Nuclear structure input to low-energy precision tests of the Standard Model via superallowed 0 $^+ \rightarrow$ 0 $^+$ Fermi β decay

Latsamy Xayavong¹, Nadya Smirnova², Yeunhwan Lim¹

¹Department of Physics, Yonsei University, Seoul 03722, South Korea

²LP2IB, CNRS/IN2P3, Université de Bordeaux, 33175 Gradignan, France

International Conference on Nuclear Theory in the Supercomputing Era

December 1-7, 2024

Outline

[Formalism](#page-6-0)

- ³ [Incorporation of spectator states](#page-9-0)
- ⁴ [Investigation of radial excitation](#page-12-0)
	- ⁵ [Higher-order terms](#page-14-0)
	- [Radial mismatch correction](#page-15-0)
		- [Evaluation using Woods-Saxon basis](#page-15-0)
		- [Evaluation using Hartree-Fock basis](#page-18-0)

[Local property of](#page-23-0) δ_{C2}

Superallowed 0⁺ \rightarrow 0⁺ Fermi β decay provides the cleanest probe of the Standard Model

$$
\mathscr{F}t = \mathit{ft}(1+\delta'_R)(1-\delta_C+\delta_{NS}) = \frac{K}{2G_F^2V_{ud}^2(1+\Delta_R^V)},
$$

1) Inputs:

- ▶ *ft* [∼]experimental input, sub-percent precision for 15 cases;
- ▶ ^δ*^C* [∼]isospin correction, Towner-Hardy 2008;
- **►** δ'_{R} ~nucleus-dependent radiative correction, Marciano-Sirlin 1984;
- ▶ [∆]*^V ^R* ∼nucleus-independent radiative correction, Seng *et al.* 2018;
- ▶ ^δ*NS* [∼]structure-dependent radiative correction. Talk by Petr Navratil on Wednesday,
- 2) Outputs:
	- \blacktriangleright CVC implies constant $\mathscr{F}t$
	- ▶ *| V_{ud}* | must satisfy the CKM unitarity.

 \bullet Current status (using δ_C from shell model with Woods-Saxon)

The alignment of $\mathscr{F}t$ is mostly determined by δ_C ,

CVC is verified

$$
\overline{\mathscr{F}t} = 3072.24 \pm 0.57_{\delta_C, exp} \pm 0.36_{\delta'_R} \pm 1.73_{\delta_{NS}} s, \qquad \chi^2/v = 0.47
$$

but uncertainties appear to be overestimated.

▶ **Phenomenological shell model doesn't provide a reliable framework for uncertainty quantification**.

Hardy & Towner, PRC 102, 045501 (2020)

• Current status (using δ_C from shell model with Woods-Saxon)

Based on data from superallowed $0^+ \rightarrow 0^+$ Fermi β decay, **CKM top-row unitarity is found to be violated by more than** 2σ.

Hardy & Towner, PRC 102, 045501 (2020)

• Current status

- Typical range: 0 to 1% .
- Among existing calculations, only the shell-model approach provides reasonable agreement with the Standard Model,
- ▶ However, SM-WS and SM-HF yield significantly different results. This discrepancy **has been the subject of intent debate over the past decades**

Towner & Hardy, PRC 82, 065501 (2010)

Formalism

• Fermi matrix element in realistic basis

$$
\begin{array}{lll} M_F & = \langle \Psi_f | \tau_+ | \Psi_i \rangle \\ & = \sum_\alpha \langle \tilde{\alpha} | \alpha \rangle \langle \Psi_f | n_{\tilde{\alpha}}^\dagger p_\alpha | \Psi_i \rangle + \sum_{\alpha \alpha'}^{n \neq n'} \langle \tilde{\alpha} | \alpha' \rangle \langle \Psi_f | n_{\tilde{\alpha}}^\dagger p_{\alpha'} | \Psi_i \rangle, \end{array}
$$

where $\alpha = n$ *ljm*, $\alpha' = n'$ *ljm*, and

$$
\langle \tilde{\alpha} | \alpha' \rangle = \int_0^\infty R_{\tilde{\alpha}, n}(r) R_{\alpha', p}(r) r^2 dr \equiv \Omega_{\tilde{\alpha} \alpha'}
$$

- \triangleright Terms in red involve nodal mixing, and are unsuitable for the shell-model approach
- ▶ Within simplified interaction, Miller & Schwenk demonstrated that non-orthogonal terms are not negligible and destructively contribute.

