Expressing non-Abelian gauge-field dynamics in the quantum age

Jesse Stryker

Al and Quantum Information for Particle
Physics Workshop
Korea Advanced Institute of Science and
Technology
2023-11-15

Motivation

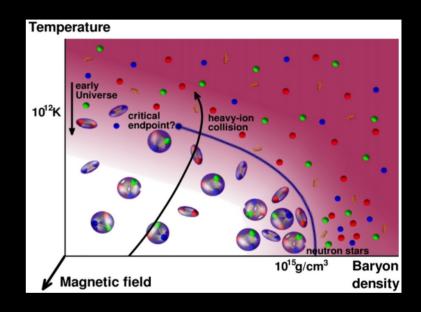
Physics targets:

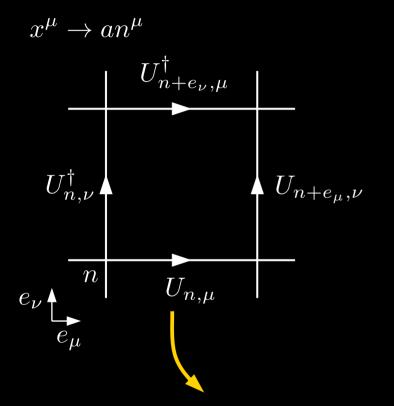
- Simulation of quantum chromodynamics
 - Hadronization
 - Microscopic understanding of scattering events
- Complete phase diagram of QCD
- Post-collision thermalization
- Roles of entanglement in HEP
- + more

Bauer, Davoudi et al. (2021) Snowmass report

How to make these predictions?

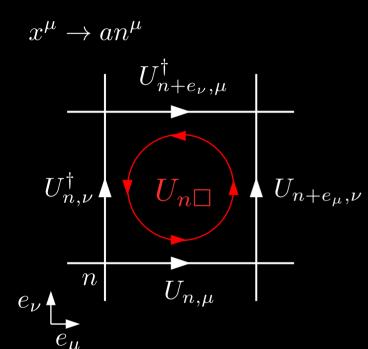
- Nonperturbative problems
 - → Numerically simulate QCD degrees of freedom





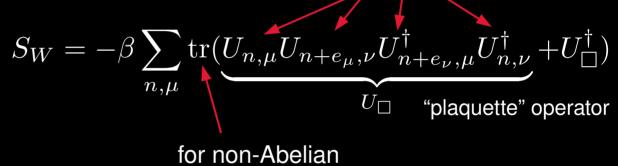
- Defines a field theory nonperturbatively
- Spacetime discretized with a lattice (e.g. square, cubic, hypercubic)
- Matter particles such as quarks "live" on the sites
- Gauge bosons live on oriented links joining sites
- Gauge fields belonging to some (Lie) group—the "gauge group" G

$$\begin{pmatrix} -0.7485 & -0.2744 - 0.6037i \\ 0.2744 - 0.6037i & -0.7485 \end{pmatrix}$$



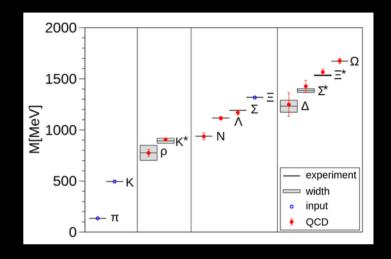
Wilson's gauge action, S_w

"link operator" matrices in gauge group G



In classical simulations, $\exp(-S_w)$ acts like a probably weight for the configuration – Monte Carlo integration

- Successes
 - (light) hadron spectrum
 - some scattering amplitudes (Luscher formalism + generalizations)
 - muon g-2: hadronic vacuum polarization
- Drawbacks
 - dynamical fermions dramatically raise cost
 - (best for) static properties / thermal equilibrium



BMW collab., 2009

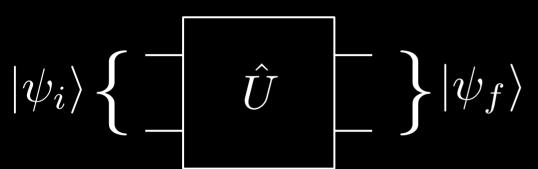
- Limitations to Monte Carlo
 - Wick rotation to imaginary time underlies Euclidean path integral

$$\langle \hat{A} \rangle = \frac{\int [D\phi] e^{iS_M[\phi]A[\phi]}}{\int [D\phi] e^{iS_M[\phi]}} \to \frac{\int [D\phi] e^{-S_E[\phi]A[\phi]}}{\int [D\phi] e^{-S_E[\phi]}}$$
$$\int_{-\infty}^{\infty} dt \to \int_{-i\infty}^{i\infty} dt$$

- $e^{iS_M[\phi]}$: violently oscillatory, $e^{-S_E[\phi]}$: dominated by saddle points
- $i S_M \rightarrow -S_E$ may still be complex (theta term, chemical potential)
- Finite Minkowskian time intervals preclude simply rotating the time-integration contour. Stuck with $i S_M$!

