Recent Developments in Supersymmetric Dualities

Chiung Hwang

University of Science and Technology of China
Interdisciplinary Center for Theoretical Study
Peng Huanwu Center for Fundamental Theory

Rabbit or Duck?

- Duality - the same phenomenon, multiple descriptions
- Essential roles in various fields, such as high energy and condensed matter physics
- Many different kinds known-today: IR duality of QFT

Welde \{biere gleiden ein= anderam meifen?

תanindten und ente.

Rabbit or Duck?

- Duality-the same phenomenon, multiple descriptions
- Essential roles in various fields, such as high energy and condensed matter physics
- Many different kinds known-today: IR duality of QFT

Raninden und Ente.

Outline

- Introduction
- Rabbit or duck?
- Renormalization
- Web of dualities - Example I, II, III
- What are the most fundamental dualities?
- Example
- Conclusion

Renormalization

Renormalization in QFT

- Couplings in QFT varying along the scale
- Different dynamics at different scales
- Rich low-energy dynamics from an almost free theory
- "QCD" in the Standard Model-an asymptotically-free theory (i.e., free in the high energy) exhibiting confinement in the low energy
- Understanding a QFT -> understanding physics at different scales

Renormalization in QFT

- A conformal field theory at each end of the RG-flow
- Invariant under the scale transformation (e.g., a free theory)
- Interesting emergent phenomena in strongly coupled CFTs
- E.g., symmetry enhancement, duality, gravity, ...
- Still difficult to solve; nevertheless, more universal control
- Especially with supersymmetry

SCFTs and Dualities

- SCFTs-QFTs preserving a superconformal symmetry
- Interacting SCFTs: deformation of free theories (Lagrangian constructions), string theory constructions (strongly coupled), or
- SCFTs from SCFTs
- Adding interactions
- Gauging symmetries
- Compactification
- Fixed points of RG-flows

SCFTs and Dualities

- SCFTs-QFTs preserving a superconformal symmetry
- Interacting SCFTs: deformation of free theories (Lagrangian constructions), string theory constructions (strongly coupled), or
- SCFTs from SCFTs
- Adding interactions
- Gauging symmetries
- Compactification
- Fixed points of RG-flows
- An Infra-Red (IR) duality - the same IR SCFT from multiple UV SCFTs

Web of dualities

Example I: 3D Gauge-Scalar Duality

- The 3d Maxwell theory

$$
Z_{\text {Maxwell }}=\int \mathscr{D} A_{\mu} \exp \left[\int d^{3} x \frac{1}{4 e^{2}} F_{\mu \nu} F^{\mu \nu}\right]
$$

- The field-strength satisfies the Bianchi identity:

$$
\epsilon^{\mu \nu \rho} \partial_{\mu} F_{\nu \rho}=0
$$

- Integrating over $F_{\mu \nu}, Z_{\text {Maxwell }}$ can be written as follows:

$$
\begin{aligned}
Z_{\text {Maxwell }} & =\int \mathscr{D} F_{\mu \nu} \mathscr{D} \gamma \exp \left[\int d^{3} x\left(\frac{1}{4 e^{2}} F_{\mu \nu} F^{\mu \nu}-\frac{i}{4 \pi} \gamma \epsilon^{\mu \nu \rho} \partial_{\mu} F_{\nu \rho}\right)\right] \\
& =\int \mathscr{D} \gamma \exp \left[\int d^{3} x \frac{e^{2}}{8 \pi^{2}} \partial_{\mu} \gamma \partial^{\mu} \gamma\right]
\end{aligned}
$$

- A simple duality example between the 3d Maxwell theory and a scalar theory, both of which are free.