Miller & Schwenk, PRC 80, 064319 (2009)

Formalism

• Correction due to isospin-symmetry breaking

$$
\delta_C = 1 - M_F^2/2
$$

 \blacktriangleright At LO, we can approximately decouple the radial mismatch and isospin-mixing contribution,

$$
\delta_{C1} = \sqrt{2} \sum_{\alpha} \left[\langle \Psi_f | n_{\tilde{\alpha}}^{\dagger} \rho_{\alpha} | \Psi_i \rangle^{IC} - \langle \Psi_f | n_{\tilde{\alpha}}^{\dagger} \rho_{\alpha} | \Psi_i \rangle^{INC} \right],
$$
 LO

$$
\delta_{C2} = \sqrt{2} \left[\sum_{\alpha} \left\langle \Psi_f | n_{\tilde{\alpha}}^{\dagger} p_{\alpha} | \Psi_i \right\rangle^{IC} (1 - \Omega_{\tilde{\alpha}\alpha}) + \sum_{\alpha\alpha'}^{n \neq n'} \left\langle \Psi_f | n_{\tilde{\alpha}}^{\dagger} p_{\alpha'} | \Psi_i \right\rangle^{IC} (1 - \Omega_{\tilde{\alpha}\alpha'}) \right], \quad \text{LO}
$$

$$
\delta_{C3} = -\delta_{C2} + \sqrt{2} \sum_{\alpha} \left\langle \Psi_f | n_{\alpha}^{\dagger} p_{\alpha} | \Psi_i \right\rangle^{MC} (1 - \Omega_{\tilde{\alpha}\alpha}),
$$
 NLO

$$
\delta_{C4} = -(\delta_{C1} + \delta_{C2})^2 / 4, \tag{NLO}
$$

$$
\delta_{C5} = -(\delta_{C1} + \delta_{C2})\delta_{C3}/2,
$$
 NNLO

$$
\delta_{\text{C6}} = -(\delta_{\text{C3}})^2/4, \qquad \qquad \text{NNNLO}
$$

where $[H_{IC}, T²] = 0$ and $[H_{INC}, T²] \neq 0$.

The radial excitation and higher-order terms were not considered by Towner-Hardy

• Model space and effective interactions

- ▶ The INC component is taken from Ormand & Brown, NPA 491, 1 (1989) 1-23.
- \triangleright Our calculations were performed in full model spaces (except 74 Rb) using NuShellX@MSU
- The overlap integral is evaluated with Woods-Saxon and Hartree-Fock radial wave functions

Incorporation of spectator states

Essentially, we expand δ_{C2} in terms of intermediate states

$$
\begin{array}{ll} \delta_{C2} & = \sqrt{2}\left[\displaystyle\sum_{\alpha\pi}|\left\langle \Psi_{f}|\eta_{\tilde{\alpha}}^{\dagger}|\pi\right\rangle^{IC}|^{2}(1-\Omega_{\tilde{\alpha}\alpha}^{\pi})\right. \\ & \left. +\displaystyle\sum_{\alpha\alpha'\pi}^{\eta\neq n'}\left\langle \Psi_{f}|\eta_{\tilde{\alpha}}^{\dagger}|\pi\right\rangle^{IC}\left\langle \pi|\rho_{\alpha'}|\Psi_{i}\right\rangle^{IC}(1-\Omega_{\tilde{\alpha}\alpha'}^{\pi})\right] \end{array}
$$

- \triangleright Spectroscopic amplitudes are calculated using eigenvectors
- Constraints for radial wave functions

1) Energies

$$
\varepsilon_p = -S_p - E_{\pi}^x
$$

$$
\varepsilon_n = -S_n - E_{\pi}^x
$$

2) Charge radii

$$
\langle r^2\rangle=\frac{1}{Z}\sum_{\alpha\pi}|\left\langle\Psi_i|p^{\dagger}_{\alpha}|\pi\right\rangle^{IC}|^2\int_0^{\infty}r^4R^{\pi}_{\alpha,p}(r)dr
$$

This technique was first introduced by Towner & Hardy. PRC 77, 025501 (2008)

• Completeness check for the matrix element

where

$$
M_F^0 = \sum_{\alpha\pi} |\langle \Psi_f | n_{\tilde{\alpha}}^\dagger | \pi \rangle^{IC}|^2,
$$

must be normalized to $\sqrt{2}$.

