On graviton-photon conversions in magnetic environments

J. Hwang (IBS) & H. Noh (KASI) CTPU workshop on Particle Physics and Cosmology 20-25 October 2023

JH, Noh, On graviton-photon conversions in magnetic environments, 2310.04150

Gertsenshtein, Wave resonance of light and gravitational waves (1962);

Primakoff, Photo-production of neutral mesons in nuclear electric fields and the mean life of the neutral meson (1951); Sikivie-Experimental tests of the invisible axion (1983).

To linear orders in gravitons and photons

Graviton conversion (Einstein equation):

$$(\partial_0^2 - \Delta)h_{ij} = \frac{16\pi G}{c^4} \delta T_{ij}^{\text{TT}}. \qquad T_{ab} = F_{ac}F_b \stackrel{c}{\longrightarrow} -\frac{1}{4}g_{ab}F^{cd}F_{cd}.$$
Metric (gravitons) in T_{ab} is ignored in the literature

with unknown reason

Photon conversion (Maxwell equations):

$$(\sqrt{-g}F^{ab})_{,b} = \eta^{ac}\eta^{bd}F_{cd,b} + \left(\frac{1}{2}h_c^cF^{ab} - F^{ac}h_c^b + F^{bc}h_c^a\right)_{,b} = \frac{1}{c}\sqrt{-g}J^a$$

$$\eta^{abcd}F_{bc,d} = 0.$$
Metric (gravitons) in F_{ab} (in terms of EM fields) is **ignored** in the literature by mistake

Covariant decomposition

(Møller 1952, Lichnerowicz 1967, Ellis 1973)

✤ F

✤ The electric and magnetic (EM) fields and charge and current densities are **defined** using a time-like frame four-vector u_a $F_{i0} \neq E_i$

$$F_{ab} = u_{a}E_{b} - u_{b}E_{a} - \eta_{abcd}u^{c}B^{d}, \quad E_{a} \equiv F_{ab}u^{b}, \quad B_{a} \equiv F_{ab}^{*}u^{b}.$$

$$J^{a} \equiv \varrho cu^{a} + j^{a}_{*}, \quad j_{a}u^{a} \equiv 0, \quad \varrho \equiv -\frac{1}{c}J^{a}u_{a}, \quad j^{a} \equiv h^{a}_{b}J^{b}.$$
Four current Charge density Current density
Projection tensor $h_{ab} \equiv g_{ab} + u_{a}u_{b}$
luid quantities are similarly **defined** using the four-vector
$$T_{00} \neq \mu$$

$$T_{ab} = \mu u_{a}u_{b} + ph_{ab} + q_{a}u_{b} + q_{b}u_{a} + \pi_{ab},$$
No meaning in curved spacetime
$$\mu = T_{ab}u^{a}u^{b}, \quad p = \frac{1}{3}T_{ab}h^{ab}, \quad q_{a} = -T_{cd}u^{c}h^{d}_{a}, \quad \pi_{ab} = T_{cd}h^{c}_{a}h^{d}_{b} - ph_{ab}.$$
Energy density
Pressure
Flux vector
Anisotropic stress tensor

Anisotropic stress tensor

 \triangleright Comoving four-vector (Lagrangian observer): $u_a =$ fluid four-vector.

- ▶ Normal four-vector (Eulerian observer): n_a with $n_i \equiv 0$.
- \triangleright Coordinate four-vector: \bar{n}_a with $\bar{n}^i \equiv 0$.

JH, Noh, Definition of electric and magnetic fields in curved spacetime, 2303.07562

Graviton conversion

GWs in TT gauge Perturbed metric: $g_{ab} = \eta_{ab} + h_{ab}$.

