Low-energy photodisintegration of light nuclei within Cluster EFT

Winfried Leidemann

Department of Physics University of Trento

Outline

- Considered light nuclei: ⁹Be and ⁶He
- Theoretical ingredients/methods of calculation
- ⁹Be: Interaction model
- ⁹Be: Results
- ⁶He case
- Outlook

Why ⁹Be?

H. Utsunomiya et al. PRC 92, 064323 (2015)

Why is ⁹Be photodisintegration interesting?

Low-energy resonance in the $\alpha\alpha$ n final state

Why is ⁹Be photodisintegration interesting?

- Low-energy resonance in the $\alpha\alpha$ n final state
- Additional interest because inverse reaction can be an alternative path to nucleosynthesis of ¹²C in an environment with high neutron flux via further reaction ⁹Be + $\alpha \implies$ ¹²C + n

Why is ⁹Be photodisintegration interesting?

- Low-energy resonance in the $\alpha\alpha$ n final state
- Additional interest because inverse reaction can be an alternative path to nucleosynthesis of ¹²C in an environment with high neutron flux via further reaction ⁹Be + $\alpha \implies$ ¹²C + n
- Further interesting additional aspect: Calculation of reaction using potentials derived in cluster effective field theory (cluster EFT)

Cluster EFT

EFT: Based on a separation of scales for low and high energies Aim: Description of observables in low-energy regime Inclusion of high-energy effects on low-energy observables via low-energy constants (LECs)

Degrees of freedom for ⁹Be can be nucleons, but in the low-energy regime also given by two alpha particles plus a neutron. The upper limit of the lowenergy regime is the excitation energy of the alpha particle (about 20 MeV).

⁹Be described as $\alpha\alpha$ n system has a shallow binding energy of about 1.5 MeV

Lorentz integral transform (LIT)

The inclusive cross section of nuclei excited by external probes (photon, electron, neutrino) is given in terms of response function of the form $R(E) = \int d\mathbf{f} |\langle \mathbf{f} | O | \mathbf{i} \rangle|^2 \, \delta(E_f - E_i - E) \text{ with a given excitation operator O}$

Consider the LIT: $L(\sigma) = \int dE R(E)/[(E - \sigma_R)^2 + \sigma_L^2]$

LIT can be calculated without explicit knowledge of the response function by $L(\sigma) = \langle \phi | \phi \rangle$ where ϕ fulfills (H - σ_R - E_i - i σ_I) $| \phi \rangle = 0$ |i>

- we use expansions of ground state |i> and LIT state |φ> in hyperspherical harmonics (HH)

Lorentz integral transform (LIT)

The cross section of nuclei excited by external probes (photon, electron, neutrino) is given in terms of response function of the form $R(E) = \int df |\langle f| O |i \rangle|^2 \, \delta(E_f - E_i - E) \text{ with a given excitation operator O}$

Consider the LIT: $L(\sigma) = \int dE R(E)/[(E - \sigma_R)^2 + \sigma_L^2]$

LIT can be calculated without explicit knowledge of the response function by $L(\sigma) = \langle \phi | \phi \rangle$ where ϕ fulfills (H - $\sigma_{_{R}}$ - E_i - $\sigma_{_{i}}$) $| \phi \rangle = 0$ |i>

Solution with HH basis leads to discretized continuum states |n> with

$$L(\sigma) = \sum_{n} |\langle n | O | i \rangle|^2 / [(E_n - \sigma_R)^2 + \sigma_I^2]$$

If spectrum E is sufficiently dense: R(E) $\rightarrow \sigma/\pi$ L(σ)

Inversion of the LIT

□ LIT is calculated for a fixed σ_1 in many σ_R points Express the searched response function formally on a basis set with *M* basis basis functions $f_m(E)$ and open coefficients c_m with correct threshold behaviour for the $f_m(E)$ (e.g., $f_m = f_{thr}(E) \exp(-\alpha E/m)$). If specific structures, like narrow resonances, are present allow for basis functions $f_m(E)$ with such a structure, e.g. Lorentzians with variable position and width

Inversion of the LIT

LIT is calculated for a fixed σ_1 in many σ_R points Express the searched response function formally on a basis set with *M* basis basis functions $f_m(E)$ and open coefficients c_m with correct threshold behaviour for the $f_m(E)$ (e.g., $f_m = f_{thr}(E) \exp(-\alpha E/m)$). If specific structures, like narrow resonances, are present allow for basis functions $f_m(E)$ with such a structure, e.g. Lorentzians with variable position and width

