Nuclear structure input to low-energy precision tests of the Standard Model via superallowed $0^+ \rightarrow 0^+$ Fermi β decay

Latsamy Xayavong¹, Nadya Smirnova², Yeunhwan Lim¹

¹Department of Physics, Yonsei University, Seoul 03722, South Korea

²LP2IB, CNRS/IN2P3, Université de Bordeaux, 33175 Gradignan, France

International Conference on Nuclear Theory in the Supercomputing Era

December 1-7, 2024

Outline

2 Formalism

- Incorporation of spectator states
- 4 Investigation of radial excitation
- Higher-order terms
- 6 Radial mismatch correction
 - Evaluation using Woods-Saxon basis
 - Evaluation using Hartree-Fock basis

7 Local property of δ_{C2}

• Superallowed $0^+ \to 0^+$ Fermi β decay provides the cleanest probe of the Standard Model

$$\mathscr{F}t = ft(1+\delta_R')(1-\delta_C+\delta_{NS}) = \frac{K}{2G_F^2 V_{ud}^2(1+\Delta_R^V)},$$

1) Inputs:

- ft ~experimental input, sub-percent precision for 15 cases;
- δ_C ~isospin correction, Towner-Hardy 2008;
- δ'_R ~nucleus-dependent radiative correction, Marciano-Sirlin 1984;
- Δ^V_R ~nucleus-independent radiative correction, Seng *et al.* 2018;
- $\delta_{NS} \sim$ structure-dependent radiative correction. Talk by Petr Navratil on Wednesday,
- 2) Outputs:
 - CVC implies constant *Ft*
 - $|V_{ud}|$ must satisfy the CKM unitarity.

• Current status (using δ_C from shell model with Woods-Saxon)

- The alignment of $\mathscr{F}t$ is mostly determined by $\delta_{\mathcal{C}}$,
- CVC is verified

$$\overline{\mathscr{F}t} = 3072.24 \pm 0.57_{\delta_C, exp} \pm 0.36_{\delta_R'} \pm 1.73_{\delta_{NS}} s, \qquad \chi^2/\nu = 0.47$$

but uncertainties appear to be overestimated.

Phenomenological shell model doesn't provide a reliable framework for uncertainty quantification.

Hardy & Towner, PRC 102, 045501 (2020)

• Current status (using δ_C from shell model with Woods-Saxon)

Based on data from superallowed $0^+ \rightarrow 0^+$ Fermi β decay, CKM top-row unitarity is found to be violated by more than 2σ .

Hardy & Towner, PRC 102, 045501 (2020)

Current status

- Typical range: 0 to 1 %.
- Among existing calculations, only the shell-model approach provides reasonable agreement with the Standard Model,
- However, SM-WS and SM-HF yield significantly different results. This discrepancy has been the subject of intent debate over the past decades

Towner & Hardy, PRC 82, 065501 (2010)

Formalism

• Fermi matrix element in realistic basis

$$\begin{split} M_{F} &= \langle \Psi_{f} | \tau_{+} | \Psi_{i} \rangle \\ &= \sum_{\alpha} \langle \tilde{\alpha} | \alpha \rangle \langle \Psi_{f} | n_{\tilde{\alpha}}^{\dagger} p_{\alpha} | \Psi_{i} \rangle + \sum_{\alpha \alpha'}^{n \neq n'} \langle \tilde{\alpha} | \alpha' \rangle \langle \Psi_{f} | n_{\tilde{\alpha}}^{\dagger} p_{\alpha'} | \Psi_{i} \rangle \end{split}$$

where $\alpha = nljm$, $\alpha' = n'ljm$, and

$$\langle \tilde{\alpha} | \alpha' \rangle = \int_0^\infty R_{\tilde{\alpha},n}(r) R_{\alpha',p}(r) r^2 dr \equiv \Omega_{\tilde{\alpha}\alpha'}$$

- > Terms in red involve nodal mixing, and are unsuitable for the shell-model approach
- Within simplified interaction, Miller & Schwenk demonstrated that non-orthogonal terms are not negligible and destructively contribute.

