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Rabbit or Duck?
• Duality—the same phenomenon, multiple 

descriptions


• Essential roles in various fields, such as 
high energy and condensed matter physics


• Many different kinds known—today: IR 
duality of QFT

“Rabbit and Duck,” Fliegende Blätter (23 Oct 1892)
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Renormalization



Renormalization in QFT

• Couplings in QFT varying along the scale


• Different dynamics at different scales


• Rich low-energy dynamics from an almost free theory


• “QCD” in the Standard Model—an asymptotically-free theory 
(i.e., free in the high energy) exhibiting confinement in the low energy


• Understanding a QFT -> understanding physics at different scales
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Renormalization in QFT

• A conformal field theory at each end of the RG-flow


• Invariant under the scale transformation  
(e.g., a free theory)


• Interesting emergent phenomena in strongly coupled CFTs


• E.g., symmetry enhancement, duality, gravity, …


• Still difficult to solve; nevertheless, more universal control


• Especially with supersymmetry
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SCFTs and Dualities

• SCFTs—QFTs preserving a superconformal symmetry


• Interacting SCFTs: deformation of free theories (Lagrangian constructions), string theory 
constructions (strongly coupled), or


• SCFTs from SCFTs


- Adding interactions


- Gauging symmetries


- Compactification


• Fixed points of RG-flows


• An Infra-Red (IR) duality—the same IR SCFT from multiple UV SCFTs
IR SCFT

UV SCFT
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Web of dualities



Example I: 3D Gauge-Scalar Duality
• The 3d Maxwell theory 

• The field-strength satisfies the Bianchi identity:


• Integrating over ,  can be written as follows:


• A simple duality example between the 3d Maxwell theory and a scalar theory, both of which are free.

Fμν ZMaxwell

ZMaxwell = ∫ 𝒟Aμ exp [ ∫ d3x
1

4e2
FμνFμν ]

ϵμνρ ∂μFνρ = 0

ZMaxwell = ∫ 𝒟Fμν 𝒟γ exp [ ∫ d3x ( 1
4e2

FμνFμν −
i

4π
γ ϵμνρ ∂μFνρ) ]

= ∫ 𝒟γ exp [ ∫ d3x
e2

8π2
∂μγ ∂μγ ]
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Example II: 3D Vortex-Particle Duality
• Generalization to interacting theories: the 3d bosonization


• A number of new dualities derived; e.g., the vortex-particle duality


• Adding  + gauging  + the (time-reversed) bosonization


• The bosonization -> the vortex-particle duality, but not the other way around; namely, the 
bosonization is more fundamental than the vortex-particle duality. 
 

1
2π

BdC B → b

iχ γμDμ
a χ −

1
2π

Bda −
1

4π
BdB ⟷ |DB ϕ |2 − |ϕ |4

|Db ϕ |2 − |ϕ |4 +
1

2π
bdC ⟷ iχ γμDμ

a χ −
1

2π
bda −

1
4π

bdb+
1

2π
bdC ⟷ |DC

̂ϕ |2 − | ̂ϕ |4



Example III: 3D Mirror Symmetry
• Generalization to supersymmetric theories


• The simplest case:


‣ 3d  supersymmetric  gauge theory with a fundamental hypermultiplet


‣ A free hypermultiplet


• Multiple flavors 
 
 
 

𝒩 = 4 U(1)

1 1 11

1 Nf 11 1 1

Nf − 1



Example III: 3D Mirror Symmetry
• Generalization to supersymmetric theories


• The simplest case:


‣ 3d  supersymmetric  gauge theory with a fundamental hypermultiplet


‣ A free hypermultiplet


• Multiple flavors 
 
 
 

𝒩 = 4 U(1)

1 1 11

 a pair of chiral multiplets  
with charge 1 & -1 each

∋

1 Nf 11 1 1

Nf − 1



Example III: 3D Mirror Symmetry
• Generalization to supersymmetric theories


• The simplest case:


‣ 3d  supersymmetric  gauge theory with a fundamental hypermultiplet


‣ A free hypermultiplet


• Multiple flavors 
 
 
 

𝒩 = 4 U(1)

1 1 11

1 Nf 11 1 1

Nf − 1

<-> Topological U(1) <-> Flavor U(1)

 a pair of chiral multiplets  
with charge 1 & -1 each

∋
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• Generalization to supersymmetric theories


• The simplest case:


‣ 3d  supersymmetric  gauge theory with a fundamental hypermultiplet


‣ A free hypermultiplet


• Multiple flavors 
 
 
 

𝒩 = 4 U(1)
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What are the most  
fundamental dualities? 