Make a LIT of the basis functions and determine coefficients c_m by a fit to the calculated LIT

Inversion of the LIT

LIT is calculated for a fixed σ_1 in many σ_R points Express the searched response function formally on a basis set with *M* basis basis functions $f_m(E)$ and open coefficients c_m with correct threshold behaviour for the $f_m(E)$ (e.g., $f_m = f_{thr}(E) \exp(-\alpha E/m)$). If specific structures, like narrow resonances, are present allow for basis functions $f_m(E)$ with such a structure, e.g. Lorentzians with variable position and width

Make a LIT of the basis functions and determine coefficients c_m by a fit to the calculated LIT

Increase M up to the point that a sufficient convergence is obtained (structures with too small widths or uncontrolled oscillations should not be present)

Hyperspherical harmonics (HH)

A-body problem: A-1 intrinsic positions/momenta + cm position/momentum

In case of HH the 3A-3 intrinsic variables are given by a hyperradius ρ or a hypermomentum Q and 3A-4 angles described by Ω

The HH basis consists of a hyperradial/hypermomentum part and a hyperspherical part. The expansion is given by

 $\Sigma_{[K]n} Y_{[K]}(\Omega) R_{[K]n}(\rho/Q)$

K is the grand-angular quantum number and [K] stands for a set of quantum numbers associated with K

We use nonsymmetrized HH (NSHH) in momentum space

Collaboration for ⁹Be calculation:

Ylenia Capitani, Elena Filandri, Chen Ji, Giuseppina Orlandini

⁹Be described as $\alpha \alpha n$: $\alpha \alpha$ and αn interactions?

Consider effective range expansion for phase shift $\delta_{l}(k)$

 $k^{2l+1} \delta_{\mu}(k) \cot(\delta_{\mu}) = -1/a_{\mu} + r_{\mu}k^{2}/2 + O_{\mu}k^{4} + \dots$

with scattering length a and effective range r

⁹Be described as $\alpha \alpha n$: $\alpha \alpha$ and αn interactions?

Consider effective range expansion for phase shift $\delta_{1}(\mathbf{k})$

 $k^{2l+1}\delta_{l}(k) \cot(\delta_{l}) = -1/a_{l} + r_{l}k^{2}/2 + O_{l}k^{4} + \dots$

with scattering length a and effective range r

LO Cluster EFT for resonant partial waves: choose LECs such that experimental results for a and r are described

s-wave resonance ${}^{1}S_{0}$ for $\alpha\alpha$ (⁸Be) a₀ = -1920 fm, r₀ = 1.1 fm

p-wave resonance ${}^{2}P_{_{3/2}}$ for α n (5 He) $a_{_{1}} = -62.951 \text{ fm}^{3}$, $r_{_{1}} = -0.882 \text{ fm}^{-1}$ and s-wave ${}^{2}S_{_{1/2}}$ for α n $a_{_{0}} = 2.464 \text{ fm}$, $r_{_{0}} = 1.385 \text{ fm}$

Cluster EFT

Potentials in momentum space

$$\bigvee (\mathbf{p}, \mathbf{p}') = \sum_{\ell} \bigvee_{\ell} (\mathbf{p}, \mathbf{p}') (2\ell + 1) \operatorname{P}_{\ell} \cos(\Theta_{\mathbf{pp}'})$$
$$\bigvee_{\ell} (\mathbf{p}, \mathbf{p}') = g(\mathbf{p}) g(\mathbf{p}') \operatorname{p}^{\ell} \operatorname{p'}^{\ell} \left[\lambda_{0} + \lambda_{1} (\mathbf{p}^{2} + \mathbf{p'}^{2}) \right]$$

where **p** and **p'** are the relative momenta of the 2-body system and g(p) is a cutoff: g(p) = $\exp(-p^4/\Lambda^4)$

Make similar expansion for t-matrix

 $\mathbf{t}_{\ell}(\mathbf{p},\mathbf{p'}) = g(\mathbf{p})g(\mathbf{p'}) p^{\ell} p^{\prime \ell} [\tau_{00}(\mathbf{E}) + \tau_{10}(\mathbf{E}) p^{2} + \tau_{01}(\mathbf{E}) p^{\prime 2} + \tau_{11}(\mathbf{E}) p^{2} p^{\prime 2}]$

