

Defect evolution in graphene induced by He⁺ and He⁺⁺ ion irradiation

JunHyeok Seo, <u>Sunmog Yeo</u>, HyeRan Jeon, Junmok Ha, Kibum Kim, Young Jun Yoon.

Defect kinds

- Many people want materials with no imperfection.
- However, defects are ubiquitous in macroscopic samples
- Moreover, defects play an important role for the performance of any device.

Materials 2018, 11, 1885

Defect engineering

Defects can change many properties such as electrical, optical, mechanical properties

Defects on Graphene

Graphene

- Carbone hexagonal networks with sp2 bonding
- High carrier mobility (2 x $10^{5} \text{ cm}^{2}/\text{Vs}$)
- Perfect 2D Materials
- Zero rest mass near Dirac point

Stone – Wales defect : the defects without carbon atoms loss : This is caused by the 90 degree rotation of C-C bond

ACS Nano 5 (2011) 26

Defects

- Defects affect electrical, optical, and mechanical properties

Point defect

Defects on graphene

Linear defects

STM (scanning tunneling microscope image)

Calculated band structure

- The linear defects can be used as 1-D metallic wire Nature Nanotech. 5 (2010) 326

Example of defective graphene

System	$E_{\rm ad}$	<i>d</i> (Å)	<i>Q</i> (<i>e</i>) ^a
CO on P-graphene	-0.12	3.02	-0.01
NO on P-graphene	-0.30	2.43	0.04
NO ₂ on P-graphene	-0.48	2.73	-0.19
NH ₃ on P-graphene	-0.11	2.85	0.02
CO on B-graphene	-0.14	2.97	-0.02
NO on B-graphene	-1.07	1.99	0.15
NO ₂ on B-graphene	-1.37	1.67	-0.34
NH ₃ on B-graphene	-0.50	1.66	0.40
CO on N-graphene	-0.14	3.15	0
NO on N-graphene	-0.40	2.32	0.01
NO ₂ on N-graphene	-0.98	2.87	-0.55
NH ₃ on N-graphene	-0.12	2.86	0.04
CO on D-graphene	-2.33	1.33	0.26
NO on D-graphene	-3.04	1.34	-0.29
NO ₂ on D-graphene	-3.04	1.42	-0.38
NH ₃ on D-graphene	-0.24	2.61	0.02

Nanotechnology 20 (2009) 185504 Improving gas sensing properties of graphene by dopants and defects

Calculation method: Density Functional Theory (DFT)

The adsorption energy difference between pristine graphene and defective graphene

	P-Graphene	D-graphene	
CO :	-0.12	-2.33	~20 times
NO2 :	-0.48	-3.04	~ 6 times
NH3 :	-0.11	-0.24	~ 2 times

Experimental apparatus

Typical Raman data for the ion irradiation

Raman spectroscopy of graphene by N implantation

7

Raman data for the He ion irradiation

So, Why does this difference occur?

SRIM calculation

.020

.016

.012

.008

.004

SRIM simulation result

Ion Ranges

Most ions pass through the graphene layer and come to a stop in the Si-wafer layer

Damage Events

The Damage occurring on the graphene surface is the cause of lattice defects

10

Linear Energy transfer

Nuclear LET

Electronic LET

Elastic scattering

$$S_{n} = \left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)_{nuclear} = N \cdot \int_{0}^{E_{\mathrm{T,max}}} E_{\mathrm{T}} \mathrm{d}\sigma \qquad \text{where} \quad \mathrm{E}_{\mathrm{T}} = \frac{4m_{1} \cdot m_{2}}{\left(m_{1} + m_{2}\right)^{2}} \cdot E_{0} \cdot \sin^{2}\frac{\vartheta}{2}$$

N the number of target atoms per unit volume, and $d\sigma$ the differential cross section.

Inelastic scattering

 $S_{\rm e} = \left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)_{\rm electronic} = \frac{2\pi \cdot Z_1^2 \cdot e^4}{E_0} \cdot N \cdot Z_2 \cdot \left(\frac{m_1}{m_2}\right) \cdot \ln \frac{2m_{\rm e} \cdot v_2}{I}$

with m_1 —ion mass, m_2 —target atom mass, m_e —mass of a target-atom electron, Z_1 —atomic number of the ion, Z_2 —atomic number of the stopping target atom, and I—average excitation energy.

Nuclear LET is important for graphene.

Cross-section formula

Collision between accelerated ions and nuclears in target material

Rutherford Cross-section formula

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\omega}\right)_{R} = \frac{1}{16} \cdot \left(\frac{Q_{1} \cdot Q_{2} \cdot e^{2}}{4\pi \cdot \varepsilon_{0}}\right)^{2} \cdot \frac{1}{E_{\mathrm{c}}^{2}} \cdot \frac{1}{\sin^{4}\frac{\vartheta}{2}}.$$

Simple calculations at 90 degree

This difference is not negligible !!

Summary

- 1. Defects can change the properties of 2D materials.
- 2. 2D material with defects can be applied to various sensors such as gas sensors.
- 3. Although the kinetic energy of 60 keV He⁺⁺ ion is the same as that of 120 keV He⁺ ion, the defect amount for He⁺⁺ ion irradiation is larger than He⁺ ion irradiation.
- 4. The reason is that nuclear linear energy transfer of He⁺⁺ ion is larger than that of He⁺ ion.