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Introduction

Congrats 10 Years of IBS-CTPU-PTC

I joined this center as a YSF on August 1, 2021 and am happy to join this group.
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Introduction Vaidya spacetime

Vaidya spacetime

Vaidya spacetime in the ingoing Eddington-Finkelstein coordinate :

ds2 = −
(

1−
2m(v)

r

)
dv2 + 2dvdr + r2dΩ2

where

v = t+ r∗, r∗ =

∫ (
1−

2m(v)

r

)
dr

it is a dynamical spacetime, meaning that the metric coefficients are functions of time

a solution to the Einstein equation with energy-momentum tensor

Tαβ =
1

4πr2

dm(v)

dv
lαlβ , lα = −∂αv

describes a black hole that absorbing a null dust (a pressureless fluid)

can be used to model the spacetime around a black hole that is either emitting or absorbing
radiation. This can help us to understand how black holes evolve over time.
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Introduction Conformal Killing Equations

Conformal Killing Equations

Conformal Killing Equation (CKE)

: defined by a vector ξa in a spacetime M provided Lie derivative of the spacetime metric along ξa

Lξgab = 2ϕgab

where ϕ is a smooth function on M

4ϕ = ∇aξa

If ϕ is zero, ξa is a true Killing vector (KV)

If ϕ is constant, ξa is a homothetic conformal Killing vector (HKV)

If ϕ is non-constant, ξa is a (proper) conformal Killing vector (CKV)
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Introduction Conformal Transformation

Conformal Transformation

The existence of a conformal Killing vector ξa implies the existence of a metric ḡab, which is
related to gab via conformal transformation

gab = Ω2ḡab, gab = Ω−2ḡab, Ω 6= 0,

for smooth Ω.

A spacetime M̄ with metric ḡab, is static, i.e. admits a timelike KV ξ̄a, so that

Lξ̄ ḡab = 0.

The vectors in the static and conformal spacetimes are related as

ξa = ξ̄a, ξa = gabξ
b = Ω2ḡabξ

b = Ω2ξ̄a

where ξ̄a and ξ̄a are Killing vectors associated with ḡab.
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Motivation
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Motivation

Linear Vaidya spacetime with CKV 2 3

ds2 = −
(

1−
2m(v)

r

)
dv2 + 2dvdr + r2dΩ2,

where
m(v) = M + µ(v − v0)

a mass function is linear in v
in a static limit µ→ 0, Schwarzschild spacetime is recovered
Conformal Killing Vectors (CKV)

ξa =
m(v)

M
δav +

rµ

M
δar

surface gravity for an observer following the trajectory of the conformal Killing vector in the
dynamical Vaidya spacetime

κ = Ωcκ1 =
r
1/2
0√

m2r0 − 2m3 − 2µmr2
0

2µ
√

1− 16µ

(1−
√

1− 16µ)

where κ1 is the conformally invariant surface gravity and r0 is the observer’s location

2Alex B. Nielsen, Galaxies 2014, 2(1), 62-71
3Alex B. Nielsen and Andrey A. Shoom, Class. Quant. Grav. 35 (2018)
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Charged Vaidya spacetime solution

Charged Vaidya spacetime solution
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Charged Vaidya spacetime solution

Charged Vaidya spacetime solution4

ds2 = −
(

1−
2m(v)

r
+
q(v)2

r2

)
dv2 + 2dvdr + r2dΩ2,

A =
1
√

4π

(
q(v)

r
−
q(v)

r0

)
dv

equations of motion

Rµν −
1

2
Rgµν = 8πG(T

(EM)
µν + T

(ex)
µν ), ∇µFµν = jν ,

the energy-momentum tensor and the current are required to be

T (EM)µ
ν =

q(v)2

8πr4
diag(−1,−1, 1, 1),

T
(ex)
vv =

2

r3
(rṁ(v)− q(v)q̇(v)) , jv = −

q̇(v)

2
√
πr2

.

null energy condition (Tabk
akb ≥ 0) requires

rṁ(v)− q(v)q̇(v) ≥ 0,
(
T

(EM)
µν kµkν = 0

)
4W.B. Bonnor and P.C. Vaidya, “Spherically symmetric radiation of charge in Einstein-Maxwell

theory", Gen. Relativ. Grav., vol. 1, no. 2, p. 127, 1970.
Miok Park (IBS-CTPU) Charged Vaidya spacetime with CKV October 24, 2023 10 / 32



