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Motivation and objectives

Some background . . . 1/4

Role of symmetries in general relativity dates back to the 1920’s when
Brinkmann examined the usefulness of such transformations to obtain
new exact solutions to the field equations (Brinkmann, Math. Ann.,
1924, 1925).

Killing and conformal Killing symmetries, the action for which the
metric is left either unchanged, or scaled, are usually assumed.

If the vector field generating the symmetry is timelike, one has a
choice of observers.

Then, the spacetime admitting the symmetry is conformal to a
stationary one, i.e. it scales a stationary spacetime by some factor.
These spacetimes are termed conformally stationary (CS) spacetimes
(Alías et al., 1997, Caballero et al., 2011).
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Motivation and objectives

Some background . . . 2/4

If the timelike conformal Killing vector field is gradient, these
spacetimes are called gradient CS (GCS) spacetimes. A sufficient
condition to ensure causal stability is that the gradient condition be
global.

In the timelike region, the orthogonal distribution of the GCKV
induces a foliation of the spacetime into spacelike hypersurfaces.

Stability and uniqueness of these hypersurfaces have been examined
in for example (Caballero et al., Nonlinear Anal.: Theory
Methods Appl., 2011, Romero et al., CQG, 2013, de la Fuente et
al., GRG, 2017).
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Motivation and objectives

Some background . . . 3/4

A particular subclass of GCS spacetimes is the set of generalized
Robertson-Walker (GRW) spacetimes, a warped product spacetime
that has been extensively studied for various reasons. See the
references (Romero et al., CQG, 2013, Romero et al., IJGMMP,
2013, Romero et al., J. Math. Anal. App., 2014, Mantica &
Molinari, JMP, 2019). For an indepth review in the case of GRW
spacetimes, see (Mantica et al., IJGMMP, 2017.)

Given a symmetry of a spacetime, there are implications for the
presence and location of trapped and marginally outer trapped
surfaces (to be defined later), and hence the character of horizons
that they foliate.
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Motivation and objectives

Some background . . . 4/4

The relationship between symmetries of spacetimes and trapped and
marginally trapped surfaces have previously been investigated, for
example, in (Mars & Senovilla, CQG, 2003, Ashtekar & Galloway,
Adv. Theor. Math. Phys., 2005.).

These studies have primarily focused on the Killing case, where the
existence of trapped surfaces, MOTS and certain horizon types were
investigated under the Killing symmetries assumptions, considering
different causal characters of the Killing vector.

The stability of MOTS contained in an initial data, which admits a
Killing symmetry, have been investigated by (Booth et al.,
arXiv:2311.02063v1, 2023, Carrasco & Mars, CQG, 2009). In
particular, in the former, several results demonstrating the instability
of exotic MOTS were obtained.
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Motivation and objectives

What is done . . . 1/3

Broadly put, we are interested in the existence of GCKV and what
implications these necessary and/or sufficient conditions have on the
presence and character of MOTS in the spacetime. Our interest is in
the class of locally rotationally symmetric (LRS) spacetimes (which
we define shortly).

We employ the so-called 1+1+2 formalism which extends the 1+3
covariant approach. The approach is partularly well suited for the
class of spacetimes we are considering.

Conformal symmetries in LRS spacetimes have been studied variously
under several assumptions and adaptation to the 1+1+2 formulation
can be found in these recent works (Bergh, PRD, 2017, Singh et al.,
JMP, 2019, Cheverra et al., GRG, 2020, Cheverra et al.,
IJGMMP, 2023).
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Motivation and objectives

What is done . . . 2/3

Existence of gradient CKV in vacuum and perfect fluid spacetimes
was first examined in (Daftardar & Dadhich, GRG, 1994).

In a recent work by (Koh et al., arXiv:2305.05148v2, 2023), this
was generalized to all of LRS spacetimes, with the existence in the
LRS II case characterized by a wave-like PDE for associated the
potential function. The timelike condition for the gradient CKV was
also discussed.

We revisit the existence of GCKV for LRS spacetimes. We obtain an
identity relating the curvature to the divergence of the CKV
(henceforth, conformal divergence), which provides an alternative set
of equations in the potential function, from which we extract
information about the existence of GCKV.
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Motivation and objectives

What is done . . . 3/3

We make several observations about the set of equations. We further
obtain a uniqueness result when restricting to perfect fluid spacetimes.