Classical problems; quantum solutions?

Digital quantum computers:



- Unitary gates: $e^{-it\hat{H}}$ with Hamiltonian of interest
- Want to simulate nonperturbative gauge theory
 - → Gauge theory on the lattice
 - → Hamiltonian lattice gauge theory
- Has no apparent sign problems

General problem:

How to map a Hilbert space $\mathcal H$, and $\hat H$, on to qubits & quantum gates?

Hamiltonian lattice gauge theory

- Temporal gauge, continuous-time limit → Kogut-Susskind Hamiltonian formulation
- Gauge fields on spatial links with on-link Hilbert spaces

• E.g., SU(2)

Gauge transformations: $\hat{U}_{n,i}
ightarrow \Omega_n \hat{U}_{n,i} \Omega_{n+e_i}^\dagger$

• Rotations from the left (Ω_n) and right $(\Omega_{n+ei})^n$ are generated by "left" and "right" electric fields

Left and right electric fields each have colorcharge components, in addition to spatial components

Phys. Rev. D 11, 395 (1975)

$$\begin{aligned} [\hat{E}_{L/R}^{\alpha}, \hat{E}_{L/R}^{\beta}] &= i f^{\alpha\beta\gamma} \hat{E}_{L/R}^{\gamma} \\ [\hat{E}_{R}^{\alpha}, \hat{U}_{mm'}] &= (\hat{U}T^{\alpha})_{mm'} \\ [\hat{E}_{L}^{\alpha}, \hat{U}_{mm'}] &= -(T^{\alpha}\hat{U})_{mm'} \end{aligned}$$

canonical commutation relations for a link

3-sphere graphic credit: © 2006 by Eugene Antipov Dual-licensed under the GFDL and CC BY-SA 3.0

Hamiltonian lattice gauge theory

Lattice gauge theory Hilbert space structure

Non-Abelian group, e.g. SU(2)

U adds representations

$$egin{aligned} U_{m,m'} &|j,M,M'
angle = \ C_{+}(j,m,m',M,M') imes \ & imes |j+1/2,M+m,M'+m'
angle \ &+ C_{-}(j,m,m',M,M') imes \ & imes |j-1/2,M+m,M'+m'
angle \end{aligned}$$
 SU(2) example for the

2x2 link operator

Non-Abelian Hamiltonian

$$\hat{H}_E = \frac{g^2}{2} \sum_{n,i} \hat{E}_{n,i}^{\alpha} \hat{E}_{n,i}^{\alpha}$$

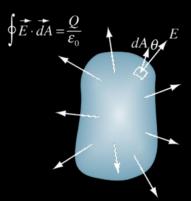
$$\hat{H}_B = -\sum_n \frac{1}{2g^2} \operatorname{tr}(\hat{U}_{n,\square} + \hat{U}_{n,\square}^{\dagger})$$

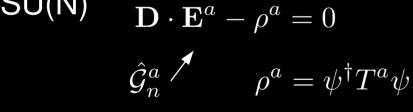
Hamiltonian lattice gauge theory

Plus Gauss law constraints

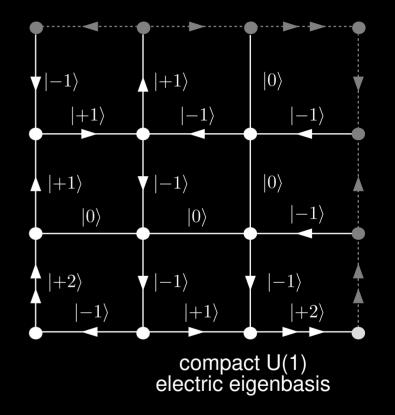
U(1)
$$\nabla \cdot \mathbf{E} - \rho = 0$$

$$\hat{\mathcal{G}}_n \qquad \rho = \psi^{\dagger} \psi$$
SU(N)
$$\mathbf{D} \cdot \mathbf{E}^a - \rho^a = 0$$









Expressing gauge-field dynamics in the quantum age

KAIST 2023-11-15

Outline

- Formulations & bases
- SU(2) Schwinger boson formulation
- SU(2) Loop-string-hadron formulation
- Applications within quantum computing

Formulations & bases

- Thanks to redundancy, Hamiltonian lattice gauge theories seem to enjoy lots of different formulations
- Hamiltonian "formulation" meaning... *
 - set of degrees of freedom often local
 - set of fields used to construct Hamiltonian/observables
 - algebraic (commutation) relations
 - constraints
 - (optional truncation scheme)

Formulations & bases

- Formulation ≠ basis!
 - But: Formulations are often associated with, or defined in terms of, a particular basis
 - Colloquially, different bases are at times called different "formulations" too...
- A formulation isn't intrinsically tied to a particular Hamiltonian either different choices are possible!
 - In practice, there usually is an implicit or explicit choice
 - We need at least one choice of Hamiltonian in order to do anything with the formulation. Constraints descend from the Hamiltonian.
- Basis choice is generally either <u>electric</u> or <u>magnetic</u>