Conformal Killing vectors in the charged Vaidya spacetime

Conformal Killing vectors in the charged Vaidya
spacetime
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Conformal Killing vectors in the charged Vaidya spacetime

CKV in the charged Vaidya spacetime

Lξgab = 2ϕgab, ds2 = −f(v, r)dv2 + 2dvdr + r2dΩ2,

Ansatz for conformal Killing vector
ξa = {h(v, r), h̄(v, r), 0, 0}, ξa = {−f(v, r)h(v, r) + h̄(v, r), h, 0, 0}.

the CKE gives the following set of equations

0 = 2h′ = 0, 0 =
2h̄

r
+ 2fh′ + h̄′ + ḣ,

0 = −h̄f ′ − hḟ + f

(
−
h̄

r
+

3

2
h̄′ −

1

2
ḣ

)
+ 2 ˙̄h, 0 = 2h̄− r(h̄′ + ḣ),

the solution should satisfy
ḧ(v) = 0, h(v, r) = h(v) = c2m(v) or h(v) = c3q(v), h̄(v, r) = rḣ(v, r),

the solution to the CKE

c2 =
1

M
, c3 =

1

Q
, ḣ = rc2µ̇ =

rµ

M
, → ξa =

{
m(v)

M
,
rµ

M
, 0, 0

}
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the solution to the CKE

c2 =
1

M
, c3 =

1

Q
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Conformal Killing vectors in the charged Vaidya spacetime

Linear charged Vaidya spacetime with CKV

Charged Vaidya spacetime

ds2 = −
(

1−
2m(v)

r
+
q(v)2

r2

)
dv2 + 2dvdr + r2dΩ2,

A =
1
√

4π

(
q(v)

r
−
q(v)

r0

)
dv

CKE requires

q(v) =
Q

M
m(v), m(v) = M + µ(v − v0)

CKV is

ξa =

{
m(v)

M
,
rµ

M
, 0, 0

}
Homothetic conformal Killing vector

Lξgab = 2ϕgab, ϕ =
1

4
∇aξa =

µ

M
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Conformal mappling to Static Spacetime

Conformal mapping to Static Spacetime

gab = Ω(v, r)2ḡab
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Conformal mappling to Static Spacetime

Conformal mappling to Static Spacetime

ds2 = gabdxadxb = −
(

1−
2m(v)

r
+
q(v)2

r2

)
dv2 + 2dvdr + r2dΩ2,

gab = Ω(v, r)2ḡab, gab = Ω(v, r)−2ḡab, Ω 6= 0,

Ω(v, r)?, ḡab?

Killing equation

Lξ̄ ḡab = 0 = ∇̄aξ̄b + ∇̄bξ̄a − 2Γ̄cabξ̄c

static spacetime M̄ associated with ḡab

ds̄2 = ḡabdx̄adx̄b =
1

Ω(v, r)2

[
−
(

1−
2m(v)

r
+
q(v)2

r2

)
dv2 + 2dvdr + r2dΩ2

]

solution of Ω(v, r)

Ω(v, r)2 =

[
m(v)

M
c4

(
r

m(v)

)]2
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Conformal mappling to Static Spacetime

Conformal mapping to Static Spacetime

ds̄2 = ḡabdx̄adx̄b =
1

Ω(v, r)2

[
− f(v, r)dv2 + 2dvdr + r2dΩ2

]
,

f(v, r) =

(
1−

2m(v)

r
+
q(v)2

r2

)
, Ω(v, r)2 =

[
m(v)

M
c4

(
r

m(v)

)]2

where c4 is a smooth function and not zero except r = 0.
1. Let us redefine the coordinate as : (v, r) to (V, y)

y = M
r

m(v)
, dv =

m(v)

M
dV

then

ds̄2 = −
MF (y)− 2µy

M(c4)2
dV 2 +

2

(c4)2
dV dy +

y2

(c4)2
(dθ2 + sin2 θdφ2),

where

f(v, r) = F (y) = 1−
2M

y
+
Q2

y2
, c4

(
r

m(v)