Incorporation of spectator states

Convergence of δ_{C2}^{sm} (excluding radial excitation)

$$
\delta_{C2}^{sm}=\sqrt{2}\sum_{\alpha\pi}|\left\langle \Psi_f|\textbf{\textit{n}}^\dagger_{\tilde{\alpha}}|\pi\right\rangle^{IC}|^2(1-\Omega_{\tilde{\alpha}\alpha}^{\pi}),
$$

 \triangleright δ_{C2}^{sm} converges faster than M_F , because $(1 - \Omega_{\tilde{\alpha}\alpha}^{\pi}) \sim 0$ at high energy.

Typically, a few hundred states are sufficient

Furthermore.

$$
|\langle \Psi_f | n_{\tilde{\alpha}}^{\dagger} | \pi \rangle^{IC}|^2 \propto |\langle \Psi_f || | n_{\tilde{\alpha}}^{\dagger} || | \pi_{<} \rangle^{IC}|^2
$$

$$
-\frac{1}{2} |\langle \Psi_f || | n_{\tilde{\alpha}}^{\dagger} || | \pi_{>} \rangle^{IC}|^2
$$

leading to cancellation between isospin-lesser (positive) and isospin-greater (negative) contributions. The cancellation is more pronounced when $\tilde{\alpha}$ is highly filled (FM sum rule).

We assume a constant proportionality between the diagonal and radial excitation terms,

$$
\delta_{C2}=\delta_{C2}^{sm}+\delta_{C2}^{re}=\delta_{C2}^{sm}(1+\kappa).
$$

so that the corrected $\mathscr{F}t$ is modified as

$$
\mathscr{F}t=\mathscr{F}t^{\text{sm}}-\text{ft}(1+\delta_{\text{R}}^{\prime})\kappa\delta_{\text{C2}}^{\text{sm}}.
$$

With existing data for $\{\mathscr{F}t^{sm}, t^t, \delta'_R, \delta^{sm}_{C2}, V_{us}\}$, we investigate the Standard-Model consistency as a function of κ

► CVC test suggests $\kappa \approx 0$

- ▶ However, to maintain both CVC & CKM unitarity, $\kappa \sim 23\%$ is required
- ▶ **Contrary, Miller & Schwenk have predicted a significantly negative value**.

Exact NCSM calculations for ${}^{3}H\rightarrow{}^{3}He$ (mirror β decay),

- Interaction: NN, EMN500, N4LO, $SFG (\lambda = 2 fm^{-1})$
- ▶ Nonorthogonal HO basis $(\Delta \hbar \Omega = \hbar \Omega_i - \hbar \Omega_f)$
- We don't have constraint for fixing κ at small *Nmax* . However, κ appears to be lower than -10 % (negative sign, agreeing with Miller & Schwenk !)
- ▶ Keeping this for $0^+ \rightarrow 0^+$, the CKM sum rule would be further underestimated.

This property must be verified within the shell-model framework through effective τ_{+} operator

These calculations were carried using the Bigstick and NuHamil codes

Generally, higher-order terms are negligibly small. Only δ_{C3} is significant for ⁷⁴Rb $(\delta_{C3}$ is destructive).

These terms are more pronounced in Fermi transitions of higher isospin multiplets, and Gamow-Teller transitions

Xayavong & Smirnova, PRC 109, 014317 (2024)

• Shell model with Woods-Saxon radial wave functions

- For a given model space, interaction dependence is insignificant
- Uncertainty is mainly due to the variations in fitting of radial wave functions.

Shell model with Woods-Saxon radial wave functions

- The incorporation of intermediate states remarkably influences charge radii
- r_0 suddenly decreases at $A \leq 10$. Sophisticated CoM correction is required (we currently adopt the harmonic oscillator formula).

• Shell model with Woods-Saxon radial wave functions

- In addition to the charge-radius generalization, our calculations are performed in full model spaces. HT used truncated model spaces
- We conservatively recommend to use the averaged values.

Xayavong & Smirnova; PRC 97, 024324 (2018)

• Discrepancy between SM-WS and SM-HF

- Ormand-Brown suggested self-consistent Hartree-Fock radial wave functions.
- ▶ To account for excitation energy of intermediate states, they scaled the central field after variation.
- Their calculations were based the conventional Skyrme interaction, which is isospin-invariant.