Most Fundamental Dualities?

• Why do those dualities work?


• No single (interacting) duality has been proven. (Not surprising since we 
don’t know how to handle strongly coupled QFTs in general.)


• Are they really different?—Own microscopic mechanism each or any 
universal mechanism?


• If the latter is the case, what are the most fundamental dualities?



Duality of Theories vs Duality of Fields

• A QFT duality relates a “theory” to another “theory”.


• Many of them are motivated by string theory, but no systematic 
construction in the QFT language.


• Proposal: dualize a “field” rather than a theory!


• The duality of a “theory” can be obtained by gauging symmetries (and 
adding interactions if necessary) as in the previous examples.



• Today let’s focus on mirror symmetry of 3d  linear quiver gauge theories:


‣ Consisting of (bi-)fundamental matter fields


‣ Interactions fixed by the  supersymmetry


• Based on 
- R. Comi, CH, F. Marino, S. Pasquetti, M. Sacchi, “The SL(2, ℤ) dualization algorithm at work,” JHEP 06 (2023) 119, [arXiv:2212.10571]. 
- CH, S. Pasquetti, M. Sacchi, “Rethinking mirror symmetry as a local duality on fields,” Phys.Rev.D 106 (2022) 10, 105014, [arXiv:2110.11362]. 
- L. E. Bottini, CH, S. Pasquetti, M. Sacchi, “4d S-duality wall and SL(2, ℤ) relations,” JHEP 03 (2022) 035, [arXiv:2110.08001].

𝒩 = 4

𝒩 = 4



Basic Ingredients: S-Wall
• The S-wall theory: 


• The S-duality domain-wall theory of the 4d  SYM (Giaotto-Witten 08)


•  topological symmetry + background  coupled via mixed CS +  
flavor symmetry


• Enhanced  symmetry in the IR 
 

T[U(N)]

𝒩 = 4

U(1)N−1 U(1) U(N)Y

U(N)X × U(N)Y

2 N − 1 N1

NN⃗X ⃗Y



• The identity-wall theory: two S-walls glued by gauging common 


• The partition function proportional to the delta function


• , where  is a (monopole) operator in the  bifund. rep., breaking 
 

U(N)

⟨𝔐⟩ ≠ 0 𝔐 U(N)X × U(N)Y

Basic Ingredients: I-Wall

N NN⃗X ⃗Y 2 N 21 1=

U(N)X × U(N)Y → U(N)D

∼ ∑
σ∈SN

N

∏
j=1

δ (Xj − Yσ( j))



Building Blocks of 3D Mirror Symmetry
• Dualization of a  bifundamental hypermultiplet


• A bifundamental hypermultiplet -> a fundamental (twisted) hypermultiplet


• Topological  -> flavor 


• A QFT version of the S-transformation in IIB string theory, exchanging NS5 and D5

U(N) × U(N)

U(1) U(1)

N NN

1

⃗X ⃗Y

U

N N

U −U

⃗X ⃗Y =

2 N 21 1

1



Building Blocks of 3D Mirror Symmetry
• Dualization of a fundamental hypermultiplet (+ an identity wall)


• Obtained by using the I-wall property


• A fundamental hypermultiplet -> a bifundamental (twisted) hypermultiplet


• Flavor U(1) -> topological U(1)

⃗X ⃗Y

1 U

N NN N NN

U

N⃗X ⃗Y

−U

=



• Mass-deformed S-wall: S-wall + mass terms breaking 


• Mass-deformed I-wall: S-wall + mass-deformed S-wall 
 
 
 
 

U(N)Y → U(M) × U(1)

Generalization: Mass-Deformed S- & I-Walls

1 V

MN⃗X ⃗Y

N MN⃗X ⃗Y

1 V

U(N)X × U(M)Y × U(1)
→ U(M) × U(1)

X1

XM

Y1

YM

+ permutations

XM+1

XN

V + (N − M − 1)(iQ − 2mA)/2

V − (N − M − 1)(iQ − 2mA)/2

YM+j = V +
N − M + 1 − 2j

2
(iQ − 2mA) , j = 1,…, N − M



(Generalized) Building Blocks of 3D Mirror 

• Dualization of a  bifundamental hypermultiplet


• A bifundamental hypermultiplet between different ranks = a fundamental (twisted) 
hypermultiplet dualized by the mass-deformed S-wall 
 

U(N) × U(M)

N M

U −U

⃗X ⃗Y = N MM

1

⃗X ⃗Y

U



Swap Fundamental and Bifundamental
• The mass-deformed S- & I-walls satisfy an interesting property resembling 

the Hanany-Witten brane move in IIB string theory.