Formulations & bases: Examples

- Kogut-Susskind formulation
 - Irrep/"angular momentum" basis
 Byrnes, Yamamoto, Zohar, Burrello, et al.
 - Group-element basis Zohar, NuQS collab., et al.
- Gauge magnets/quantum link models Wiese, Chandrasekharan, et al.
- Tensor lattice field theory
 Meurice, Sakai, Unmuth-Yockey, et al.
- Dual/rotor formulations Kaplan, **JRS**, Haase, Dellantonio, et al., Bauer, Grabowska, et al.
- Casimir variables / "local-multiplet basis"
 Klco, Savage, JRS, Ciavarella
- Purely fermionic formulations (1+1D & OBC)
 Muschik, Atas, Zhang, IQuS@UW group, Powell, et al.
- Prepotential/Schwinger boson formulations Mathur, Anishetty, Raychowdhury, et al.

- Loop-string-hadron formulation
 Raychowdhury, JRS, Davoudi, Shaw,
 Dasgupta, Kadam
- Light-front formulation Kreshchuk, Kirby, Love, Yao, et al.
- Qubit models Chandrasekharan, Singh, et al.
- q-deformed Kogut-Susskind
 Zache, González-Cuadra, Zoller
- Scalar field theory...
 - Harmonic oscillator basis
 Klco & Savage
 - Single-particle basis
 Barata, Mueller, Tarasov, Venugopalan
 - Future gauge-field generalizations??

Choice of basis

Most common basis choice: Electric/irrep

Electric-basis pros

- States naturally discretized (for compact Lie groups)
- Gauss's law a function of electric fields
- Natural "UV" truncation scheme

Electric-basis cons

- Better-suited to strong coupling (opposite of continuum QCD)
- Many off-diagonal operators in 3+1 Hamiltonian

Electric truncation

- Lie group Hilbert spaces are locally infinite-dimensional
- Digital quantum simulation requires truncations
 - Common choices: Finite subgroups, electric cutoff on irreps

Provably accurate simulation of gauge theories and bosonic systems

Yu Tong^{1,2}, Victor V. Albert³, Jarrod R. McClean¹, John Preskill^{4,5}, and Yuan Su^{1,4}
April 4th, 2022

- Tong et al., '22:
 - formal analysis on error in time evolution operator
 - U(1) and SÚ(2) LGTs considered in electric bases
 - Find: For fixed error ε and lattice parameters, required electric cutoff grows at worst linearly in time T and polylog(1/ ε)

Choice of basis

Group-element basis pros

- Link operators are diagonalized
- No Clebsch-Gordon coefficients
- Naively good for weak-coupling limit

A detail of Spinoza monument in Amsterdam. © Dmitry Feichtner-Kozlov

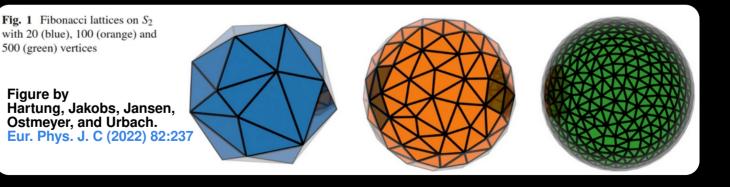
Group-element basis cons

- Limited number of regular subgroups for SU(N)
 - Limited "resolution" with subgroups
 - 120 elements for SU(2)
 - 1080 for SU(3) [NuQS collab.]
- Subsets generally do not preserve gauge symmetryElectric fields become tricky

Choice of basis

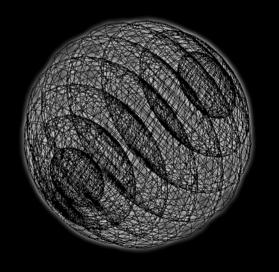
- $E^{\alpha}E^{\alpha}$ is Laplace-Beltrami differential operator on the group manifold
- How to define derivatives on a subgroup or discrete subset? How to preserve gauge invariance?
- Only recently has this question been taken up by some groups in the context of quantum simulation

Jakobs, Garofalo, et al. 2304.02322 Mariani, Pradhan, and Ercolessi. [2301.12224] Ji, Lamm, and Ju. Phys. Rev. D 102, 114513 (2020)



SU(2) example

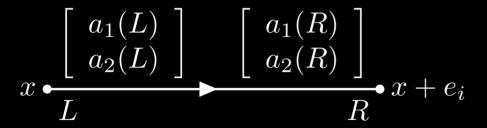
- Prototype non-Abelian gauge theory: SU(2), 1+1
- Matter: fundamental 'quarks'
- Goal: Examine <u>Schwinger-boson</u> and its derivative <u>loop-string-hadron</u> formulation as simulation candidates



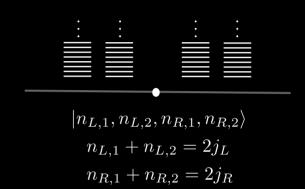
© 2006 by Eugene Antipov / Dual-licensed under the GFDL and CC BY-SA 3.0

Step 1: Start with **Schwinger boson** ("prepotential") formulation.