Example I: 3D Gauge-Scalar Duality

- The 3d Maxwell theory

$$
Z_{\text {Maxwell }}=\int \mathscr{D} A_{\mu} \exp \left[\int d^{3} x \frac{1}{4 e^{2}} F_{\mu \nu} F^{\mu \nu}\right]
$$

- The field-strength satisfies the Bianchi identity:

$$
\epsilon^{\mu \nu \rho} \partial_{\mu} F_{\nu \rho}=0 \quad \text { A conserved current } \quad J_{t o p}^{\mu}=\frac{1}{4 \pi} \epsilon^{\mu \nu \rho} F_{\nu \rho}
$$

- Integrating over $F_{\mu \nu}, Z_{\text {Maxwell }}$ can be written as follows:

$$
\begin{aligned}
Z_{\text {Maxwell }} & =\int \mathscr{D} F_{\mu \nu} \mathscr{D} \gamma \exp \left[\int d^{3} x\left(\frac{1}{4 e^{2}} F_{\mu \nu} F^{\mu \nu}-\frac{i}{4 \pi} \gamma \epsilon^{\mu \nu \rho} \partial_{\mu} F_{\nu \rho}\right)\right] \\
& =\int \mathscr{D} \gamma \exp \left[\int d^{3} x \frac{e^{2}}{8 \pi^{2}} \partial_{\mu} \gamma \partial^{\mu} \gamma\right]
\end{aligned}
$$

- A simple duality example between the 3d Maxwell theory and a scalar theory, both of which are free.

Example I: 3D Gauge-Scalar Duality

- The 3d Maxwell theory

$$
Z_{\text {Maxwell }}=\int \mathscr{D} A_{\mu} \exp \left[\int d^{3} x \frac{1}{4 e^{2}} F_{\mu \nu} F^{\mu \nu}\right]
$$

- The field-strength satisfies the Bianchi identity:

$$
\epsilon^{\mu \nu \rho} \partial_{\mu} F_{\nu \rho}=0 \quad \text { A conserved current } \quad J_{t o p}^{\mu}=\frac{1}{4 \pi} \epsilon^{\mu \nu \rho} F_{\nu \rho}
$$

- Integrating over $F_{\mu \nu}, Z_{\text {Maxwell }}$ can be written as follows:

$$
\begin{aligned}
Z_{\text {Maxwell }} & =\int \mathscr{D} F_{\mu \nu} \mathscr{D} \gamma \exp \left[\int d^{3} x\left(\frac{1}{4 e^{2}} F_{\mu \nu} F^{\mu \nu}-\frac{i}{4 \pi} \gamma \epsilon^{\mu \nu \rho} \partial_{\mu} F_{\nu \rho}\right)\right] \\
& =\int \mathscr{D} \gamma \exp \left[\int d^{3} x \frac{e^{2}}{8 \pi^{2}} \partial_{\mu} \gamma \partial^{\mu} \gamma\right] \quad J_{\text {top }}^{\mu}=\frac{i e^{2}}{(2 \pi)^{2}} \partial^{\mu} \gamma \quad \Rightarrow \gamma+\alpha
\end{aligned}
$$

- A simple duality example between the 3d Maxwell theory and a scalar theory, both of which are free.

Example II: 3D Vortex-Particle Duality

- Generalization to interacting theories: the 3d bosonization

$$
i \bar{\chi} \gamma_{\mu} D_{a}^{\mu} \chi-\frac{1}{2 \pi} B d a-\frac{1}{4 \pi} B d B \quad \longleftrightarrow \quad D_{B} \phi^{2}-\phi^{4}
$$

- A number of new dualities derived; e.g., the vortex-particle duality

$$
D_{b} \phi^{2}-\phi^{4}+\frac{1}{2 \pi} b d C \quad \longleftrightarrow \quad i \bar{\chi} \gamma_{\mu} D_{a}^{\mu} \chi-\frac{1}{2 \pi} b d a-\frac{1}{4 \pi} b d b+\frac{1}{2 \pi} b d C \quad \longleftrightarrow \quad D_{C} \hat{\phi}^{2}-\hat{\phi}^{4}
$$

- Adding $\frac{1}{2 \pi} B d C+$ gauging $B \rightarrow b+$ the (time-reversed) bosonization
- The bosonization -> the vortex-particle duality, but not the other way around; namely, the bosonization is more fundamental than the vortex-particle duality.