Miller & Schwenk, PRC 80, 064319 (2009)

Formalism

• Correction due to isospin-symmetry breaking

$$\delta_C = 1 - M_F^2/2$$

 At LO, we can approximately decouple the radial mismatch and isospin-mixing contribution,

$$\delta_{C1} = \sqrt{2} \sum_{\alpha} \left[\left\langle \Psi_f | n_{\vec{\alpha}}^{\dagger} p_{\alpha} | \Psi_i \right\rangle^{IC} - \left\langle \Psi_f | n_{\vec{\alpha}}^{\dagger} p_{\alpha} | \Psi_i \right\rangle^{INC} \right],$$
 LO

$$\delta_{C2} = \sqrt{2} \left[\sum_{\alpha} \langle \Psi_f | n_{\tilde{\alpha}}^{\dagger} \rho_{\alpha} | \Psi_i \rangle^{IC} (1 - \Omega_{\tilde{\alpha}\alpha}) + \sum_{\alpha\alpha'}^{n \neq n'} \langle \Psi_f | n_{\tilde{\alpha}}^{\dagger} \rho_{\alpha'} | \Psi_i \rangle^{IC} (1 - \Omega_{\tilde{\alpha}\alpha'}) \right], \quad \text{LO}$$

$$\delta_{C3} = -\delta_{C2} + \sqrt{2} \sum_{\alpha} \langle \Psi_f | n_{\tilde{\alpha}}^{\dagger} \rho_{\alpha} | \Psi_i \rangle^{NC} (1 - \Omega_{\tilde{\alpha}\alpha}), \qquad \text{NLO}$$

$$\delta_{C4} = -\left(\delta_{C1} + \delta_{C2}\right)^2 / 4, \qquad \text{NLO}$$

$$\delta_{C5} = -(\delta_{C1} + \delta_{C2})\delta_{C3}/2, \qquad \text{NNLO}$$

$$\delta_{C6} = -(\delta_{C3})^2/4, \qquad \qquad \text{NNNLO}$$

where $[H_{IC}, T^2] = 0$ and $[H_{INC}, T^2] \neq 0$.

The radial excitation and higher-order terms were not considered by Towner-Hardy

Model space and effective interactions

Parent nuclei	model spaces	IC interactions	Refs.	
¹⁰ C, ¹⁴ O	p shell	CKPOT/CKI/CKII	Cohen-Kurath, 1965	
²² Mg	1p ₃ 1d ₅ 2s1	REWIL	Rehal-Wildenthal, 1973	
	2 2 2	ZBMI/ZBMII	Zuker et al., 1969	
²⁶ Al, ²⁶ Si, ³⁴ Cl	sd shell	USD	Wildenthal, 1984	
³⁴ Ar		USDA/USDB	Brown-Richter, 2006	
³⁸ K, ³⁸ Ca, ⁴² Sc, ⁴⁶ V	$2s_{\frac{1}{2}}1d_{\frac{3}{2}}1f_{\frac{1}{2}}2p_{\frac{3}{2}}$	ZBM2	Nowacki et al., 2014	
⁵⁰ Mn, ⁵⁶ Co	pf shell	GXPF1A	Honma et al., 2004	
		KB3G	Poves et al., 2004	
		FPD6	Richter et al., 1991	
⁶² Ga, ⁷⁴ Rb	2p ₃ 2p ₁ 1f ₅ 1g ₉	JUN45	Honma et al., 2009	
		MRG	Nowacki et al., 1996	

- ▶ The INC component is taken from Ormand & Brown, NPA 491, 1 (1989) 1-23.
- Our calculations were performed in full model spaces (except ⁷⁴Rb) using NuShellX@MSU
- The overlap integral is evaluated with Woods-Saxon and Hartree-Fock radial wave functions