 Represents gauge field operators using many simple harmonic oscillators *



- One bosonic doublet per end, per link
 - → Four total oscillators per link
- Gauge Hilbert space → tensor product of SHOs



Gauge transformations:

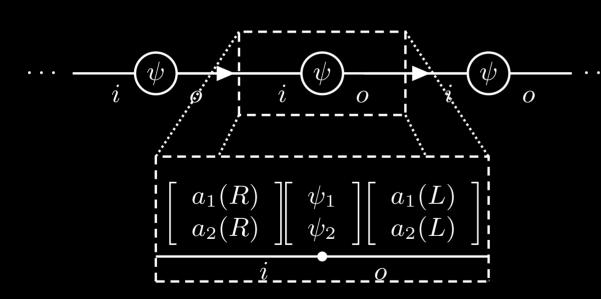
$$a(L) \to \Omega(x)a(L)$$

 $a(R) \to \Omega(x + e_i)a(R)$
 $\Omega(x), \Omega(x + e_i) \in SU(2)$

^{*} Papers by Anishetty, Mathur, Raychowdhury, Sharatchandra

Step 2: Add staggered fermions

Two-color doublet



- One fermionic doublet per site
- Fock space to characterize lattice

Gauge transformations:

$$\psi(x) \to \Omega(x)\psi(x)$$

$$\Omega(x) \in \mathrm{SU}(2)$$

Step 3a: Represent E, U algebra

3b: Impose "Abelian Gauss law"

$$E_L^{\alpha} \equiv \hat{a}^{\dagger}(L)T^{\alpha}\hat{a}(L)$$

 $E_R^{\alpha} \equiv \hat{a}^{\dagger}(R)T^{\alpha}\hat{a}(R)$

$$\mathcal{N}_{L/R} = \hat{a}^{\dagger}(L/R) \cdot \hat{a}(L/R)$$

$$\mathcal{N}_L(x,i) | \text{phys} \rangle = \mathcal{N}_R(x + e_i, i) | \text{phys} \rangle$$

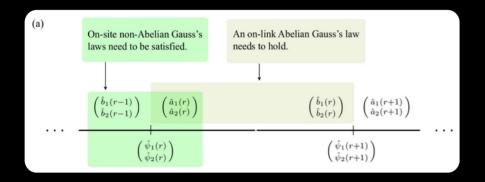
$$\hat{U}(x,i) = \hat{U}_L(x)\hat{U}_R(x+e_i) ,$$

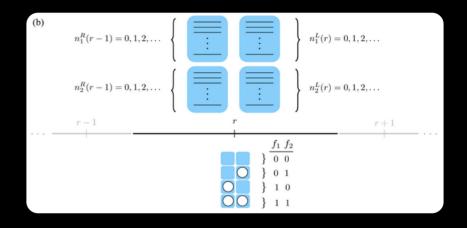
$$\hat{U}_L(x,i) = \frac{1}{\sqrt{\mathcal{N}_L + 1}} \begin{pmatrix} \hat{a}_2^{\dagger}(L) & \hat{a}_1(L) \\ -\hat{a}_1^{\dagger}(L) & \hat{a}_2(L) \end{pmatrix} \Big|_{x,i}$$

$$\hat{U}_R(x,i) = \begin{pmatrix} \hat{a}_1^{\dagger}(R) & \hat{a}_2^{\dagger}(R) \\ -\hat{a}_2(R) & \hat{a}_1(R) \end{pmatrix} \frac{1}{\sqrt{\mathcal{N}_R + 1}} \Big|_{x,i}$$

Supplementary constraint from introducing extra dof's

Pictorial summary of Schwinger boson DOFs





$$E_L^{\alpha} = a^{\dagger} \cdot \frac{\sigma^{\alpha}}{2} \cdot a \qquad E_R^{\alpha} = b^{\dagger} \cdot \frac{\sigma^{\alpha}}{2} \cdot b$$

$$U = \frac{1}{\sqrt{a^{\dagger} \cdot a + 1}} \begin{pmatrix} -a_1 b_2 + a_2^{\dagger} b_1^{\dagger} & a_1 b_1 + a_2^{\dagger} b_2^{\dagger} \\ -a_2 b_2 - a_1^{\dagger} b_1^{\dagger} & a_2 b_1 - a_1^{\dagger} b_2^{\dagger} \end{pmatrix} \frac{1}{\sqrt{a^{\dagger} \cdot a + 1}}$$

Loop-string-hadron formulation, SU(2)