The spacelike hypersurfaces resulting from the splitting induced by
the GCKV have CMC. We obtain the CMC condition(s) . These are
formulated here as algebraic relations on the matter and Weyl
curvature variables.

The CMC condition also allows us to draw some conclusions about
the existence about GCKV. From this we strengthen the previous
uniqueness result.

CMC condition is used to study existence of trapped surfaces and
MOTS, the evolution of the surface in the Case of MOTS, and how a
black hole is observed in the conformal frame.
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A covariant split and LRS spacetimes

LRS spacetimes . . . 1/2

Formally, LRS spacetimes are those admitting a multiply transitive
isometry group, with a continuous isotropy group at each point of the
spacetime. In other words, admit local axis of symmetry (Stewart &
Ellis, JMP, 1968).

In local coordinates LRS metric is (Stewart & Ellis, JMP, 1968)

ds2 = −b2
1dt2 + b2

2dr2 + b2
3dy2 +

(
(Db3)2 +

(
b2h̄

)2
− (b1ḡ)2

)
dz2

+ 2
(
b2

1 ḡdt − A2
2hdr

)
dz ,

(1)

where bj = bj(t, r) , ḡ = ḡ(y), h̄ = h̄(y), and
D = sinh y for hyperbolic M2,
D = y for planar M2,
D = sin y for spherical M2.
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A covariant split and LRS spacetimes

LRS spacetimes . . . 2/2

In addition to the 4-velocity ua = −b−1
1 ∂a

t , the metric (1) admits a
preferred local axis of symmetry, the unit field na = b−1

2 ∂a
r .

A particular class is LRS II with g = 0 = h, which are irrotational (the
temporal and spatial congruences have vanishing vorticities) with the
Weyl contribution coming only from the electric part.

The LRS II class generalizes spherically symmetric (SS) solutions.
Also contains exact black holes and cosmological solutions:
Schwarzschild, SS LTB, FRW, and background of many stellar
models.

Few cases with at least one of the vorticities of ua and na

nonvanishing, have been considered. A well known example is the
Gödel rotating solution.
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A covariant split and LRS spacetimes

A decomposition of LRS spacetimes: 1+1+2 . . . 1/4

We follow these references (Clarkson, CQG, 2003; PRD, 2007).
The presence of the unit spatial vector na ⊥ ua introduces the
projector tensor

Nab = gab + uaub − nanb.

Nab is the induced metric on surfaces of constant t and r , to which
ua and na are orthogonal.

Accordingly, the energy momentum tensor assumes the form

Tab = ρuaub + 2Qu(anb) + phab + Π
(

nanb − 1
2Nab

)
:

ρ = Tabuaub is energy density; 3p = Tabhab is pressure; Q = Tabnaub

is heat flux; and Π = Tabnanb − p encodes deviation from isotropy.
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A covariant split and LRS spacetimes

A decomposition of LRS spacetimes: 1+1+2 . . . 2/4

The Ricci tensor, from the field equations, take the form

Rab = g1uaub + g2hab + 2Qu(anb) + Π
(

nanb − 1
2Nab

)
,

where we have set

g1 = 1
2 (ρ+ 3p − 2Λ) ; g2 = 1

2 (ρ− p + 2Λ) .

The decomposition introduces two convective derivatine:
Dot derivative: ψ̇ c...d

a...b = uf ∇f ψ
c...d

a...b (evolution);
Hat derivative: ψ̂ c...d

a...b = nf ∇f ψ
c...d

a...b (propagation).

Any 4-vector ψa can then alway be written in the decomposed form

ψa = ψ1ua + ψ2na. (ψ1 = −uaψ
a, ψ2 = naψ

a, Na
bψ

b = 0)
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A covariant split and LRS spacetimes

A decomposition of LRS spacetimes: 1+1+2 . . . 3/4

Similarly, the gradient of a scalar ψ takes the decomposed form

∇aψ = −ψ̇ua + ψ̂na.