Incorporation of spectator states

• Essentially, we expand δ_{C2} in terms of intermediate states

$$\begin{split} \delta_{C2} &= \sqrt{2} \left[\sum_{\alpha \pi} | \langle \Psi_f | n_{\tilde{\alpha}}^{\dagger} | \pi \rangle^{IC} |^2 (1 - \Omega_{\tilde{\alpha}\alpha}^{\pi}) \right. \\ &+ \sum_{\alpha \alpha' \pi}^{n \neq n'} \langle \Psi_f | n_{\tilde{\alpha}}^{\dagger} | \pi \rangle^{IC} \langle \pi | \rho_{\alpha'} | \Psi_i \rangle^{IC} (1 - \Omega_{\tilde{\alpha}\alpha'}^{\pi}) \right] \end{split}$$

- Spectroscopic amplitudes are calculated using eigenvectors
- Constraints for radial wave functions

1) Energies

$$arepsilon_p = -S_p - E_\pi^x$$

 $arepsilon_n = -S_n - E_\pi^x$

2) Charge radii

$$\langle r^2 \rangle = \frac{1}{Z} \sum_{\alpha \pi} |\langle \Psi_i | p_{\alpha}^{\dagger} | \pi \rangle^{IC} |^2 \int_0^{\infty} r^4 R_{\alpha,p}^{\pi}(r) dr$$

This technique was first introduced by Towner & Hardy. PRC 77, 025501 (2008)

• Completeness check for the matrix element

Parent nuclei	IC interaction	model space	# of states	M_F^0	cutoff error [%]
⁴² Sc	ZBM2	2s ₁ 1d ₃ 1f ₁ 2p ₃	1400	1.358	-3.975
⁴⁶ V	ZBM2	$2s_{\frac{1}{2}}^{2}1d_{\frac{3}{2}}^{2}1f_{\frac{1}{2}}^{2}2p_{\frac{3}{2}}^{2}$	1400	1.345	-4.894
	GX1A	fp shell 1	800	1.415	0.056
	KB3G	fp shell	800	1.415	0.056
	FPD6	fp shell	800	1.415	0.056
⁵⁰ Mn	GX1A	fp shell	1200	1.429	1.046
	KB3G	fp shell	400	1.428	0.975
	FPD6	fp shell	600	1.415	0.056
⁵⁴ Co	GX1A	fp shell	600	1.452	2.672
	KB3G	fp shell	600	1.427	0.904
	FPD6	fp shell	600	1.417	0.197
⁶⁶ AS	JUN45	2p ₃ 2p ₁ 1f ₅ 1g ₉	3200	1.42	0.409
	MRG	$2p_{3}^{2}2p_{1}^{2}1f_{5}^{2}1g_{9}^{2}$	3200	1.417	0.197
⁷⁰ Br	JUN45	$2p_{\frac{3}{2}}^{2}2p_{\frac{1}{2}}^{2}1f_{\frac{5}{2}}^{2}1g_{\frac{9}{2}}^{2}$	570	1.519	7.410

where

$$M_F^0 = \sum_{\alpha \pi} |\langle \Psi_f | n_{\tilde{\alpha}}^{\dagger} | \pi \rangle^{IC} |^2,$$

must be normalized to $\sqrt{2}$.

Incorporation of spectator states

• Convergence of δ_{C2}^{sm} (excluding radial excitation)

$$\delta_{C2}^{sm} = \sqrt{2} \sum_{\alpha \pi} |\langle \Psi_f | n_{\bar{\alpha}}^{\dagger} | \pi \rangle^{IC} |^2 (1 - \Omega_{\bar{\alpha}\alpha}^{\pi}),$$

• δ_{C2}^{sm} converges faster than M_F , because $(1 - \Omega_{\tilde{\alpha}\alpha}^{\pi}) \sim 0$ at high energy.