)
= c4(y)

2. Let us redefine the coordinate as : (V, y) to (V,R)

R =
y

c4(y)
,

ds̄2 = −
MF (y)− 2µy

M(c4)2
dV 2 +

2

(c4 − yc′4)
dRdV +R2dΩ2.
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Conformal mappling to Static Spacetime
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m(v)

M
c4(y)
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m(v)

M
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Then

ds̄2 = −F̃ (R)dV 2 + 2dRdV +R2dΩ2, F̃ (R) = 1−
2M

R
+
Q2

R2
−

2µ

M
R.

- this spacetime is neither asymptotically flat nor asymptotically de Sitter.
- one of black hole solutions surrounded by the quintessence matter 5

5V.V. Kiseleve, “Quintessence and black holes", Class. Quant. Grav., vol. 20, pp. 1187-1198,
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Conformal mappling to Static Spacetime

Conformal mapping to Static Spacetime : case 2

Remind you the dynamical spacetime that we started with

ds2 = gabdxadxb = −
(

1−
2m(v)

r
+
q(v)2

r2

)
dv2 + 2dvdr + r2dΩ2,

gab = Ω(v, r)2ḡab

redefinition of the coordinates : (v, r)→ (V, y)→ (V,R)

ds̄2 = −
MF (y)− 2µy

M(c4)2
dV 2 +

2

(c4 − yc′4)
dRdV +R2dΩ2, R =

y

c4(y)

Let’s set

c4(y) =

√
2µ

M
y, Ω(v, y)2 =

[
m(v)

M
c4(y)

]2

=

[
m(v)

M

√
2µ

M
y

]2

this choice makes the norm of Killing vectors to be normalized at infinity. Then

ds̄2 = −F̃ (R)dV 2 +
M

Rµ
dRdV +R2dΩ2, F̃ (R) = 1−

M2

4µ2R2
+

M4

4µ3R4
−

M4Q2

16µ4R6

- This metric is not asymptotically flat. This implies that the asymptotic flatness, the linear
charged Vaidya spacetime with bounded mass function, is not recovered in the
corresponding static spacetime under the conformal map.
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Horizons

Horizons
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Horizons Classification

Classification : χ and χ̃

σAB is pull-back of σab

σab = gab + lanb + nalb, ds2Σ = σABdxAdxB = r2dθ2 + r2 sin2 θdφ2

χ = la;bσ
ab (la : outgoing null vector), χ̃ = na;bσ

ab (na : ingoing null vector) (1)

untrapped surfaces : χ > 0, χ̃ < 0

trapped surfaces : χ < 0, χ̃ < 0

Marginally Trapped Surfaces (MTS) : χ = 0, χ̃ < 0

C =
Llχ
Lnχ

(2)

isolated horizons : C = 0

dynamical horizons : C > 0

timelike membrane : C < 0
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Horizons f(v, r) = 0 horizons

f(v, r) = 0 horizons

ds2 = −f(v, r)dv2 + 2dvdr + r2dΩ2, f(v, r) =

(
1−

2m(v)

r
+
q(v)2

r2

)
,

f(v, r) = 0 → r± =
m(v)

M

(
M ±

√
M2 −Q2

)

Outgoing:

{
`a = (1, f

2
, 0, 0)

`a = (− f
2
, 1, 0, 0),

Ingoing:
{

na = (0,−1, 0, 0)
na = (−1, 0, 0, 0).

χ =
f(v, r)

r

∣∣∣∣
r±

= 0, χ̃ = −
2

r

∣∣∣∣
r±

< 0 →MTS

L`χ|r± =
ḟ

r

∣∣∣∣
r±

= −
2µm(v)

M2r3
±

[(
M2 −Q2

)
±M

√
M2 −Q2

]
,

Lnχ|r± = −
f ′

r

∣∣∣∣
r±

= −
2m(v)2

M2r4
±

[(
M2 −Q2

)
±M

√
M2 −Q2

]

C =
µr±

m(v)
=

µ

M

(
M ±

√
M2 −Q2

)
> 0 → dynamical horizon
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Horizons Conformal Killing Horizons

conformal Killing horizons

ξαξα =
m(v)