The covariant derivatives of the unit vector fields can also be written
covariantly as

∇aub = −Auanb +
(1

3θ + σ

)
nanb + 1

2

(2
3θ − σ

)
Nab + Ωεab,

∇anb = −Auaub +
(1

3θ + σ

)
naub + 1

2ϕNab + ξεab :

A = nau̇a is acceleration; θ = ∇aua is expansion of ua, σ = σabnanb

is shear scalar; ϕ = Nab∇anb is expansion of na (surface expansion
henceforth); Ω = (1/2)εab∇aub; is vorticity of ua, ξ = (1/2)εab∇anb
is vorticity of na; εab is 2-dimensional alternating tensor.
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A covariant split and LRS spacetimes

A decomposition of LRS spacetimes: 1+1+2 . . . 4/4

Generally, ‘dot’ and ‘hat’ derivatives do not commute. Rather, they
obey the following commutation relation when acting on a scalar ψ:

ˆ̇ψ − ˙̂
ψ = −Aψ̇ +

(1
3θ + σ

)
ψ̂.

Furthermore, the electric and magnetic parts of the Weyl tensor are

Eab = E
(

nanb − 1
2Nab

)
, Hab = H

(
nanb − 1

2Nab

)
.

LRS spacetimes specified by the set

Z ≡: {A, θ, σ, ϕ,Ω, ξ, ρ, p, E ,H,Q,Π} (Eg. ZSch ≡: {A, ϕ, E}).

Finally, one writes the field equations as a set of evolution and
propagation, as well as constraint equations for Z .
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Gradient CKV: an alternative characterization

Conformal symmetry

A spacetime (M, gab) admits conformal symmetry if ∃ ηa s.t.

Lηgab = ∇aηb + ∇bηa = 2φgab. (2)

ηa is Killing vector (KV), homothetic Killing vector (HKV), or
(proper) conformal Killing vector (CKV) if φ = 0, (nonzero) constant,
or nonconstant, respectively.

ηa is gradient if ∃ scalar Ψ s.t. ηa = ∇aΨ.

ηa is CKV ⇐⇒ ∇bηa = φgab + Fab, where Fab = F[ab].

Thus, ηa is gradient ⇐⇒ Fab vanishes.

If ηa timelike, M is gradient conformally stationary (GCS).
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Gradient CKV: an alternative characterization

Conformal symmetry in LRS spacetimes

We consider vector field of the form

xa = α1ua + α2na.

xa gradient ⇐⇒ α1 = −Ψ̇, α2 = Ψ̂.

Fab = −2 (α̇2 + Aα1) u[anb] + (α1Ω + α2ξ) εab = 0

In (Koh et al., arXiv:2305.05148v2, 2023), it was established that
only subclasses of LRS spacetimes admitting a GCKV are

Ω = 0 and ξ ̸= 0;
LRS II class: Ω = 0 = ξ.

For the latter, the necessary and sufficient condition was given by the
following wave-like PDE:

□Ψ = 4φ.
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Gradient CKV: an alternative characterization

Alternative characterization for gradient CKV . . . 1/7
Let us immediately state the following Lemmas.

Lemma

If a spacetime M admits a CKV xa with conformal divergence φ, then,
the following hold:

□xa = −Rabxb − 2φa, (3a)

□φ = −1
6xa∇aR − 1

3Rφ, (3b)

where R denotes the scalar curvature.

Statement of proof: Use Ricci identities for xa and the CKE to establish

∇c∇axb = Rbacdxd + gabφc + gcbφa − gcaφb, (4)

Then, (3a) follows from (4), and (3b) follows from the definition of φ.
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Gradient CKV: an alternative characterization

Alternative characterization for gradient CKV . . . 2/7

Next,

Lemma

If a spacetime M admits a gradient CKV xa, then, it holds that

Rabxb = −3φa. (5)

Proof.
If M admits a gradient CKV xa, ∇axb = φgab. Thus,

□xa = φa, (6)

which upon inserting into (3a) gives (5).
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Gradient CKV: an alternative characterization

Alternative characterization for gradient CKV . . . 3/7

We expand out (5):

g1Ψ̇ + QΨ̂ = 3φ̇, (7)

−
[
QΨ̇ + (g2 + Π) Ψ̂

]
= 3φ̂. (8)

We make a few observations from the above:
If g1 = ρ+ 3p − 2Λ > 0 ̸= 0, xa must be proper for otherwise, xa is
trivial.
Any gradient KV in a spacetime strictly obeying the weak and strong
energy conditions (WEC and SEC), respectively g1 + g2 = ρ+ p > 0
and g1 > 0, must lie along the timelike congruence.