Typically, a few hundred states are sufficient

Furthermore,

$$\begin{split} |\langle \Psi_{f} | n_{\tilde{\alpha}}^{\dagger} | \pi \rangle^{IC} |^{2} & \propto |\langle \Psi_{f} || | n_{\tilde{\alpha}}^{\dagger} || | \pi_{<} \rangle^{IC} |^{2} \\ & - \frac{1}{2} |\langle \Psi_{f} || | n_{\tilde{\alpha}}^{\dagger} || | \pi_{>} \rangle^{IC} |^{2} \end{split}$$

leading to cancellation between isospin-lesser (positive) and isospin-greater (negative) contributions. The cancellation is more pronounced when $\tilde{\alpha}$ is highly filled (FM sum rule).

 We assume a constant proportionality between the diagonal and radial excitation terms,

$$\delta_{C2} = \delta_{C2}^{sm} + \delta_{C2}^{re} = \delta_{C2}^{sm}(1+\kappa).$$

so that the corrected $\mathscr{F}t$ is modified as

$$\mathscr{F}t = \mathscr{F}t^{sm} - ft(1+\delta_R')\kappa\delta_{C2}^{sm}.$$

With existing data for { $\mathscr{F}t^{sm}$, ft, δ'_R , δ^{sm}_{C2} , V_{us} }, we investigate the Standard-Model consistency as a function of κ

- CVC test suggests $\kappa \approx 0$
- However, to maintain both CVC & CKM unitarity, κ ~ 23% is required
- Contrary, Miller & Schwenk have predicted a significantly negative value.

• Exact NCSM calculations for ${}^{3}H \rightarrow {}^{3}He$ (mirror β decay),

- ► Interaction: NN, EMN500, N4LO, SRG ($\lambda = 2 \text{ fm}^{-1}$)
- Nonorthogonal HO basis $(\Delta \hbar \Omega = \hbar \Omega_j \hbar \Omega_f)$
- We don't have constraint for fixing κ at small N_{max}. However, κ appears to be lower than -10% (negative sign, agreeing with Miller & Schwenk !)
- ► Keeping this for 0⁺ → 0⁺, the CKM sum rule would be further underestimated.

This property must be verified within the shell-model framework through effective τ_+ operator

These calculations were carried using the Bigstick and NuHamil codes

• Generally, higher-order terms are negligibly small. Only δ_{C3} is significant for ⁷⁴Rb (δ_{C3} is destructive).

These terms are more pronounced in Fermi transitions of higher isospin multiplets, and Gamow-Teller transitions

Xayavong & Smirnova, PRC 109, 014317 (2024)

Shell model with Woods-Saxon radial wave functions

- For a given model space, interaction dependence is insignificant
- Uncertainty is mainly due to the variations in fitting of radial wave functions.

- The incorporation of intermediate states remarkably influences charge radii
- r₀ suddenly decreases at A ≤ 10. Sophisticated CoM correction is required (we currently adopt the harmonic oscillator formula).

• Shell model with Woods-Saxon radial wave functions

- In addition to the charge-radius generalization, our calculations are performed in full model spaces. HT used truncated model spaces
- ▶ We conservatively recommend to use the averaged values.

Xayavong & Smirnova; PRC 97, 024324 (2018)

Discrepancy between SM-WS and SM-HF

- Ormand-Brown suggested self-consistent Hartree-Fock radial wave functions.
- To account for excitation energy of intermediate states, they scaled the central field after variation.
- Their calculations were based the conventional Skyrme interaction, which is isospin-invariant.

Ormand & Brown, NPA 491, 1 (1989) 1-23; Towner & Hardy, PRC 77, 025501 (2008).

Shell model with Hartree-Fock radial wave functions

The GGA values are 2-14 % larger than those obtained with the Slater approximation. This tends to support SM-WS !