(
−m(v)

(
q(v)2 + r2

)
+ 2rm(v)2 + 2µr3

)
M2r2

= 0,

r1 =
m(v)

6µ

(
1 +

3
√
b+

1− 12µ
3
√
b

)
,

r2 =
m(v)

6µ

(
1−

(
1− i

√
3
)

3
√
b

2
−

2(1− 12µ)(
1− i

√
3
)

3
√
b

)
,

r3 =
m(v)

6µ

(
1−

(
1 + i

√
3
)

3
√
b

2
−

2(1− 12µ)(
1 + i

√
3
)

3
√
b

)
,

b =1− 18µ+
6µ

M2

(
9µQ2 + i

√
3
√

(1− 16µ)M4 + (18µ− 1)M2Q2 − 27µ2Q4

)
.

In order to have distinct three roots

0 < µ <
M
(
−8M3 + 9MQ2 +

(
4M2 − 3Q2

)3/2)
27Q4

,

Q = 0 : 0 < µ <
1

16
, Q =

√
4

3
M : 0 < µ <

1

12
, Q = M : 0 < µ <

2

27
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)

3
√
b

)
,

b =1− 18µ+
6µ

M2

(
9µQ2 + i

√
3
√

(1− 16µ)M4 + (18µ− 1)M2Q2 − 27µ2Q4

)
.

In order to have distinct three roots

0 < µ <
M
(
−8M3 + 9MQ2 +

(
4M2 − 3Q2

)3/2)
27Q4

,

Q = 0 : 0 < µ <
1

16
, Q =

√
4

3
M : 0 < µ <

1

12
, Q = M : 0 < µ <

2

27
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Horizons Conformal Killing Horizons
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Horizons Conformal Killing Horizons

conformal Killing horizons : small µ expansion

r1 ∼
M

2µ
+

1

2
(−4M + v − v0) + 2µ

(
Q2

M
− 4M − v + v0

)
+ · · · ,

r2 ∼M −
√
M2 −Q2

+ µ


(√

M2 −Q2 −M
)(√

M2 −Q2 − 3M − v + v0

)
M

−
Q2√

M2 −Q2

+ · · · ,

r3 ∼M +
√
M2 −Q2

+ µ


(√

M2 −Q2 +M
)(√

M2 −Q2 + 3M + v − v0

)
M

+
Q2√

M2 −Q2

+ · · ·
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Horizons Conformal Killing Horizons

CKHs maps to F̃ (R) = 0 horizons in static spacetime

dynamical spacetime : linear charged Vaidya spacetime

ds2 = −
(

1−
2m(v)

r
+
q(v)2

r2

)
dv2 + 2dvdr + r2dΩ2,

ξαξα =
m(v)(2µr −m(v)f(v, r))

M2
= 0, (conformal Killing horizon)

conformal mapping
gab = Ω(v, r)2ḡab

static spacetime

ds̄2 = −
MF (y)− 2µy

M(c4)2
dV 2 +

2

(c4 − yc′4)
dRdV +R2dΩ2, ,

R =
y

c4(y)
, F (y) = 1−

2M

y
+
Q2

y2

F̃ (Ri) =
MF (y)− 2µy

M(c4)2
= 0, (F̃ (R) = 0 horizons)

ri and Ri are related as

R1 =
M

m(v)
r1, R2 =

M

m(v)
r2, R3 =

M

m(v)
r3
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Horizons Surface gravity

Surface gravity 6

∇a(ξbξb) = −2κ1ξa,

ξb∇bξa = κ2ξ
a,

(κ3)2 = −
1

2
(∇aξb)(∇[aξb]).

These are identical for Killing vector case, but for conformal Killing vectors, they are related as

κ1 = κ2 − 2ϕ = κ3 − ϕ.