Suppose xa is a Ricci principal direction, and denote by η the
eigenvalue associated to xa. We analyze this as the two distinguished
cases Q = 0 and Q ̸= 0.
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Gradient CKV: an alternative characterization

Alternative characterization for gradient CKV . . . 4/7
Begin with Q = 0. We reduce the above system to

(g1 + η) Ψ̇ = 0, (9)
(g2 + Π − η) Ψ̂ = 0. (10)

Timelike case: Ψ̇ ̸= 0. Thus, η = −g1, and the strict SEC ensures
η < 0.

Proposition

Any timelike gradient CKV of a perfect fluid LRS spacetime with
nonvanishing pressure and a non-negative cosmological constant, and
obeying the SEC (g1 ≥ 0), must lie along ua.

Proof.
Assume Ψ̂ ̸= 0. It follows that g1 + g2 = 0 =⇒ g1 < 0, thereby failing
the SEC.
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Gradient CKV: an alternative characterization

Alternative characterization for gradient CKV . . . 5/7

Of course, as Ψ̂ = 0, A must vanish by the vanishing of Fab.
Furthermore, it is easily checked that the spacetime is shear-free.
Then, from the field equations this imposes that the spacetime is
necessarily conformally flat, i.e. E = 0. It therefore follows that

Theorem

The only GCS perfect fluid LRS II spacetime with a nonvanishing pressure
and non-negative cosmological constant is the Robertson-Walker type
solution.

In the Q ̸= 0 case, one can also comment on the bound on the
eigenvalue η:

Q2 = (g1 + η) (g2 + Π − η) =⇒ η <
g1 (g2 + Π)
g1 − g2 − Π .
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Gradient CKV: an alternative characterization

Alternative characterization for gradient CKV . . . 6/7

Returning to the original system, we can write down the integrability
condition:

2QΨ̈ + (ρ+ p + Π) ˆ̇Ψ + F1Ψ̇ + F2Ψ̂ = 0, (11)

where we have defined

F1 = ĝ1 + A (ρ+ p + Π) +
[
Q̇ +

(2
3θ − σ

)
Q

]
,

F2 = (g2 + Π)· +
(
Q̂ + ϕQ

)
.

If we restrict to the perfect fluid case, assuming the SEC, it is easily
verified that (11) is satisfied.
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Gradient CKV: an alternative characterization

Alternative characterization for gradient CKV . . . 7/7

In fact, in general, one may use the vanishing of Fab and the CKE to
bring (11) into the form

2QΨ̈ + F1Ψ̇ + F̄2Ψ̂ = 0, (12)

with

F̄2 = F2 + (ρ+ p + Π)
(1

3θ + σ

)
.

For example, if one considers a ua-directed xa, i.e. Ψ̂ = 0 for this
radiating spacetime, one has

2QΨ̈ + F1Ψ̇ = 0. (13)

The above admits a solution if F1 and Q vanish simultaneously,
imposing

ĝ1 + A (ρ+ p + Π) = 0. (14)
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The constant mean curvature (CMC) condition

Hypersurface geometry . . . 1/2

We have a foliation Wx by spacelike hypersurfaces, to which the CKV
xa is orthogonal.

The unit normal to the leaves is the normalized timelike gradient CKV
x̃a = fxa (with f = 1/

√
−xaxa). On such a spacelike hypersurface,

denote T , is induced the Riemannian metric and projected covariant
derivative

zab = gab + x̃ax̃b, Da = zb
a∇b.

It can be checked that both f and φ are constant on T . We then
have the second fundamental form on T as

χ̄ab = 1
2 L̄x̃zab = f φzab.
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The constant mean curvature (CMC) condition

Hypersurface geometry . . . 1/2

=⇒ T is totally umbilical. This gives the mean curvature as

χ̄ = −1
3zabχab = −f φ, (15)

which is constant on T , i.e. T is a CMC hypersurface.

Also, T is maximal (χ̄ = 0), i.e. totally geodesic, if and only if xa is a
true KV.

The constancy of the mean curvature essentially constrains the
character of the CKV. We now obtain this CMC criterion.
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The constant mean curvature (CMC) condition

The CMC condition . . . 1/5

For an arbritrary scalar ψ in an LRS solution, the T -gradient

Daψ = ∇aψ + f 2
(
xb∇bψ

)
xa

=
[(

f 2α2
1 − 1

)
ψ̇ + f 2α1α2ψ̂

]
ua

+
[(

f 2α2
2 + 1

)
ψ̂ + f 2α1α2ψ̇

]
na.