–To linear order, indices can be raised using η^{ab} .

$$h_{a,bc}^{c} + h_{b,ac}^{c} - h_{c,ab}^{c} - h_{ab}^{c} - \eta_{ab}(h_{,cd}^{cd} - h_{c}^{c,d}) = \frac{16\pi G}{c^{4}}\delta T_{ab}.$$
$$T_{ab} = F_{ac}F_{b}^{\ c} - \frac{1}{4}g_{ab}F_{cd}^{cd}F_{cd}.$$

Metric is everywhere, but ignored in the literature

Transverse-tracefree (TT) gauge conditions: $h_{i,j}^j \equiv 0 \equiv h_i^i$, $h_{00} \equiv 0 \equiv h_{0i}$.

$$(\partial_0^2 - \Delta)h_{ij} = \frac{16\pi G}{c^4} \delta T_{ij}^{\text{TT}}.$$

$$TT \text{ projection operator}$$

$$T_{ij}^{\text{TT}} \equiv P_{ik}T^{k\ell}P_{\ell j} - \frac{1}{2}P_{ij}P_{k\ell}T^{k\ell}, \quad P_{ij} \equiv \delta_{ij} - \hat{n}_i\hat{n}_j, \quad \hat{n}^i\hat{n}_i \equiv 1. \quad \text{GW}$$

Assume a plane GW propagating in z-direction: $h_{ij} = h_{ij}(x^0 - z)$

$$h_{11} = -h_{22} \equiv h_+, \quad h_{12} = h_{21} \equiv h_{\times}.$$

 $B_x = 0, B_y = B\sin\theta, B_z = B\cos\theta.$

In terms of EM fields

Metric involved in F_{ab} :Metric (gravitons) $F_{0i} = -E_i, \quad F_{ij} = \eta_{ijk}(B^k - h^{k\ell}B_\ell).$ PhotonsEnergy-momentum tensor: $B_i \rightarrow B_i + b_i, \quad E_i \rightarrow e_i$ $\delta T_{ij} = -B_i b_j - B_j b_i + \delta_{ij} B^k b_k + \frac{1}{2} (h_{ij} B^2 - \delta_{ij} h^{k\ell} B_k B_\ell).$ TT projection:The metric in T_{ab} is ignored in previous literature

 $\delta T_{ij}^{\rm TT} = -B_i b_j - B_j b_i + \delta_{ij} (B^k b_k - B^k \hat{n}_k b^\ell \hat{n}_\ell) + 2\hat{n}_{(i} (B_{j)} b^k \hat{n}_k + b_{j)} B^k \hat{n}_k)$ $- \hat{n}_i \hat{n}_j (B^k \hat{n}_k b^\ell \hat{n}_\ell + B^k b_k) + \frac{1}{2} B^2 h_{ij}.$

Graviton conversion: Tachyonic instability term caused by the metric in T_{ab}

$$(\partial_0^2 - \partial_z^2 - \frac{8\pi G}{c^4} B^2)h_+ = -\frac{16\pi G}{c^4} (B_1 b_1 - B_2 b_2),$$

$$(\partial_0^2 - \partial_z^2 - \frac{8\pi G}{c^4} B^2)h_\times = -\frac{16\pi G}{c^4} (B_1 b_2 + B_2 b_1).$$

Graviton instability?

Exponential instability: $h_{+,\times} \propto \exp\left(\pm \sqrt{\frac{8\pi G}{c^2}}B^2 - c^2k^2t\right)$. Instability criterion: $L > \lambda_B$

$$\lambda_B \equiv \frac{2\pi}{k_B} = \sqrt{\frac{\pi}{2}} \frac{c^2}{\sqrt{GB}} = 1.4 \frac{1 \text{gauss}}{B} \text{Mpc} \sim 4 \times 10^{11} \frac{10^{13} \text{gauss}}{B} \text{cm.}$$

$$\Rightarrow R_{\text{Neutron Star}} \sim 10^6 \text{ cm}$$

Not likely to be realized in Nature.