On-shell: p=p'=k, $E=k^2/2\mu$

On-shell t-matrix: $\mathbf{t}_{l}^{on}(E) = g^{2}(k) k^{2l} \left[\tau_{00}(E) + k^{2} (\tau_{10}(E) + \tau_{01}(E)) + k^{4} \tau_{11}(E) \right]$

Put t-matrix in Lippmann-Schwinger equation:

 $t_{\ell}(p,p') = v_{\ell}(p,p') + \int d^{3}q/(2\pi)^{3} v_{\ell}(p,q) [p^{2}/2\mu - q^{2}/2\mu + i\epsilon]^{-1} t_{\ell}(q,p')$

and insert the expressions for $t_{\ell}(p,p')$ and $v_{\ell}(p,p')$ then solve LS equation analytically Note: Because of Coulomb potential $\alpha\alpha$ case is more complicated.

Here the t-matrix can be splitted into $t = t_c + t_{sc}$

where t_c is the t-matrix connected to the pure Coulomb interaction, while t_{sc} is the one associated to the Coulomb-distorted short-range interaction

Compare the analytic solution for the on-shell T-matrix to the effective range expansion (here given without Coulomb)

$$k^{2\ell}/t_{\ell}^{on}(E) = -\mu/2\pi (-1/a_{\ell} + r_{\ell,e}^{2}k^{2} - ik^{2\ell+1} + ...), \quad E = k^{2}/2\mu$$

 \Rightarrow

Quadratic eqs. with two solutions for LECs λ_0 and λ_1 for any value of Λ

Compare the analytic solution for the on-shell T-matrix to the effective range expansion (here given without Coulomb)

$$k^{2\ell}/t_{\ell}^{on}(E) = -\mu/2\pi (-1/a_{\ell} + r_{\ell,e}^{2}k^{2} - ik^{2\ell+1} + ...), \quad E = k^{2}/2\mu$$

 \Rightarrow

Quadratic eqs. with two solutions for LECs λ_0 and λ_1 for any value of Λ

Compare the analytic solution for the on-shell T-matrix to the effective range expansion (here given without Coulomb)

$$k^{2\ell}/t_{\ell}^{on}(E) = -\mu/2\pi (-1/a_{\ell} + r_{\ell,e}^{2}k^{2} - ik^{2\ell+1} + ...), \quad E = k^{2}/2\mu$$

 \Rightarrow

Quadratic eqs. with two solutions for LECs λ_0 and λ_1 for any value of Λ

FIGURE 4.2: Phase shifts $\delta_1^3(E_n)$ (l = 1, J = 3/2) with experimental data from Morgan and Walter [29] and in the inset the cross section $\sigma_1^3(E_n)$ obtained with $\Lambda = 300$ MeV.

an s-wave potential

Problem: cluster ansatz leads to a deep bound state for α n system and adds spurious eigenvalues to the $\alpha \alpha$ n three-body Hamiltonian which need to be removed

We remove this unphysical states with the so-called projection technique: one replaces the potential V(p,p') by

$V(p,p') + \Gamma \phi(p)\phi(p')$

where $\phi(p)$ is the wavefunction of the α n deep bound state. Note: the additional potential term has no effect on the α n phase shifts The parameter Γ should go to infinity (in practice: Γ has to be chosen sufficiently large)

an s-wave phase shift

an s-wave phase shift

Г	e_0	e_1	e_2	e_3	e_4	e_5
0	-12.25	0.3149	1.266	2.871	5.168	8.212
1	-11.25	0.3149	1.266	2.871	5.168	8.212
5	-7.245	0.3149	1.266	2.871	5.168	8.212
10	-2.245	0.3149	1.266	2.871	5.168	8.212
15		0.3149	1.266	2.871	5.168	8.212
20		0.3149	1.266	2.871	5.168	8.212
50		0.3149	1.266	2.871	5.168	8.212
250		0.3149	1.266	2.871	5.168	8.212
2000		0.3149	1.266	2.871	5.168	8.212

Units MeV

Diagonalization of Hamiltonian Low-energy spectrum

Conclusion Γ = 15 MeV is sufficient to exclude unphysical α n bound state

BUT: In $\alpha \alpha n$ states Γ has to be chosen considerably higher

Cutoff dependence of ⁹Be ground-state energy

Wave function is calculated via expansion in hyperspherical harmonics (HH) in momentum space