Then, we can write down the constancy of ψ as the vanishing
condition:

α2ψ̇ + α1ψ̂ = 0.

That is, exactly one of the following is true on T :

1) α2 = ψ̂ = 0 & ψ̇ ̸= 0; 2) ψ̂ = ψ̇ = 0; or 3) ψ̂ ̸= 0 & ψ̇ ̸= 0.
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The constant mean curvature (CMC) condition

The CMC condition . . . 2/5
We examine the constancy conditions for the mean curvature χ̄. We begin
by stating the following
Lemma
Let xa be a timelike gradient CKV in a LRS spacetime M, and let T be a
hypersurface in M to which integral curves of xa are orthogonal. Then,
the evolution and propagation equations of the mean curvature χ̄ of T are

˙̄χ =
[
2α1φ

2 −
(
α2

1 − α2
2
)

(α1X1 + α2X2)
]

2
(
α2

1 − α2
2
)3/2 , (16a)

ˆ̄χ = −
[
2α2φ

2 +
(
α2

1 − α2
2
)

(α1X2 + α2X3)
]

2
(
α2

1 − α2
2
)3/2 , (16b)

where we have defined

X1 = −2
3g1 + E − 1

2Π, X2 = Q, X3 = 2ξ2 − 2
3ρ− E − 1

2Π.
Abbas Sherif (with G Amery & P Dunsby) CKV and CMC condition December 26, 2023 28 / 44



The constant mean curvature (CMC) condition

The CMC condition . . . 3/5

α2 = ˆ̄χ = 0; ˙̄χ ̸= 0: In this case, we know that ˆ̄χ = −X2/2 = 0, and
since the spacetime is necessarily shear-free. The CMC condition
reduces to the pair

X1 ̸= 2
9θ

2 ⇐⇒ 2
3 θ̇ ̸= Aϕ., X2 = 0.

In the irrotational and twisting LRS case, this is the only applicable
CMC condition. (Note: A is necessarily zero =⇒ θ is nonconstant.)

ˆ̄χ = ˙̄χ = 0: In this case, it can be shown that the CMC condition
reduces to the pair of constraints

X3 + X1 = − (ρ+ p + Π) = 0, X2 = 0.
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The constant mean curvature (CMC) condition

The CMC condition . . . 4/5
ˆ̄χ ̸= 0; ˙̄χ ̸= 0: For this case, is can be shown that the CMC condition
reduces to the pair of constraints

X3 − X1 = −1
3R − 2E = 0, X2 = 0.

We will say a bit more here as we have the following:
˙̄χ
ˆ̄χ

= −α1
α2

=⇒
˙̄χ2

ˆ̄χ2 > 1

φ2
(
α2

1 − α2
2

) [
φ2 −

(
α2

1 − α2
2

)
X1

]
> 0 ⇐⇒ φ2 −

(
α2

1 − α2
2

)
X1 > 0.

Indeed, the condition X1 < 0 is sufficient for the above inequality to
hold. In fact, this condition is quite reasonable on most physical
grounds, and a strictly positive scalar curvature R: If the electric Weyl
scalar E < 0, and one then insists that the pressure is non-negative,
p ≥ 0, it is easily checked that this will ensure that the SEC holds, a
physically reasonable condition. It then follows that X1 < 0.
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The constant mean curvature (CMC) condition

The CMC condition . . . 5/5

Set Q = 0 and assume SEC. Further, suppose αi ̸= 0, ˙̄χ ̸= 0, and
ˆ̄χ ̸= 0. Then, one has the following ratio

χ̂/χ̇ = −g1/(g2 + Π). (17)

Consider a perfect fluid. If p = 0, g1 = g2. Thus, α1 = α2, i.e. xa is
null. It follows an inhomogeneous pressureless LRS perfect fluid
cannot be GCS. An immediate consequence of the above proposition
is that Lemaitre-Tolman-Bondi solution is not GCS.

Stay with the perfect fluid case, but p ̸= 0. Applying the timelike
criterion to (17), if the weak energy condition is imposed, necessarily
p < 0: g2

1 − g2
2 = 2p (ρ+ p) < 0. This is, an inhomogeneous LRS

perfect fluid which obeys the weak energy condition is not GCS.
=⇒ The only GCS LRS perfect fluid obeying standard energy
conditions is the Robertson-Walker type solution.
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Implications of the CMC condition for MOTS

MOTS geometry and dynamics . . . 1/5

Consider a 2-surface S embedded in a 4-dimensional spacetime
(M, gab), and we assume that the surface S has a well defined notion
of an ‘inside’ and an ‘outside’.