1. Let us take ξc∇c to (κ3)2 and use the relation

∇c∇aξb = ξdRdcab + gab∇cφ+ gbc∇aφ− gac∇bφ, → 2κ3ξ
c∇cκ1 = 0

which implies that κ1 is constant along each of the null CKV curve
2. κ1 is conformally invariant

∇̄a(ξ̄bξ̄b) = −2κ1ξ̄a

Then κ1 is the one that is identified to Hawking temperature in a static spacetime

T =
κ1

2π

6T. Jacobson and G. Kang, “Conformal invariance of black hole temperature," Class. Quant.
Grav., vol. 10, pp. L201-L206, 1993

Miok Park (IBS-CTPU) Charged Vaidya spacetime with CKV October 24, 2023 25 / 32



Horizons Surface gravity

Surface gravity 6

∇a(ξbξb) = −2κ1ξa,

ξb∇bξa = κ2ξ
a,

(κ3)2 = −
1

2
(∇aξb)(∇[aξb]).

These are identical for Killing vector case, but for conformal Killing vectors, they are related as

κ1 = κ2 − 2ϕ = κ3 − ϕ.

1. Let us take ξc∇c to (κ3)2 and use the relation

∇c∇aξb = ξdRdcab + gab∇cφ+ gbc∇aφ− gac∇bφ, → 2κ3ξ
c∇cκ1 = 0

which implies that κ1 is constant along each of the null CKV curve

2. κ1 is conformally invariant

∇̄a(ξ̄bξ̄b) = −2κ1ξ̄a

Then κ1 is the one that is identified to Hawking temperature in a static spacetime

T =
κ1

2π

6T. Jacobson and G. Kang, “Conformal invariance of black hole temperature," Class. Quant.
Grav., vol. 10, pp. L201-L206, 1993

Miok Park (IBS-CTPU) Charged Vaidya spacetime with CKV October 24, 2023 25 / 32



Horizons Surface gravity

Surface gravity 6

∇a(ξbξb) = −2κ1ξa,

ξb∇bξa = κ2ξ
a,

(κ3)2 = −
1

2
(∇aξb)(∇[aξb]).

These are identical for Killing vector case, but for conformal Killing vectors, they are related as

κ1 = κ2 − 2ϕ = κ3 − ϕ.

1. Let us take ξc∇c to (κ3)2 and use the relation

∇c∇aξb = ξdRdcab + gab∇cφ+ gbc∇aφ− gac∇bφ, → 2κ3ξ
c∇cκ1 = 0

which implies that κ1 is constant along each of the null CKV curve
2. κ1 is conformally invariant

∇̄a(ξ̄bξ̄b) = −2κ1ξ̄a

Then κ1 is the one that is identified to Hawking temperature in a static spacetime

T =
κ1

2π

6T. Jacobson and G. Kang, “Conformal invariance of black hole temperature," Class. Quant.
Grav., vol. 10, pp. L201-L206, 1993

Miok Park (IBS-CTPU) Charged Vaidya spacetime with CKV October 24, 2023 25 / 32



Horizons Surface gravity

Surface gravity 6

∇a(ξbξb) = −2κ1ξa,

ξb∇bξa = κ2ξ
a,

(κ3)2 = −
1

2
(∇aξb)(∇[aξb]).

These are identical for Killing vector case, but for conformal Killing vectors, they are related as

κ1 = κ2 − 2ϕ = κ3 − ϕ.

1. Let us take ξc∇c to (κ3)2 and use the relation

∇c∇aξb = ξdRdcab + gab∇cφ+ gbc∇aφ− gac∇bφ, → 2κ3ξ
c∇cκ1 = 0

which implies that κ1 is constant along each of the null CKV curve
2. κ1 is conformally invariant

∇̄a(ξ̄bξ̄b) = −2κ1ξ̄a

Then κ1 is the one that is identified to Hawking temperature in a static spacetime

T =
κ1

2π

6T. Jacobson and G. Kang, “Conformal invariance of black hole temperature," Class. Quant.
Grav., vol. 10, pp. L201-L206, 1993

Miok Park (IBS-CTPU) Charged Vaidya spacetime with CKV October 24, 2023 25 / 32



Horizons Surface gravity

Expansion of surface gravity on small µ

κ1|r1 =−
1

M
µ+

4

M
µ2 + · · · ,

κ1|r2 =
−2M3 + 2MQ2 −

(
2M2 −Q2

)√
M2 −Q2

Q4

+
−4
√
M2 −Q2 −M

M
√
M2 −Q2

µ−
(

2

M
−

4M4 − 6M2Q2 + 3Q4

2M2 (M2 −Q2)3/2

)
µ2 + · · · ,

κ1|r3 =
−2M3 + 2MQ2 +

(
2M2 −Q2

)√
M2 −Q2

Q4

+
M − 4

√
M2 −Q2

M
√
M2 −Q2

µ−
(

2

M
+

4M4 − 6M2Q2 + 3Q4

2M2 (M2 −Q2)3/2

)
µ2 + · · ·
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Horizons Surface gravity