Gravitational strength of background B:

$$\left(\frac{L}{\lambda_B}\right)^2 = \frac{2}{\pi} \frac{L^2 G B^2}{c^4} \sim \frac{GM}{Lc^2} \frac{B^2}{\varrho c^2} \sim 5.2 \times 10^{-9} \left(\frac{L}{10^7 \text{ cm}}\right)^2 \left(\frac{B}{10^{13} \text{ gauss}}\right)^2 \quad \text{(Astrophysics)} \sim 5.2 \times 10^{-35} \left(\frac{L}{10^2 \text{ cm}}\right)^2 \left(\frac{B}{10^5 \text{ gauss}}\right)^2 \quad \text{(Laboratory)}$$

L>λ_B violates the hidden assumption of ignoring the gravity of background B.
 The instability term cannot dominate in our analysis and is small.

In terms of the potential

No metric involved in F_{ab} :

/Photons

$$\delta F_{0i} = A_{i,0} - A_{0,i}, \quad \delta F_{ij} = A_{j,i} - A_{i,j}.$$

Energy-momentum tensor:

$$\delta T_{ij} = 2B_{(i}\eta_{j)k\ell}A^{k,\ell} - \delta_{ij}B^m\eta_{mk\ell}A^{k,\ell} + \frac{1}{2}(h_{ij}B^2 + \delta_{ij}h^{k\ell}B_kB_\ell) - 2h_{(i}^kB_{j)}B_k.$$

Graviton conversion: Instability term, or effective mass term

$$\begin{bmatrix} \partial_0^2 - \partial_z^2 - \frac{8\pi G}{c^4} (B_3^2 - B_1^2 - B_2^2) \end{bmatrix} h_+ = \frac{16\pi G}{c^4} \begin{bmatrix} B_1(A_{2,3} - A_{3,2}) - B_2(A_{3,1} - A_{1,3}) \end{bmatrix}, \\ \begin{bmatrix} \partial_0^2 - \partial_z^2 - \frac{8\pi G}{c^4} (B_3^2 - B_1^2 - B_2^2) \end{bmatrix} h_\times = \frac{16\pi G}{c^4} \begin{bmatrix} B_1(A_{3,1} - A_{1,3}) + B_2(A_{2,3} - A_{3,2}) \end{bmatrix}.$$

The instability terms differ from the ones using EM fields
Relations between the potential and EM fields involve the metric:

$$E_i = \partial_i A_0 - \partial_0 A_i, \quad B_i = (\delta_{ij} + h_{ij}) \eta^{jk\ell} \partial_k A_\ell.$$

 Photon conversion

Maxwell's equations

Maxwell's equations with linear metric perturbations:

Inhomogeneous eq:

$$(\sqrt{-g}F^{ab})_{,b} = \eta^{ac}\eta^{bd}F_{cd,b} + \left(\frac{1}{2}h_c^cF^{ab} - F^{ac}h_c^b + F^{bc}h_c^a\right)_{,b} = \frac{1}{c}\sqrt{-g}J^a.$$
Eq:

Homogeneous eq:

 $\eta^{abcd} F_{bc,d} = 0.$

In terms of EM fields, F_{ab} involves the metric! Often missed in the literature (Berlin et al. 2022, Domcke et al. 2022, Palessandro, Rothman 2023) Thus, indices of F_{ab} cannot be raised using η^{ab} .

- ✤ In terms of the potential, $F_{ab} \equiv \partial_a A_b \partial_b A_a$, F_{ab} does not involve the metric, and the homogeneous equation is identically valid.
- * In the literature, this fact is often **confused** with F_{ab} free from the metric, even using EM fields. [See below Eq. (13) in Berlin et al. (2022), and see below Eq. (S13) in Domcke et al. (2022).]
- ✤ The relation between the potential and EM fields involves the metric.