Xayavong & Smirnova, PRC 105, 044308 (2022)

- Shell model with Hartree-Fock radial wave functions
 - We also include the CIB and CSB forces from Suzuki *et al.*, PRL 112, 102502 (1995),

$$\begin{aligned} V_{ClB} &= 2t_{iz}t_{jz}\delta[u_0(1-P_\sigma) \\ &+ \frac{u_1}{2}(1-P_\sigma)\left(\boldsymbol{k}^2 + \boldsymbol{k}'^2\right) \\ &+ u_2(1-P_\sigma)\boldsymbol{k}'\cdot\boldsymbol{k}], \end{aligned}$$

$$V_{CSB} = (t_{iz} + t_{jz})\delta[s_0(1 - P_\sigma) + \frac{s_1}{2}(1 - P_\sigma)(\mathbf{k}^2 + \mathbf{k'}^2) + s_2(1 - P_\sigma)\mathbf{k'} \cdot \mathbf{k}]$$

where u_i and s_i are adjustable constant.

The CIB effect is completely negligible, whereas the CSB contributes 10 to 30 %. This tends to support SM-WS !

Xayavong & Smirnova, PRC 105, 044308 (2022)

- Shell model with Hartree-Fock radial wave functions
 - Self-consistent approach causes spurious isospin mixing
 - This issue is not resolvable without going beyond HF
 - To approximate this issue, we perform HF calculations for the N = Z nucleus of a given mass multriplet, and then construct the potential for the actual nucleus (with addition of charge-dependent forces) after variation.

The suppression of spurious isospin mixing also tends to increase $\delta^{sm}_{C2},$ supporting SM-WS !

Xayavong & Smirnova, PRC 105, 044308 (2022)

- Shell model with Hartree-Fock radial wave functions
 - We have also considered other higher-order effects, including finite size, Coulomb spin-orbit, vacuum polarization, and two-body CoM. These contributions were found to be negligible

Despite significant improvements, a considerable gap remains between SM-WS and SM-HF. Although HF has a solid foundation, it is unsuitable as a basis for the shell model. For instance, spurious isospin-mixing is fundamentally unresovable .

 $\bullet\,$ With WS radial wave functions, we obtained larger δ^{sm}_{C2} values for even-even emitters

- This odd-even staggering is highly sensitive to the mirror ft ratio
- Without this key property the agreement with CVC would be lost.

• This local property is strongly correlated with Coulomb displacement energy (CDE). For isotriplets:

$$CDE = S_n^f - S_p^i$$

where *i* and *f* indicate initial and final nuclei.

- With WS, we adjust depth or additional surface-peaked term such that CDE is exactly reproduced. This refinement improves δsm_{C2} and agreement with the Standard Model.
- Unfortunately, this desired local property of δsm_{C2} disappears when using HF radial wave functions.

HF field is determined through a well-defined EDF. A direct scaling is fundamentally illegitimate.

Mirror asymmetry of Fermi transitions

 Mirror *ft* ratio is mostly determined by the odd-even staggering discussed in the previous slides,

 $\frac{\textit{ft}^{ee}}{\textit{ft}^{oo}}\approx 1+(\delta_{C}^{ee}-\delta_{C}^{oo})$

- Unluckily, only the data for A = 26,34,38 are precise enough for this test to be meaningful,
- For most cases, the SM-HF fails to reproduce the experimental/WS data.

- The discrepancy between WS and HF basis is participially resolved.
- Principal features of δ_{C2} are well-understood.
- Radial excitation contribution appears to be significant. It should be investigated through construction of effective Fermi operator.
- While several experimental constraints have been introduced, numerious free parameters remain. Ideally, the shell-model approach can be tested in two different ways:
 - 1) Using light nuclei where it intersects with ab-initio methods, particularly $^{6}\mathrm{He},~^{10}\mathrm{C},$ and $^{14}\mathrm{O}$
 - 2) Verifying consistency of the theoretical approach in cases where δ_C is expected to be extremely substantial. This include Fermi transitions of higher isospin multiplets, and Gamow-Teller transitions.