Example III: 3D Mirror Symmetry

- Generalization to supersymmetric theories
- The simplest case:
- 3d $\mathscr{N}=4$ supersymmetric $U(1)$ gauge theory with a fundamental hypermultiplet
- A free hypermultiplet

- Multiple flavors

Example III: 3D Mirror Symmetry

- Generalization to supersymmetric theories
- The simplest case:
\ni a pair of chiral multiplets
with charge $1 \&-1$ each
- 3d $\mathscr{N}=4$ supersymmetric $U(1)$ gauge theory with a fundamental hypermultiplet
- A free hypermultiplet

- Multiple flavors

Example III: 3D Mirror Symmetry

- Generalization to supersymmetric theories
- The simplest case:
\ni a pair of chiral multiplets
with charge $1 \&-1$ each
- 3d $\mathscr{N}=4$ supersymmetric $U(1)$ gauge theory with a fundamental hypermultiplet
- A free hypermultiplet <-> Topological $U(1) \quad$ <-> Flavor $U(1)$

- Multiple flavors

$N_{f}-1$

Example III: 3D Mirror Symmetry

- Generalization to supersymmetric theories
- The simplest case:

> Э a pair of chiral multiplets with charge $1 \&-1$ each

- 3d $\mathscr{N}=4$ supersymmetric $U(1)$ gauge theory with a fundamental hypermultiplet
- A free hypermultiplet <-> Topological $U(1) \quad$ <-> Flavor $U(1)$

- Multiple flavors

Flavor $U(1) \times S U\left(N_{f}\right)$

.....

$$
N_{f}-1 \quad \text { Topological } U(1)^{N_{f}-1}
$$

Web of IR Dualities

Web of IR Dualities

Seiberg-like dualities

What are the most fundamental dualities?

Most Fundamental Dualities?

- Why do those dualities work?
- No single (interacting) duality has been proven. (Not surprising since we don't know how to handle strongly coupled QFTs in general.)
- Are they really different? -Own microscopic mechanism each or any universal mechanism?
- If the latter is the case, what are the most fundamental dualities?

Duality of Theories vs Duality of Fields

- A QFT duality relates a "theory" to another "theory".
- Many of them are motivated by string theory, but no systematic construction in the QFT language.
- Proposal: dualize a "field" rather than a theory!
- The duality of a "theory" can be obtained by gauging symmetries (and adding interactions if necessary) as in the previous examples.
- Today let's focus on mirror symmetry of 3d $\mathcal{N}=4$ linear quiver gauge theories:
- Consisting of (bi-)fundamental matter fields
- Interactions fixed by the $\mathcal{N}=4$ supersymmetry
- Based on
- R. Comi, CH, F. Marino, S. Pasquetti, M. Sacchi, "The SL(2, Z) dualization algorithm at work," JHEP 06 (2023) 119, [arXiv:2212.10571].
- CH, S. Pasquetti, M. Sacchi, "Rethinking mirror symmetry as a local duality on fields," Phys.Rev.D 106 (2022) 10, 105014, [arXiv:2110.11362].
- L. E. Bottini, CH, S. Pasquetti, M. Sacchi, "4d S-duality wall and SL(2, Z) relations," JHEP 03 (2022) 035, [arXiv:2110.08001].

