Collective excitations in spherical Mo isotopes

December 2, 2024

Eun Jin In (LLNL) Walid Younes, Jutta E. Escher, Aaina Thapa(LLNL) Emanuel Chimanski (BNL) Sophie Péru (CEA DAM DIF)

LLNL-PRES-871610 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

We journey to a new era of discoveries – far beyond the valley of stability

F. Nunes, Physics Today 74, 5 (2021)

Proton-neutron asymmetry in nuclei leads to the formation of a neutron skin

F. Nunes, Physics Today 74, 5 (2021)

Phys. Scr. T 152 (2013) 014012

Neutron skin is linked to exotic dipole excitations, pygmy dipole resonances

Dipole mode evolution reveals a link to neutron skin thickness and PDRs

 \triangleright PDR strength below 15 MeV varies from close to 0 % for the 16 O to about 16 % for 22 O

➢ PDR strength below 10 MeV smoothly increases from ¹⁰⁰Sn to ¹³²Sn

We need more systematic studies of dipole mode evolution across various nuclei

Where is the exact location of the PDR excitation energy? What gives us clues to predict its position?

Is the PDR a collective excitation or resonance structure/oscillation? And how does its degree of collectivity evolve as neutron numbers increases?

6

Nuclear pygmy modes serve as doorways to nucleosynthesis

Neutron capture rates of nuclei involved in the

Mo isotopes are ideal for studying single-particle and collective excitations

We investigate Mo isotopes, which exhibit diverse behaviors with excess protons and neutrons

- ❑ With 42 protons, Mo isotopes are close to the semi-magic number 40, making them ideal for studying both single-particle or collective excitations
- ❑ Mo isotopes participate in multipole astrophysical processes, including *s*-, *r*-, and *p-*processes

Collectivity is analyzed in terms of two quasiparticle configurations within HFB+QRPA

Gogny D1M force

Mean field + pairing correlations

Transition densities describe dynamics of each excitation

To treat collective excitations like GDRs and PDRs, we compute transition matrix elements from the ground state to excited states Then, main results: $\psi_{e.s.}|\widehat{\it O}_{E1}|\psi_{g.s.}\rangle$ where

- Dipole response functions
- 2) Transition densities of each excited state

Skin evolution: neutron skins for 90-98Mo and proton skins for 82-90Mo

- **□** Skin thickness is quantified as $\delta r = \sqrt{\langle R_{\rm n}^2 \rangle} \sqrt{\langle R_{\rm p}^2 \rangle}$
- \Box ⁹⁰Mo serve as a reference due to its nearly zero skin thickness
- \Box We normalize the ground state spatial densities of each isotope by $1/\rho_{90M_0}(r)$
- \Box The figures illustrate:
	- (a) A gradual increase in neutron skins from 90 Mo to 98 Mo
	- (b) A gradual increase in proton skins from 90 Mo to 82 Mo from 5 to 8 fm relative to ⁹⁰Mo

Small enhancements of dipole strengths appear in the lower tail of GDR

Transition densities reveal exotic pygmy character of states

The dynamics of the PDR completely differ from those of the GDR !

❑ GDR: protons and neutrons out of phase

□ PDR: neutrons and protons in phase inside and at the surface only neutrons survive

We identify pygmy candidates linked to different types of skins

❑ We observe proton pygmy candidates in isotopes with a proton skin, and neutron pygmy candidates in isotopes with a neutron skin

Microscopic structure of the pygmy states differs from the GDR

- \Box The percentages indicate contributions of major 2qp configurations
- \Box The structure of the pygmy states is dominated by specific 2qp transitions, whereas the giant states correspond to excitations from many different transitions
- \Box For example, the structure of a giant dipole state in 94 Mo shows a mixing of **many distributed 2qp configurations**: 25% of (1f7/2, 2d5/2), 19% of (1f5/2, 1g7/2), 11% of (1f9/2, 1h11/2), 10% of (1f7/2, 1g9/2), etc \Box In contrast, the structure of a pygmy dipole state in 94 Mo

shows **a few major 2qp configurations**: 66 % of (2d5/2,2f7/2), 11% of (2d5/2,3p3/2), etc

 \Box The states near 16 MeV in ^{82,84}Mo show single particle behavior

We plan another exotic dipole excitations, toroidal dipole resonances

Summary and Outlook

❑ Exploring neutron- or proton-rich nuclei far from stability presents many interesting phenomena, e.g. neutron skins

- We have investigated the electric dipole response of Mo isotopes within Gogny HFB+QRPA framework to explore the existence and characters of pygmy dipole states
	- Identified candidates of the PDR states and their microscopic structure through transition densities
	- Studied the relationship between pygmy dipole states and neutron and proton skins
	- Examined collective behaviors associated with proton and neutron skins

❑ We plan to:

- Investigate PDR states in deformed nuclei
- Study additional excitation mode, toroidal dipole resonances
- ❑ Studying collective excitations in astrophysically relevant nuclei, such as Mo isotopes, will deepen our understanding of the origin of heavy elements in the cosmos.

Thank you

ILE Lawrence Livermore

National Laboratory