Cutoff dependence of ⁹Be ground-state energy

Include 3-body force: $V_3 = \lambda_3 \exp[-Q^2/\Lambda_3^2] \exp[-(Q'^2)/\Lambda_3^2]$

Q and Q' are hypermomenta

Cutoff dependence of ⁹Be ground-state energy

Include 3-body force: $V_3 = \lambda_3 \exp[-Q^2/\Lambda_3^2] \exp[-Q^2/\Lambda_3^2]$

HH convergence in function of grand-angular quantum number K

Only E1 transitions are considered, since ⁹Be has $J^{\pi} = (3/2)^{-1}$ one has $(1/2)^{+}$, $(3/2)^{+}$ and $(5/2)^{+}$ final states

Only E1 transitions are considered, since ⁹Be has J^{π} = (3/2)⁻ one has (1/2)⁺, (3/2)⁺ and (5/2)⁺ final states

Current operator in LO resulting from minimal coupling in free Lagrangian in limit of vanishing photon momentum proportional to

e (
$$\mathbf{p}_{\alpha_1,\perp} + \mathbf{p}_{\alpha_2,\perp}$$
) / \mathbf{m}_{α} (convection current)

Only E1 transitions are considered, since ⁹Be has J^{π} = (3/2)⁻ one has (1/2)⁺, (3/2)⁺ and (5/2)⁺ final states

Current operator in LO resulting from minimal coupling in free Lagrangian in limit of vanishing photon momentum proportional to

e (
$$\mathbf{p}_{\alpha_1,\perp} + \mathbf{p}_{\alpha_2,\perp}$$
) / \mathbf{m}_{α} (convection current)

However, interaction Lagrangian is momentum dependent

Only E1 transitions are considered, since ⁹Be has J^{π} = (3/2)⁻ one has (1/2)⁺, (3/2)⁺ and (5/2)⁺ final states

Current operator in LO resulting from minimal coupling in free Lagrangian in limit of vanishing photon momentum proportional to

e (
$$\mathbf{p}_{\alpha_1,\perp} + \mathbf{p}_{\alpha_2,\perp}$$
) / \mathbf{m}_{α} (convection current)

However, interaction Lagrangian is momentum dependent

Siegert theorem: use continuity equation to replace current by charge operator

Convergence checks for LIT via increase of number of HH basis functions

Transition to 1/2+

Dependence on cut Λ_3 of three-body potential

Transition to 1/2+

Inversion of LIT

Transition to 1/2+

Comparison to experimental data

Transition to 1/2+

Inclusion of transitions to 3/2+ and 5/2+

Inclusion of transitions to 3/2+ and 5/2+

Effect of many-body currents

1/2+

Effect of many-body currents

1/2+

1/2+, 3/2+, 5/2+

Effect of many-body currents

⁶He as αnn cluster

In collaboration with Edna Pinilla, Pierre Descouvemont, Giuseppina Orlandini (arXiv:2409.03074)

⁶He as αnn cluster

In collaboration with Edna Pinilla, Pierre Descouvemont, Giuseppina Orlandini (arXiv:2409.03074)

 α n interaction as before nn interaction for ¹S₀ derived in the same way as before (via a₀ and r₀)

However, here we use an HH expansion in coordinate space. Coordinate space two-body potentials V(r,r') are determined from Fourier transforms of the momentum space V(p,p') potentials.

Correctness has been checked by calculating the corresponding phase shifts

Three-body force given here by: $V_3 = \lambda_3 \exp[-\rho^2/\rho_0^2]$ with hyperradius ρ and cutoff ρ_0

E1 strength calculated with electric dipole operator (Siegert theorem)

FIG. 3. Convergence of the E1 strength distribution of 6 He with K_{max} .

FIG. 4. Convergence of the E1 strength distribution of ⁶He with the number of the Lagrange-Laguerre basis functions N.

Convergence check of HH expansion

Various 3-body potential strengths for $J^{\pi} = 1^{-1}$ Same as bound state: red curve Stronger attractions for green and violett curves

Outlook

Similar treatment for the low-energy photodisintegration of other nuclei?

¹²C (ααα state): Calculation of E2 transition from carbon state 2+ to Hoyle state some initial steps have been taken

¹⁶O(4 α state)

¹⁰Be