• Nothing but Higgs mechanism

N LM

1

⃗X ⃗Y

V

M
U −U

M̃

1

⃗X ⃗Y

V

N
U −U

N L

M̃ = N + L − M + 1

NS5
D5

N M L
D3

NS5
D5

N M̃ L

=

=IIB String Theory



Example



Mirror symmetry of 3d SQCD
• Mirror symmetry of the 3d   theory with 4 flavors 

•  vs 


• The global symmetry enhanced to  in the IR


• Monopoles and mesons exchanged under the duality

𝒩 = 4 U(2)

U(1) × SU(4) SU(2) × U(1)3

SU(2) × SU(4)

2

4 ⃗X

Y1 − Y2

2

1

⃗Y

X2 − X1 X3 − X2 X4 − X3

1 2



Mirror symmetry of 3d SQCD

• Dualization Algorithm


‣ Chop the quiver into the basic blocks.


‣ Dualize each block and glue them back.


‣ Carry out the (QFT version of) Hanany-Witten move until I-walls 
disappear.



Mirror symmetry of 3d SQCD

2

4 ⃗X

Y1 − Y2

0 2 2 0

1 1

0 2 2 22 2 0

Y1 Y2

X1 X2 − X1 X3 − X2 X4 − X3 −X4

Piecewise dualization

0 2 2 0

4

2

⃗X

−Y1 Y1 −Y2 Y2



Mirror symmetry of 3d SQCD

0 2 2 0

1 1

0 2 2 22 2 0

Y1 Y2

X1 X2 − X1 X3 − X2 X4 − X3 −X4

The 1st HW move

0 0

1 1

1 2 2 22 2 1

Y1 Y2

X1 −X1 X3 − X2 −X3 −X4X2 X4



Mirror symmetry of 3d SQCD

0 0

1 1

1 2 2 22 2 1

Y1 Y2

X1 −X1 X3 − X2 −X3 −X4X2 X4

0 0

1 1

2 2 2 1

Y1 Y2

X1 X2 − X1 X3 −X4−X2 X4 − X3

1 2 2

The 2nd HW move



Mirror symmetry of 3d SQCD

2

1

⃗Y

X2 − X1 X3 − X2 X4 − X3

1 2

0 0

1 1

2 2 2 1

Y1 Y2

X1 X2 − X1 X3 −X4−X2 X4 − X3

1 2 2
⃗Z ⃗W

The permutations belong 
to the Weyl of U(2)

Z1

Z2

W1

W2

Collapsing I-walls



Mirror symmetry of 3d SQCD

2

1

⃗Y

X2 − X1 X3 − X2 X4 − X3

1 2

0 0

1 1

2 2 2 1

Y1 Y2

X1 X2 − X1 X3 −X4−X2 X4 − X3

1 2 2
⃗Z ⃗W

The permutations belong 
to the Weyl of U(2)

Z1

Z2

W1

W2

Collapsing I-walls

2

4 ⃗X

Y1 − Y2
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Where do these building blocks come from?

• The 3d mirror building blocks are derived from the Aharony duality!


• The Aharony duality:


• A new bridge between mirror-like dualities and Seiberg-like dualities


• The same relation in 4d 

Nc NfNf Nf − Nc NfNf
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Conclusion
• We have found a new properties of T[U(N)], which can be used to find building blocks of 3d mirror symmetry.


• Generalization


‣ 3d  dualities


‣ 4d mirror and  dualities


‣ Some Seiberg-like dualities


• These building blocks can be derived from the Aharony duality.


• Different looking dualities can be derived from common fundamental dualities. 
-> Microscopic mechanism of these dualities would be universal. 

• Deeper understanding of the duality building blocks from other perspectives? E.g., connection to higher 
dimensional SCFTs? Holography?

SL(2,ℤ)

PSL(2,ℤ)



Thank you



Congratulation CTPU!