JH, Noh, Maxwell equations in curved spacetime, 2307.14555

In terms of EM fields

Maxwell's equations:

$$E^{i}{}_{,i} = (h^{ij}E_{j}){}_{,i},$$

$$E^{i}{}_{,0} - \eta^{ijk}\nabla_{j}B_{k} = (h^{ij}E_{j}){}_{,0},$$

$$B^{i}{}_{,i} = (h^{ij}B_{j}){}_{,i},$$

$$B^{i}{}_{,0} + \eta^{ijk}\nabla_{j}E_{k} = (h^{ij}B_{j}){}_{,0}.$$
Uniform and constant, assumed
$$Background B + photons: B_{i} \rightarrow B_{i} + b_{i}, E_{i} \rightarrow e_{i} \qquad (\partial_{0}^{2} - \Delta)$$

$$(\partial_{0}^{2} - \Delta)b_{i} = (h^{j}_{i}B_{j}){}_{,00} - \nabla_{i}(h^{jk}B_{j,k}), \text{ Photons} \qquad (\partial_{0}^{2} - \Delta)$$

$$(\partial_0^2 - \Delta) e_i = (h_i D_j)_{,00} - \nabla_i (h^* D_j)_{,00} - (h^* D_j)_{,0} -$$

For a uniform and constant B:

$$(\partial_0^2 - \Delta)b_i = h_{i,00}^j B_j,$$

$$(\partial_0^2 - \Delta)e_i = \eta_{ijk} \nabla^j (h_{\ell,0}^k) B_\ell$$

$$\mathbf{x}^{\mathbf{x}}, \mathbf{x}^{\mathbf{x}}, \mathbf{x$$

GW

Align:

> Ignoring background E already implies a uniform and constant B.

Wrong EM fields

Maxwell's equations:

 $\hat{B}^{i}_{,i} = \mathbf{0},$

 $\hat{E}^i{}_{,i} = (h^{ij}E_j)_{,i},$

The EM fields are physical (measurable) quantities. No observer can measure these as the EM fields. Thus, these are wrong definitions!

Wrong definitions:
$$F_{0i} \equiv -\hat{E}_i$$
, $F_{ij} \equiv \eta_{ijk}\hat{B}^k$. $\rightarrow \hat{E}_i = E_i$, $\hat{B}_i = B_i - h_i^j B_j$.

For a uniform and constant B:

$$(\partial_0^2 - \Delta)\hat{b}_i = \Delta h_i^j B_j$$

- ♦ The wrong definitions give correct equations only for a plane GW with $h_{+,\times}(x^0 z)$, in TT gauge in a uniform and constant **B**.
- Case is unclear in the FNC (Fermi Normal Coordinate). (Berlin et al. 2022, Domcke et al. 2022)

In terms of the potential

Maxwell's equations with Coulomb gauge $\nabla \cdot \mathbf{A} \equiv 0$:

$$\Delta A_0 = h^{ij} E_{i,j}.$$

For uniform background or vanishing background **E**, we may set $A_0 = 0$. Photons $(\partial_0^2 - \Delta)A_i = \eta^{jk\ell}h_{ij,k}B_\ell.$

For a uniform and constant B:

$$(\partial_0^2 - \Delta)A_1 = h_{\times,z}B_1 - h_{+,z}B_2, (\partial_0^2 - \Delta)A_2 = -h_{+,z}B_1 - h_{\times,z}B_2, (\partial_0^2 - \Delta)A_3 = 0.$$

Relations to EM fields:

$$b^i = \eta^{ijk} \partial_j A_k + h^i_j B^j, \quad e_i = -A_{i,0}.$$

Metric

Combined equations

Using EM fields:

$$\begin{aligned} (\partial_0^2 - \partial_z^2 - \frac{8\pi G}{c^4} B^2)h_+ &= \frac{16\pi G}{c^4} B_2 b_2, \\ (\partial_0^2 - \partial_z^2 - \frac{8\pi G}{c^4} B^2)h_\times &= -\frac{16\pi G}{c^4} B_2 b_1, \\ (\partial_0^2 - \Delta)b_1 &= B_2 h_{\times,00}, \\ (\partial_0^2 - \Delta)b_2 &= -B_2 h_{+,00}, \\ (\partial_0^2 - \Delta)e_1 &= B_2 h_{+,z0}, \\ (\partial_0^2 - \Delta)e_2 &= B_2 h_{\times,z0}. \end{aligned}$$