Basic Ingredients: S-Wall

- The S-wall theory: $T[U(N)]$

- The S-duality domain-wall theory of the $4 \mathrm{~d} \mathscr{N}=4$ SYM (Giaotto-Witten 08)
- $U(1)^{N-1}$ topological symmetry + background $U(1)$ coupled via mixed $\mathrm{CS}+U(N)_{Y}$ flavor symmetry
- Enhanced $U(N)_{X} \times U(N)_{Y}$ symmetry in the IR

Basic Ingredients: I-Wall

- The identity-wall theory: two S-walls glued by gauging common $U(N)$

- The partition function proportional to the delta function

$$
\sim \sum_{\sigma \in S_{N}} \prod_{j=1}^{N} \delta\left(X_{j}-Y_{\sigma(j)}\right)
$$

- $\langle\mathfrak{M}\rangle \neq 0$, where \mathfrak{M} is a (monopole) operator in the $U(N)_{X} \times U(N)_{Y}$ bifund. rep., breaking

$$
U(N)_{X} \times U(N)_{Y} \rightarrow U(N)_{D}
$$

Building Blocks of 3D Mirror Symmetry

- Dualization of a $U(N) \times U(N)$ bifundamental hypermultiplet

- A bifundamental hypermultiplet -> a fundamental (twisted) hypermultiplet
- Topological $U(1)$-> flavor $U(1)$
- A QFT version of the S-transformation in IIB string theory, exchanging NS5 and D5

Building Blocks of 3D Mirror Symmetry

- Dualization of a fundamental hypermultiplet (+ an identity wall)

- Obtained by using the I-wall property
- A fundamental hypermultiplet -> a bifundamental (twisted) hypermultiplet
- Flavor $U(1)$-> topological $U(1)$

Generalization: Mass-Deformed S- \& I-Walls

- Mass-deformed S-wall: S-wall + mass terms breaking $U(N)_{Y} \rightarrow U(M) \times U(1)$

$$
Y_{M+j}=V+\frac{N-M+1-2 j}{2}\left(i Q-2 m_{A}\right), \quad j=1, \ldots, N-M
$$

- Mass-deformed I-wall: S-wall + mass-deformed S-wall

(Generalized) Building Blocks of 3D Mirror

- Dualization of a $U(N) \times U(M)$ bifundamental hypermultiplet

- A bifundamental hypermultiplet between different ranks = a fundamental (twisted) hypermultiplet dualized by the mass-deformed S-wall

Swap Fundamental and Bifundamental

- The mass-deformed S- \& I-walls satisfy an interesting property resembling the Hanany-Witten brane move in IIB string theory.
- Nothing but Higgs mechanism

Example

Mirror symmetry of 3d SQCD

- Mirror symmetry of the 3d $\mathcal{N}=4 U(2)$ theory with 4 flavors

- $U(1) \times S U(4)$ vs $S U(2) \times U(1)^{3}$
- The global symmetry enhanced to $S U(2) \times S U(4)$ in the IR
- Monopoles and mesons exchanged under the duality

Mirror symmetry of 3d SQCD

- Dualization Algorithm
- Chop the quiver into the basic blocks.
- Dualize each block and glue them back.
- Carry out the (QFT version of) Hanany-Witten move until l-walls disappear.

Mirror symmetry of 3d SQCD

One more thing...

Where do these building blocks come from?

Where do these building blocks come from?

- The 3d mirror building blocks are derived from the Aharony duality!
- The Aharony duality:

- A new bridge between mirror-like dualities and Seiberg-like dualities
- The same relation in 4d

Seiberg-like dualities

Seiberg-like dualities

Mirror-like dualities

Conclusion

- We have found a new properties of $\mathrm{T}[\mathrm{U}(\mathrm{N})]$, which can be used to find building blocks of 3d mirror symmetry.
- Generalization
- 3d $S L(2, \mathbb{Z})$ dualities
- 4d mirror and $\operatorname{PSL}(2, \mathbb{Z})$ dualities
- Some Seiberg-like dualities
- These building blocks can be derived from the Aharony duality.
- Different looking dualities can be derived from common fundamental dualities.
-> Microscopic mechanism of these dualities would be universal.
- Deeper understanding of the duality building blocks from other perspectives? E.g., connection to higher dimensional SCFTs? Holography?

Thank you

Congratulation CTPU!