Hawking temperature in static spacetime

The static spacetime when c4 = 1 :

ds̄2 = −F̃ (R)dV 2 + 2dRdV +R2dΩ2

F̃ (R) = 1−
2M

R
+
Q2

R2
−

2µ

M
R.

Let us take a coordinate transformation as follows

V = T +R∗, R∗ =

∫
1

F̃ (R)
dR

Then it yields the metric and Killing vectors as follows

ds2 = −F̃ (R)dT 2 +
1

F̃ (R)
dR2 +R2dΩ2,

ξa = {1, 0, 0, 0}

Hawking temperatures are computed as

Ti =
F̃ ′(R)

4π

∣∣∣∣
R=Ri

=
κi

2π
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Horizons Null Energy Condition

Null Energy Condition

The null energy condition requires
rṁ(v)− q(v)q̇(v) ≥ 0

q(v) = 0 case : the null energy condition is always satisfied, since
m(v) = M + µ(v − v0) where µ > 0

q(v) 6= 0 case : the null energy condition is satisfied in regions rE where

rE ≥
Q2(M + µ(v − v0))

M2

- Due to the small µ expansion, we can clearly make a comparison for the location of
horizons as follows

r1 > r3 > r+ > rE > r− > r2

- Satisfied for the outside of the outer horizon r+, but violated between r+ and r− horizons.
- This might indicate that the linear charged Viadya spacetime is unphysical.
- To resolve this problem, there have been studies to remove the unphysical region and to

glue another spacetime. 7

7A.Ori, “Charged null fluid and the weak energy condition", Class. Quantum Grav., vol. 8, no.
8, p. 1559, 1991.
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Case of M = Q

Case of M = Q
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Case of M = Q

Case of M = Q

The linear charge Vaidya spacetime is

ds2 = −
(

1−
2m(v)

r
+
q(v)2

r2

)
dv2 + 2dvdr + r2dΩ2, q(v) =

Q

M
m(v),

= −
(

1−
m(v)

r

)2

dv2 + 2dvdr + r2dΩ2

r+ and r− degenerates
r+ = r− = m(v)

conformal Killing horizons DO NOT degenerates

r1 =
M

2µ
+

1

2
(−4M + v − v0)− 2µ(3M + v − v0) + · · ·

r2 = M −
√

2M
√
µ+ (3M + v − v0)µ+ · · ·

r3 = M +
√

2M
√
µ+ (3M + v − v0)µ+ · · ·

non-vanishing surface gravity or non-vanishing Hawking temperature in static spacetime

κ1|r1 = −
µ

M
+ · · · , κ1|r2 = −

√
2
√
µ+ 4µ

M
+ · · · , κ1|r3 =

√
2
√
µ− 4µ

M
+ · · · .
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Summary

Summary

We have found the charged Vaidya spacetime having conformal Killing vectors ξa : i) mass
function m(v) should be proportional to mass function q(v), ii) mass function m(v) should
be linear in v

ξa is homothetic conformal Killing vector

the charged Vaidya spacetime conformally maps to static spacetime

static spacetimes that can take various forms depending on the conformal factor Ω(v, r)
that we choose

in the charged Vaidya spacetime, f(v, r) = 0 horizon and the conformal Killing horizons are
not agreed.

the conformal Killing horizons maps to F̃ (R) = 0 horizons in static spacetime

κ1 is identified to Hawking temperature in a static spacetime

in the linear charged Vaidya spacetime, Q = M leads to the coincidence of the inner and
outer horizons at r = m(v), but the Killing horizons do not degenerate.

thus the degenerate horizon does not yield vanishing surface gravity in the linear charged
Vaidya spacetime, and hence non-zero Hawking temperature in the static spacetime.
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