Going further: Exploit doublets to make SU(2) singlets

Notice:

$$f \to \Omega \cdot f$$
$$(\epsilon f^*) \to \Omega \cdot (\epsilon f^*)$$
$$f = a(L), a(R), \psi$$

So use the doublets and their duals from a site to make manifestly Ω -invariant bilinears (have Ω [†] and Ω cancel)

Examples:

$$a(L/R)^{\dagger} \cdot a(L/R) = a_1^{\dagger} a_1 + a_2^{\dagger} a_2$$

$$\psi^{\dagger} \cdot \psi = \psi_1^{\dagger} \psi_1 + \psi_2^{\dagger} \psi_2$$

$$(\epsilon a(L)^*)^{\dagger} \cdot a(R) = a_1(R) a_2(L) - a_2(R) a_1(L)$$

$$(\epsilon \psi^*)^{\dagger} \cdot \psi = -(\psi_1 \psi_2 - \psi_2 \psi_1) = 2\psi_2 \psi_1$$

In this way we can form 17 bilinears that are exactly invariant under Ω

These special operators do not "know" a way to violate color charge conservation

I. Raychowdhury & JRS PRD 101, 114502 (2020) PRResearch 2, 033039 (2020)

Jesse Stryker

Expressing gauge-field dynamics in the quantum age

KAIST 2023-11-15

Loop-string-hadron formulation, SU(2)

 $\widehat{\mathfrak{S}}$ $\equiv \mathcal{H}^{++}$

$$\mathcal{L}^{++} = a(R)^{\dagger}_{\alpha}a(L)^{\dagger}_{\beta}\epsilon_{\alpha\beta}$$

$$\mathcal{L}^{--} = a(R)_{\alpha}a(L)_{\beta}\epsilon_{\alpha\beta} = (\mathcal{L}^{++})^{\dagger}$$

$$\mathcal{L}^{+-} = a(R)^{\dagger}_{\alpha}a(L)_{\beta}\delta_{\alpha\beta}$$

$$\mathcal{L}^{-+} = a(R)_{\alpha}a(L)^{\dagger}_{\beta}\delta_{\alpha\beta} = (\mathcal{L}^{+-})^{\dagger}$$

$$\mathcal{S}^{++}_{\text{in}} = a(R)^{\dagger}_{\alpha}\psi^{\dagger}_{\beta}\epsilon_{\alpha\beta}$$

$$\mathcal{S}^{--}_{\text{in}} = a(R)_{\alpha}\psi_{\beta}\epsilon_{\alpha\beta} = (\mathcal{S}^{++}_{\text{in}})^{\dagger}$$

$$\mathcal{S}^{+-}_{\text{in}} = a(R)^{\dagger}_{\alpha}\psi_{\beta}\delta_{\alpha\beta}$$

$$\mathcal{S}^{-+}_{\text{in}} = a(R)_{\alpha}\psi^{\dagger}_{\beta}\delta_{\alpha\beta} = (\mathcal{S}^{+-}_{\text{in}})^{\dagger}$$

$$\mathcal{H}^{++} = -\frac{1}{2!}\psi^{\dagger}_{\alpha}\psi^{\dagger}_{\beta}\epsilon_{\alpha\beta}$$

$$\mathcal{H}^{--} = \frac{1}{2!}\psi_{\alpha}\psi_{\beta}\epsilon_{\alpha\beta} = (\mathcal{H}^{++})^{\dagger}$$

4 'loop' + 4 'in string' + 4 'out string' + 2 'hadron' operators (+ 3 number operators)

 $\widehat{\circ}\widehat{\circ}$ $\equiv \mathcal{H}^{--}$

In this way we can form 17 bilinears that are exactly invariant under Ω

These special operators do not "know" a way to violate color charge conservation

I. Raychowdhury & JRS PRD 101, 114502 (2020) PRResearch 2, 033039 (2020)

_____ "LSH"

Physical, SU(2)-invariant interpretations

$\mathcal{L}^{++}(x) \equiv \frac{\widehat{}}{x}$	Chasta unit of govern flow
	Create unit of gauge flux.
$\mathcal{L}^{}(x) \equiv \frac{1}{x}$	
\mathcal{L} $(x) = x$	Destroy unit of gauge flux.
c+- ()	
$\mathcal{L}^{+-}(x) \equiv \frac{}{x}$	Change matter-sourced flux direction. $(d > 1)$
c=+()^	
$\mathcal{L}^{-+}(x) \equiv \frac{x}{x}$	Change matter-sourced flux direction. $(d > 1)$
	œ
$\mathcal{H}^{++}(x) \equiv \qquad \mathbf{c}$	Create a hadron.
,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	
$\mathcal{H}^{}(x) \equiv \qquad x$	Destroy a hadron.

This *is* the physical intuition for interacting SU(2) excitations

SU(2) = pseudoreal flux = unoriented

VS

U(1) = complex flux = oriented

... string (S) operators are more involved ...

