residual networks for normalizing flows \citep{haber2018learning,pmlr-v80-

lu18d,Haber_2018,ruthotto2020deep}, and the parameter takes the role of the flow index in the chain.

The Jacobian determinant of the transformation can be obtained by solving the following form of the Fokker-Planck

equation with zero diffusion \citep{NEURIPS2018_69386f6b}, describing the time evolution of log probability

 along the trajectory at time :

The trace computation of this equation is often a bottleneck during the training, so Hutchinson's trace estimator

T (→x) = NN(x; θ)

T (→x) = ∫
1

0

dtNN(x; θ), i. e. , = NN(x; θ)
d→x

dt

gt : →y → →y + F(→y , t) ⋅ dt,

g−1
t : →y → →y − F(→y , t) ⋅ dt.

F d→y/dt

t

→y(t) = F(→y(t), t).
d

dt

dt gt →y → →y + F(→y) F

t

log p(→y(t); t) →y(t) t

log p(→y(t); t) = −Tr [] .
d

dt

∂F

∂→y(t)

2023_ibs_schoollecturenote�lecture_3_�_normalizing_flows http���localhost��starlight�dokuwiki�doku�php�id=202���

1���2 23��8��4��12�53

\citep{grathwohl2019ffjord} can be used to speed up the training. In our case, the cost of evaluating the trace is

manageable since we train CNFs for 3D densities; we explicitly evaluate the trace during the training.

solving equation of motion

Mean square error minimization

Solve linear system

where

L =
n

∑
i=1

|EOM|
2

=
n

∑
i=1

∣
∣
∣
→v ⋅ + →a ⋅

∣
∣
∣

2df

d→x

df

d→v

=
N

∑
n=1

(→v
(n)

⋅ + →a ⋅) = 0
dL

dai

df

d→x
(n)

df

d→v
(n)

df

dv
(n)
i

Mijaj + Bi = 0

Mij =
N

∑
n=1

df

dv
(n)
i

df

dv
(n)
j

Bi =
N

∑
n=1

→v
(n)

⋅
df

d→x
(n)

df

dv
(n)
i

2023_ibs_schoollecturenote�lecture_3_�_normalizing_flows http���localhost��starlight�dokuwiki�doku�php�id=202���

2���2 23��8��4��12�53