If we notate the pullback (induced) metric to S by Fab, the
compatible covariant derivative, D̃a, for Fab, is just the projection of
the full covariant derivative ∇a onto S: D̃a = F b

a ∇b.

The normal space of S is spanned by a pair of null normal vector
fields, which we denote by ka and la, and for our purpose we
normalize here to kala = −1. These vector fields are respectively the
unit tangents to null rays leaving and entering S. The surface metric
Fab can then be decomposed as

Fab = gab + k(alb). (18)
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Implications of the CMC condition for MOTS

MOTS geometry and dynamics . . . 2/5

The particular frame choice that defines ka and la depends on how the
spacetime is sliced. This problem is related to the (non)-uniqueness of
dynamical horizons which was investigated in detail by (Ashtekar &
Galloway, Adv. Theor. Math. Phys., 2005).

For our purpose, we consider a constant t and r surface S, so that
F ab is just Nab = gab + uaub − nanb. Thus, we choose the gauge

ka = ua + na, la = 1
2 (ua − na) .

The expansion of ka is

χ = 2
3θ − σ + ϕ.
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Implications of the CMC condition for MOTS

MOTS geometry and dynamics . . . 3/5

A marginally outer trapped surface (MOTS) is that on which, at all
points, χ = 0. A 3-dimensional hypersurfaces foliated by MOTS is
called a marginally outer trapped tube (MOTT).

The geometry and dynamics of MOTS in LRS spacetimes have been
considered in several recent works (Sherif et al., CQG, 2019, Sherif,
EPJ C, 2021, Sherif & Dunsby, CQG, 2023).

On a MOTT H̄, one can always find a (constant) function c such
that the vector field (Hayward, PRD, 1994, Booth & Fairhurst,
PRL, 2004, Booth, Can. J. Phys., 2005)

ya = ka − cla, (19)

is tangent to H̄. (Variation of S along ya induces the foliation.)
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Since yaya = 2c, the causal character of H̄ at a point is determined
by the sign of c: spacelike for c > 0, timelike for c < 0, and null for
c = 0. Note that the expansion χ is Lie dragged along ya, to find

c = (Lkχ) / (Llχ) (20)

c is constant over H̄, so we call the MOTT a ‘horizon’. S evolves into
a spacelike horizon (dynamical horizon (DH)), timelike horizon
(timelike membrane (TLM)), or null horizon (isolated horizon (IH)) if
c is positive, negative, or zero, respectively.

NEC =⇒ Lkχ ≤ 0 =⇒ characterization of a MOTS is captured in
the sign of Llχ: If the NEC strictly holds, the horizon is a DH for
Llχ < 0 and a TLM for Llχ > 0. The horizon is an IH iff Lkχ = 0.
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MOTS geometry and dynamics . . . 5/5

The above is related to the notion of the stability of MOTS. This was
introduced by (Andersson et al., PRL, 2005). Roughly put, a strictly
stable MOTS in an initial data set, under the assumption of the DEC,
will evolve into a horizon containing trapped surfaces just to the
‘inside’ (DH or IH).

Containing trapped surfaces just to the inside of a horizon is therefore
akin to the condition that Llχ < 0, and hence, assuming NEC, only
DH and IH will bound black holes.

It was observed in (Sherif & Dunsby, CQG, 2022) that while the
positivity of c is necessary for the stability of a MOTS in DH, it is not
sufficient. It is further required that the bound is obeyed:

0 < c < 1.
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The scalars Xj , whose combination characterize the CMC condition, is
related to the evolutions of the null expansion χ along the null
congruences.

Because these evolutions characterize the dynamics of the MOTS, it
follows that the CMC condition provides a characterization of the
MOTS dynamics as well.

We demarcate our cases according to the character of Q.

We start with the Q = 0 (we consider Π ̸= 0). It follows that

Lkχ = X3 + X1; Llχ = X1 − X3.
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Proposition

Suppose a LRS II spacetime M admits a timelike gradient (proper) CKV
xa and a leaf T of Wx contains a marginally outer trapped 2-sphere S. If
the mean curvature of T is constant along ua and X1 < X3 on S, then,
the spacetime contains a black hole with a null boundary.