Identified the loop-string-hadron (LSH) operators

- Manifestly SU(2)-invariant
- Transparent physical interpretations
- Can construct Hamiltonian in terms of them

"Hard" terms

"Easy" terms

$$\hat{H}_M \to m_0 \sum_x (-)^x \mathcal{N}_{\psi}(x)$$

$$\hat{H}_E \to \frac{g_0^2}{4} \sum_{x} \left[\frac{1}{2} \mathcal{N}_R(x) \left(\frac{1}{2} \mathcal{N}_R(x) + 1 \right) + \frac{1}{2} \mathcal{N}_L(x) \left(\frac{1}{2} \mathcal{N}_L(x) + 1 \right) \right]$$

$$\hat{H}_{I} \to \sum_{x} \frac{1}{\sqrt{\mathcal{N}_{L}(x) + 1}} \left[\sum_{\sigma = \pm} \mathcal{S}_{\text{out}}^{+,\sigma}(x) \mathcal{S}_{\text{in}}^{\sigma,-}(x+1) \right] \times \frac{1}{\sqrt{\mathcal{N}_{R}(x+1) + 1}} + \text{H.c.}$$

$$\begin{split} \hat{\psi}^{\dagger}(x)\hat{U}_L(x) &= \frac{1}{\sqrt{\mathcal{N}_L(x)+1}} \left(\mathcal{S}_{\text{out}}^{++}(x), \quad \mathcal{S}_{\text{out}}^{+-}(x) \right), \\ \hat{U}_R(x)\hat{\psi}(x) &= \left(\frac{\mathcal{S}_{\text{in}}^{+-}(x)}{\mathcal{S}_{\text{in}}^{--}(x)} \right) \frac{1}{\sqrt{\mathcal{N}_R(x)+1}}. \end{split}$$

LSH operators also define an SU(2)-singlet basis

- Take a reference state, e.g., 0 flux & 0 fermions
- Act locally with any product of LSH operators
- Result is SU(2)-invariant

The "catch" of this framework is non-automatic flux conservation *along links*.

$$\begin{aligned} ||n_{l},n_{i}=0,n_{o}=0\rangle &\equiv (\mathcal{L}^{++})^{n_{l}}|0\rangle \\ ||n_{l},n_{i}=0,n_{o}=1\rangle &\equiv (\mathcal{L}^{++})^{n_{l}}\mathcal{S}_{\mathrm{out}}^{++}|0\rangle \\ ||n_{l},n_{i}=1,n_{o}=0\rangle &\equiv (\mathcal{L}^{++})^{n_{l}}\mathcal{S}_{\mathrm{in}}^{++}|0\rangle \\ ||n_{l},n_{i}=1,n_{o}=1\rangle &\equiv (\mathcal{L}^{++})^{n_{l}}\mathcal{H}^{++}|0\rangle \\ ||n_{l},n_{i}=1,n_{o}=0\rangle &= (\mathcal{L}^{++})^{n_{l}}\mathcal{H$$

Can compute LSH-operator matrix elements using the orthonormal basis

 All operators 'factorized' into diagonal matrices and 'normalized ladder operators' (one-sparse, binary matrices)

Loop-string-hadron operator factorizations

$$\mathcal{L}^{++} = \Lambda^{+} \sqrt{(\mathcal{N}_{l} + 1)(\mathcal{N}_{l} + 2 + (\mathcal{N}_{i} \oplus \mathcal{N}_{o}))}$$

$$\mathcal{L}^{--} = \Lambda^{-} \sqrt{\mathcal{N}_{l}(\mathcal{N}_{l} + 1 + (\mathcal{N}_{i} \oplus \mathcal{N}_{o}))}$$

$$\mathcal{L}^{+-} = -\chi_{i}^{\dagger} \chi_{o}$$

$$\mathcal{L}^{-+} = \chi_{i} \chi_{o}^{\dagger}$$

$$\mathcal{S}_{\text{in}}^{++} = \chi_{i}^{\dagger} (\Lambda^{+})^{\mathcal{N}_{o}} \sqrt{\mathcal{N}_{l} + 2 - \mathcal{N}_{o}}$$

$$\mathcal{S}_{\text{in}}^{--} = \chi_{i} (\Lambda^{-})^{\mathcal{N}_{o}} \sqrt{\mathcal{N}_{l} + 2 - \mathcal{N}_{o}}$$

$$\mathcal{S}_{\text{out}}^{++} = \chi_{o}^{\dagger} (\Lambda^{+})^{\mathcal{N}_{i}} \sqrt{\mathcal{N}_{l} + 2 - \mathcal{N}_{i}}$$

$$\mathcal{S}_{\text{out}}^{--} = \chi_{o} (\Lambda^{-})^{\mathcal{N}_{i}} \sqrt{\mathcal{N}_{l} + 2 - \mathcal{N}_{i}}$$