Using the potential:

$$\begin{split} \left[\partial_0^2 - \partial_z^2 - \frac{8\pi G}{c^4} (B_3^2 - B_2^2)\right] h_+ &= \frac{16\pi G}{c^4} B_2 A_{1,z}, \\ \left[\partial_0^2 - \partial_z^2 - \frac{8\pi G}{c^4} (B_3^2 - B_2^2)\right] h_\times &= \frac{16\pi G}{c^4} B_2 A_{2,z}, \\ (\partial_0^2 - \Delta) A_1 &= -B_2 h_{+,z}, \\ (\partial_0^2 - \Delta) A_2 &= -B_2 h_{\times,z}. \end{split}$$

Using
$$A_+ \equiv A_1, A_{\times} \equiv A_2$$
 with $\lambda = +, \times$:

$$\left[\partial_0^2 - \partial_z^2 - \frac{8\pi G}{c^4} (B_3^2 - B_2^2)\right] h_{\lambda} = \frac{16\pi G}{c^4} B_2 A_{\lambda,z},$$
 $(\partial_0^2 - \Delta) A_{\lambda} = -B_2 h_{\lambda,z}.$

cf., Raffelt, Stodolsky, Mixing of the photon with low-mass particles (1988).

Conversion rates

Graviton conversion rate:

$$P_{\gamma \to g} \equiv \frac{E_{\rm GW}}{E_{\rm EM}} = \frac{c^2}{8\pi G} \frac{|\dot{h}_+|^2 + |\dot{h}_\times|^2}{|e_1|^2 + |e_2|^2 + |b_1|^2 + |b_2|^2} \sim \frac{c^2}{16\pi G} \frac{|\dot{h}|^2}{|b|^2} \sim \frac{16\pi G}{c^4} B^2 \sin^2 \theta L^2.$$

Dimensional estimation

$$T_{00}^{\rm GW} = \frac{c^4}{32\pi G} h^{ij}{}_{,0} h_{ij,0} = \frac{c^2}{16\pi G} (|\dot{h}_+|^2 + |\dot{h}_\times|^2). \qquad \mu_{\rm EM} = \frac{1}{2} (E^2 + B^2).$$

Photon conversion rate:

 Dimensionless gravitational strength of the background B

$$P_{\gamma \to g} \sim P_{g \to \gamma} \sim 8\pi^2 \sin^2 \theta \left(\frac{L}{\lambda_B}\right)^2$$

Conversion rates are the same and are proportional to the gravitational strength of the background B.

Ya.B. Zel'dovich, I.D. Novikov, The Structure and Evolution of the Universe (1983) Section 17.9.

Interaction Lagrangian

EM Lagrangian:

$$\mathcal{L}_{\rm EM} = -\frac{1}{4}\sqrt{-g}F^{ab}F_{ab}.$$

To linear order in metric:

$$\mathcal{L}_{\rm EM} = -\frac{1}{4} \eta^{ac} \eta^{bd} F_{ab} F_{cd} + \frac{1}{2} h_{ab} T_{\rm EM}^{ab}.$$

Often called as interaction Lagrangian (Boccaletti et al. 1967)

However, using EM fields, F_{ab} also depends on the metric!

- F_{ab} also depends on the metric in terms of EM fields.
- ✤ In terms of the potential, F_{ab} is free from the metric, but the relation between the potential and EM fields involves the metric.

Conclusion

- * The electric and magnetic fields should be defined by decomposing F_{ab} using the observer's four-vector.
- ✤ In a curved spacetime, the relation between EM fields and F_{ab} , with two covariant indices, is inevitably affected by gravity.
- * F_{ab} is free from the metric using the potential, but the relation between the potential and EM fields involves the metric.
- Gravity causes modifications in both the homogeneous and inhomogeneous Maxwell's equations.
- Related errors abound in the literature related to detecting gravitational waves using electromagnetic methods, medium interpretation of gravity, and graviton-photon conversions.