Statement of proof:
X1 < X3 ensures Llχ < 0. (Note that the third criterion is ruled out.)

χ̇ = 0 also rules out the first criterion.

Hence, the MOTS evolves into a null horizon with trapped surfaces
just to the inside.

Abbas Sherif (with G Amery & P Dunsby) CKV and CMC condition December 26, 2023 38 / 44



Implications of the CMC condition for MOTS

Results . . . 3/6

Proposition

Suppose a LRS II spacetime M admits a timelike gradient (proper) CKV
xa, and a leaf T of Wx has mean curvature that is non-constant along na.
Then, a horizon H̄ in M which intersects T at a marginally trapped
2-sphere S cannot enclose a black hole.

Statement of proof:
Imposing χ is non-constant along na says only the third criterion is
possible.
And since the hypersurfaces T and H̄ intersect at S, Llχ vanishes
along H̄.

Corollary

Let a LRS II spacetime M admits a gradient (proper) CKV xa. Then, a
dynamical horizon in M cannot intersect a leaf of Wx .
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The above corollary says that an observer with conformal motion does
not ‘observe’ a dynamical black hole changing in area. The corollary is
related to Propositions 6.2 and 6.3 of (Ashtekar & Galloway, Adv.
Theor. Math. Phys., 2005), except that that was the Killing case.

The behavior of the mean curvature χ of the spacelike hypersurfaces
along the spatial vector na plays a crucial role in determining the
existence of a black hole enclosing horizon.

ˆ̄χ = 0: If a leaf of Wx contains a MOTS, the MOTS will evolve to a
null horizon. Trapped surfaces will be enclosed provided that the scalar
and conformal Weyl curvatures satisfy R < −6E .
ˆ̄χ ̸= 0: If a horizon intersects a leaf of Wx it does not enclose trapped
surfaces since a leaf of Wx cannot contain a stable MOTS. Otherwise,
if there is no intersection with Wx , independent of the development of
the associated black hole, the black hole will be seen as being in
equilibrum by conformal observers.
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Let us briefly comment on the case Q ̸= 0.

When discussing the previous results of this section, we had simply
consider the case with a vanishing heat flux to entertain intersections
of a black hole horizon with a leaf of Wx .

However, Q will generally not be zero. It is then clear that the
character of the relationship between Xj and the evolution of the null
expansions becomes a bit more intricate. More specifically, there is a
modification

Lkθk = X3 + X1 + 2Q. (21)

Clearly, if X3 + X1 = 0 (simple & tractable), then, the NEC demands
that Q ≤ 0, with the equality case already covered in the previous
subsection.
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Thus, we take Q < 0. That is, such a horizon will experience an
outward flux. Unless there is flow of some other matter across the
horizon from the ‘outside’, the horizon area must be decreasing and
hence a timelike membrane. Of course, depending on the dynamics of
the interacting fields of the spacetime to the exterior of the black
hole, different horizon characters are possible.

In any case, horizons considered here will not intersect Wx , and
conformal observers will again only see a black hole in equilibrum
since there is a non-zero flux. So, for example, for the timelike
scenario described, the conformal observers would not observe the
collapse of such a black hole.
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Conclusion

Summary of results . . . 1/2

We have studied gradient conformal stationarity of LRS spacetimes
and the character of MOTS in these spacetimes.

We obtained a relationship between the Ricci tensor components
along the CKV, and the gradient of its divergencence, providing an
alternative set of equations, for which the integrability condition is
obtain, to analyze the existence of gradient CKV.

A uniqueness result is obtained in the case of perfect fluids
establishing that The only GCS perfect fluid LRS II spacetime with a
nonvanishing pressure and non-negative cosmological constant is the
Robertson-Walker type solution. This result is later strengthened to
remove conditions on the pressure.

Consequences of the alternative characterization were discussed.
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Conclusion

Summary of results . . . 2/2

The constant mean curvature condition(s) is also obtained. This is
characterized by three distinct conditions which are specified by a set
of three scalars.

The combinations of the scalars whose vanishing define the constant
mean curvature condition, turn out to be related to the evolutions of
null expansions of 2-sphere along null congruences. As such, some
implications for the presence of MOTS and their evolution are
obtained. Crudely put, dynamical horizons cannot exist in the timelike
region of a GCKV.

THANK YOU!
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