$$\mathcal{S}_{\text{out}}^{--} = \chi_{o} (\Lambda^{-})^{1 - \mathcal{N}_{i}} \sqrt{\mathcal{N}_{l} + 2 - \mathcal{N}_{i}}$$

$$\mathcal{S}_{\text{in}}^{--} = \chi_{o}^{\dagger} (\Lambda^{-})^{1 - \mathcal{N}_{i}} \sqrt{\mathcal{N}_{l} + 2 \mathcal{N}_{i}}$$

$$\mathcal{S}_{\text{in}}^{+-} = \chi_{o}^{\dagger} (\Lambda^{-})^{1 - \mathcal{N}_{i}} \sqrt{\mathcal{N}_{l} + 2 \mathcal{N}_{o}}$$

$$\mathcal{S}_{\text{out}}^{-+} = \chi_{i}^{\dagger} (\Lambda^{-})^{1 - \mathcal{N}_{o}} \sqrt{\mathcal{N}_{l} + 2 \mathcal{N}_{o}}$$

$$\mathcal{S}_{\text{out}}^{-+} = \chi_{i}^{\dagger} (\Lambda^{+})^{1 - \mathcal{N}_{o}} \sqrt{\mathcal{N}_{l} + 1 + \mathcal{N}_{o}}$$

$$\mathcal{H}^{++} = \chi_{i}^{\dagger} \chi_{o}^{\dagger}$$

$$\mathcal{H}^{--} = -\chi_{i} \chi_{o}$$

$$\langle n'_l, n'_i, n'_o | \Lambda^{\pm} | n_l, n_i, n_o \rangle = \delta_{n'_l, n_l \pm 1} \delta_{n'_i, n_l} \delta_{n'_o, n_o}$$
 $\{ \chi_{q'}, \chi_q \} = \{ \chi_{q'}^{\dagger}, \chi_q^{\dagger} \} = 0$
 $\{ \chi_{q'}, \chi_q^{\dagger} \} = \delta_{q'q} \qquad (q = i, o)$

SU(2) LSH & quantum computation

Hamiltonian in operator-factorized form is the input for developing simulation algorithms

<u>Advantages</u>

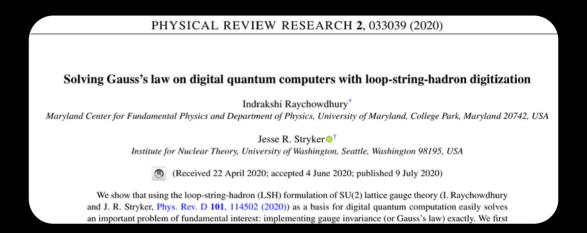
- All constraints are Abelian
 - → Simultaneously diagonalizable
 - → LSH basis states are individually definitely allowed or definitely unallowed, unlike other formulations
- Hilbert space is structure is far simpler than |jmm'> states
- Hamiltonian structure looks more similar to U(1)
- Clebsch-Gordons recast as SHO scaling factors
- First SU(2) physicality quantum circuits constructed (Raychowdhury & JS 2020)

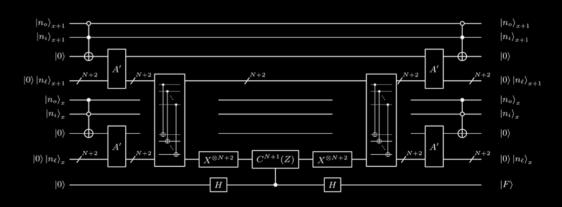
SU(2) LSH & quantum computation

- Circuits for LSH constraints, in any number of dimensions, are worked out in detail
- Speedups likely needed to make possible in NISQ era

LSH potential drawbacks:

- H_B in d>1 has many terms
- Can cost more qubits in D>1+1

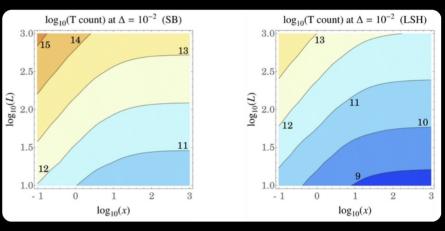




SU(2) LSH vs Schwinger bosons

- Z. Davoudi, A.F. Shaw, & JRS, arXiv:2212.14030 (accepted to Quantum)
- Complete Trotterized time-evolution circuits for Schwinger boson and LSH formulations.
- Far-term- and near-term-inspired circuits