Ormand & Brown, NPA 491, 1 (1989) 1-23; Towner & Hardy, PRC 77, 025501 (2008).

Shell model with Hartree-Fock radial wave functions

The GGA values are 2-14 % larger than those obtained with the Slater approximation. This tends to support SM-WS !

Xayavong & Smirnova, PRC 105, 044308 (2022)

- Shell model with Hartree-Fock radial wave functions
	- ▶ We also include the CIB and CSB forces from Suzuki *et al.*, PRL 112, 102502 (1995),

$$
V_{CIB} = 2t_{iz}t_{jz}\delta[u_0(1-P_{\sigma})+\frac{u_1}{2}(1-P_{\sigma})\left(\boldsymbol{k}^2+\boldsymbol{k}'^2\right)+u_2(1-P_{\sigma})\boldsymbol{k}'\cdot\boldsymbol{k}],
$$

$$
V_{CSB} = (t_{iz} + t_{iz}) \delta[s_0(1 - P_{\sigma})
$$

+ $\frac{s_1}{2} (1 - P_{\sigma}) (\boldsymbol{k}^2 + \boldsymbol{k}'^2)$
+ $s_2 (1 - P_{\sigma}) \boldsymbol{k}' \cdot \boldsymbol{k}$

where *uⁱ* and *sⁱ* are adjustable constant.

The CIB effect is completely negligible, whereas the CSB contributes 10 to 30 %. This tends to support SM-WS !

Xayavong & Smirnova, PRC 105, 044308 (2022)

- Shell model with Hartree-Fock radial wave functions
	- ▶ Self-consistent approach causes spurious isospin mixing
	- **This issue is not resolvable** without going beyond HF
	- \blacktriangleright To approximate this issue, we perform HF calculations for the $N = Z$ nucleus of a given mass multriplet, and then construct the potential for the actual nucleus (with addition of charge-dependent forces) after variation.

The suppression of spurious isospin mixing also tends to increase δ_{C2}^{sm} , supporting SM-WS !

Xayavong & Smirnova, PRC 105, 044308 (2022)

- Shell model with Hartree-Fock radial wave functions
	- \triangleright We have also considered other higher-order effects, including finite size, Coulomb spin-orbit, vacuum polarization, and two-body CoM. These contributions were found to be negligible

Despite significant improvements, a considerable gap remains between SM-WS and SM-HF. Although HF has a solid foundation, it is unsuitable as a basis for the shell model. For instance, spurious isospin-mixing is fundamentally unresovable .

With WS radial wave functions, we obtained larger δ_{C2}^{sm} values for even-even emitters

- ▶ This odd-even staggering is highly sensitive to the mirror *ft* ratio
- Without this key property the agreement with CVC would be lost.

• This local property is strongly correlated with Coulomb displacement energy (CDE). For isotriplets:

$$
CDE = S_n^f - S_p^i
$$

where *i* and *f* indicate initial and final nuclei.

- \triangleright With WS, we adjust depth or additional surface-peaked term such that CDE is exactly reproduced. This refinement improves δ_{C2}^{sm} and agreement mproves $\frac{1}{2}$ and agreen
with the Standard Model.
- \blacktriangleright Unfortunately, this desired local property of $\delta_{C_2}^{sm}$ disappears when using HF radial wave functions.

HF field is determined through a well-defined EDF. A direct scaling is fundamentally illegitimate.

• Mirror asymmetry of Fermi transitions

▶ Mirror *ft* ratio is mostly determined by the odd-even staggering discussed in the previous slides,

 $\frac{f t^{ee}}{f t^{oo}} \approx 1 + (\delta_C^{ee} - \delta_C^{oo})$

- \blacktriangleright Unluckily, only the data for $A = 26,34,38$ are precise enough for this test to be meaningful,
- ▶ For most cases, the SM-HF fails to reproduce the

- The discrepancy between WS and HF basis is participially resolved.
- **•** Principal features of δ_{C2} are well-understood.
- Radial excitation contribution appears to be significant. It should be investigated through construction of effective Fermi operator.
- While several experimental constraints have been introduced, numerious free parameters remain. Ideally, the shell-model approach can be tested in two different ways:
	- 1) Using light nuclei where it intersects with ab-initio methods, particularly 6 He, 10 C, and 14_O
	- 2) Verifying consistency of the theoretical approach in cases where δ_c is expected to be extremely substantial. This include Fermi transitions of higher isospin multiplets, and Gamow-Teller transitions.