
Generative Models

ML models that generates data similar to the training dataset.

Neural network transforming random noise (usually Gaussian) to samples from the unknown data distribution .

• Generative Adversarial Neural Networks (GAN)

• Variational Autoencoders (VAE)

• Normalizing Flows

• Diffusion Models

In particular, noramlzing flows and diffusion models are interesting since they're also giving us estimated probablity function

. GAN and VAE is not estimating the density but only generates samples.

Physics Problem: measuring stellar phase space density

and DM density of Milky Way

by measuring star's trajectory, we could measure gravitational acceleration field in the Milky way,

But we can measure MW in only limited time, so the trajectory information is limited.

Instead, we may consider the stars as hydrodynamic system, and solve equation of motion to infer the gravitational field.

each stars is I.I.D, so we may write the phase space density as 6D probability function of position and velocity 

If Milky way is in approximate kinematic equilibrium, , and the above equation can be solved for  if we

estimate  from the data.

Density estimation

Statement of problem: given data  from unknown probablity denstiy , estimate  only using the

data.

Histograms

• cons

• binned. (result is boxy)

• doesn't scale well with data dimension

Kernel Density Estimation

kernel density estimation [https://en.wikipedia.org/wiki/kernel density estimation]

• cons
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• expensive

• estimating smeared density

Alternatives?

Parametric Density Estimation

Predefine parametric family of densities interested (more likely)

• Gaussian 

If this family of densities cover the true density, we could estimate the parameter of family using MLE and use the selected

model as a smooth density estimation result.

Loss function: again, negative log likelihood (Maximum Likelihood estimation of parameters)

Proof:

Lagrange multiplier method with constraint  : integral of probablity density = 1

First equation yields the constraint between  and 

So plugging this to second equation yields

This implies the stationary point of  is at

i.e.,

Example: 1D Gaussian

let  sample drawn from Gaussian 
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The maximum likelihood estimator

Gives us mean and variance of the data, estimating the Gaussian distribution correctly. (up to bias factor)

Normalizing Flows

Reviews:

• 1908.09257 [https://arxiv.org/abs/1908.09257]

• 1912.02762 [https://arxiv.org/abs/1912.02762]

Neural network learning coordinate transformations between random variables

This is coordinate transform, so it requires

• T must be bijective

But if T is very complicated, the Jacobian determinant is complicated to calculate

• we use relatively simple transformation  whose Jacobian is easy to evaluate.

• after then we stack up transformations in order to model highly expressive coordinate transformation.

• 

Examples:

• affine flow: 

• planar flow: 

• sylvester flow:  (resnet)

Masked Autoregressive Flows

ref: 1705.07057 [https://arxiv.org/abs/1705.07057]
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T : x → Wx + B
T : x → x + U tanh(Wx + B)

T : x → x + NN(x; θ)
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In the case of modeling multivariate distributions, constructing simple multivariate bijections is not itself straightforward. To

overcome this, MAFs use autoregressive modeling of probability density, which utilizes the chain rule of probability in order

to model a simple multivariate bijection as a product of simple conditioned univariate bijections. The chain rule says that a

joint probability  can be written in terms of conditionals ,

where  denotes a tuple  which is a subset of the elements of . We only need to model conditioned

univariate bijections for each  in order to construct a simple multivariate bijection.

In particular, we use affine MAFs whose conditional probability  is Gaussian if the base distribution is the

standard normal distribution. The corresponding transformation from  to  is defined as follows.

where  and  are the mean and standard deviation parameters of , respectively.

• Advantage: Jacobian matrix is triangular, so we can simply estimate the Jacobian determinant as the product of

diagonals.

• inverse transformation is also easy to evaluate.: 

• so the density can be evaluated very fast!

But this algorithm is slow for sample generation evaluating  in the following way.

• 

• 

• 

• 

• 

The parameter functions  and  are modeled by a multilayer perceptron with masking, following the

Masked Autoencoder for Density Estimation (MADE) 1502.03509 [https://arxiv.org/abs/1502.03509] approach. The masking

turns off connections to -th output from -th inputs with , so that we may use this MADE block to build a model for

the parameter functions of accumulated tuples  as follows.

We use  here to make  positive definite.
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Show video

Continuous Normalizing Flows

next lecture…

• Parametrizing transformation directly using neural network

• neural network learning transformation directly

• Planar Flow (x + tanh x)

• Sylvester flow (NN based)

• Masked Autoregressive flows

• Parametrizing tangent of transformation trajectory

• neural networks learning infinitesimal transformations.

• continuous normalizing flows

T (→x) = NN(x; θ)

T (→x) = ∫
1

0

dtNN(x; θ), i. e. , = NN(x; θ)
d→x

dt
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