							Schw	inger bosons	LSH	
x	η	L	t/a_s	Δ	$\alpha_{\mathrm{Trot.}}$	$\alpha_{\mathrm{Newt.}}$	Qubits	T gates	Qubits	T gates
1	4	100	1	0.01	90%	9%	2626	8.19713×10^{11}	1319	3.91817×10^{10}
1	4	100	1	0.001	90%	9%	2704	3.09951×10^{12}	1397	1.5172×10^{11}
1	4	100	10	0.01	90%	9%	2704	3.0993×10^{13}	1397	1.51643×10^{12}
1	4	100	10	0.001	90%	9%	2808	1.2146×10^{14}	1475	5.76229×10^{12}
1	4	1000	1	0.01	90%	9%	18904	3.12769×10^{13}	6797	1.53099×10^{12}
1	4	1000	1	0.001	90%	9%	19008	1.22564×10^{14}	6875	5.81562×10^{12}
1	4	1000	10	0.01	90%	9%	19008	1.22564×10^{15}	6875	5.81468×10^{13}
1	4	1000	10	0.001	90%	9%	19086	4.48657×10^{15}	6979	2.29217×10^{14}
1	8	100	1	0.01	90%	9%	4398	5.79224×10^{12}	1807	2.72735×10^{11}
1	8	100	1	0.001	90%	9%	4476	2.1482×10^{13}	1885	1.03709×10^{12}
1	8	100	10	0.01	90%	9%	4476	2.14816×10^{14}	1885	1.03705×10^{13}
1	8	100	10	0.001	90%	9%	4580	8.22615×10^{14}	1963	3.87886×10^{13}
1	8	1000	1	0.01	90%	9%	35076	2.16773×10^{14}	10885	1.04652×10^{13}
1	8	1000	1	0.001	90%	9%	35180	8.30098×10^{14}	10963	3.91414×10^{13}
1	8	1000	10	0.01	90%	9%	35180	8.30094×10^{15}	10963	3.91412×10^{14}
1	8	1000	10	0.001	90%	9%	35258	2.99214×10^{16}	11067	1.5154×10^{15}



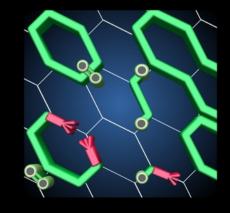
T-gate costs at fixed m/g=1. Other simulation parameters not explicitly shown are $\eta = 8$, $t/a_s = 1$, $\alpha_{Trot.} = 90\%$, $\alpha_{Newt.} = 9\%$, and $\alpha_{synth.} = 1\%$.

~20x T gate reduction with LSH

Conclusion

- Still in early days of quantum-assisted lattice QFT/QCD
- "What would you do today with a perfect quantum computer, gates, and lots of qubits?"
 - Until recently, we had no real answers relevant for lattice QCD
- Much theoretical development remains to be done
 - LSH recently generalized to SU(3) in 1+1D (Kadam, Raychowdhury, JRS 2022)
- Much to learn about pros and cons of different formulations

This field is vibrant and rapidly expanding!



Thank you for your attention!

Extra slides

SU(3) LSH

$$[A^{\dagger}(\underline{1}) \cdot B^{\dagger}(1)]^{n_P} \to$$

1+1D Hilbert space construction

$$[B^{\dagger}(\underline{1}) \cdot A^{\dagger}(1)]^{n_Q} \rightarrow$$

S. Kadam, JS, & I. Raychowdhury, Phys. Rev. D 107, 094513 (2023)

$$|n_{P}, n_{Q}\rangle \propto |n_{P}, n_{Q}; 0, 0, 0\rangle \rightarrow$$

$$\psi^{\dagger} \cdot B^{\dagger}(1) |n_{P}, n_{Q}\rangle \propto |n_{P}, n_{Q}; 0, 0, 1\rangle \rightarrow$$

$$\psi^{\dagger} \cdot B^{\dagger}(\underline{1}) |n_{P}, n_{Q}\rangle \propto |n_{P}, n_{Q}; 1, 0, 0\rangle \rightarrow$$

$$\psi^{\dagger} \cdot A^{\dagger}(\underline{1}) \wedge A^{\dagger}(1) |n_{P}, n_{Q}\rangle \propto |n_{P}, n_{Q}; 0, 1, 0\rangle \rightarrow$$

$$\psi^{\dagger} \cdot B^{\dagger}(\underline{1}) \psi^{\dagger} \cdot B^{\dagger}(1) |n_{P}, n_{Q}\rangle \propto |n_{P}, n_{Q}; 1, 0, 1\rangle \rightarrow$$

$$\psi^{\dagger} \cdot \psi^{\dagger} \wedge A^{\dagger}(1) |n_{P}, n_{Q}\rangle \propto |n_{P}, n_{Q}; 0, 1, 1\rangle \rightarrow$$

$$\psi^{\dagger} \cdot \psi^{\dagger} \wedge A^{\dagger}(\underline{1}) |n_{P}, n_{Q}\rangle \propto |n_{P}, n_{Q}; 1, 1, 0\rangle \rightarrow$$

$$\psi^{\dagger} \cdot \psi^{\dagger} \wedge \psi^{\dagger} |n_{P}, n_{Q}\rangle \propto |n_{P}, n_{Q}; 1, 1, 1\rangle \rightarrow$$

