Low-energy photodisintegration of light nuclei within Cluster EFT

Winfried Leidemann

Department of Physics University of Trento

Outline

- Considered light nuclei: ⁹Be and ⁶He
- **Theoretical ingredients/methods of calculation**
- **Be:** Interaction model
- **Be: Results**
- **F** ⁶He case
- **D** Outlook

Why ⁹Be?

H. Utsunomiya et al. PRC 92, 064323 (2015)

Why is ⁹Be photodisintegration interesting?

Low-energy resonance in the $\alpha\alpha$ **n final state**

Why is ⁹Be photodisintegration interesting?

- **Low-energy resonance in the** $\alpha\alpha$ **n final state**
- **Additional interest because inverse reaction can be an alternative path** to nucleosynthesis of 12 C in an environment with high neutron flux via further reaction ${}^{9}Be + \alpha \Rightarrow {}^{12}C + n$

Why is ⁹Be photodisintegration interesting?

- **Low-energy resonance in the** $\alpha\alpha$ **n final state**
- **Additional interest because inverse reaction can be an alternative path** to nucleosynthesis of 12 C in an environment with high neutron flux via further reaction 9 Be + $\alpha \Rightarrow ^{12}C$ + n
- **Further interesting additional aspect: Calculation of reaction using** potentials derived in cluster effective field theory (cluster EFT)

Cluster EFT

EFT: Based on a separation of scales for low and high energies Aim: Description of observables in low-energy regime Inclusion of high-energy effects on low-energy observables via low-energy constants (LECs)

Degrees of freedom for ⁹Be can be nucleons, but in the low-energy regime also given by two alpha particles plus a neutron. The upper limit of the lowenergy regime is the excitation energy of the alpha particle (about 20 MeV).

⁹Be described as $ααn$ system has a shallow binding energy of about 1.5 MeV

Lorentz integral transform (LIT)

The inclusive cross section of nuclei excited by external probes (photon, electron, neutrino) is given in terms of response function of the form $R(E) = \int df \, |<\!f| \, O \, |i\!>|^2 \, \delta(E_{\rm f}\!-\!\!E_{\rm i}\!-\!\!E) \;$ with a given excitation operator O

Consider the LIT: $L(\sigma) = \int dE \, R(E) / [(E - \sigma_R)^2 + \sigma_I^2]$

LIT can be calculated without explicit knowledge of the response function by $L(\sigma) = \langle \phi | \phi \rangle$ where φ fulfills $(H - \sigma_R - E_i - i\sigma_l)$ $|\varphi\rangle = |O|i\rangle$

- Norm of ϕ exists thus ϕ can be calculated with bound-state methods
- we use expansions of ground state $|i\rangle$ and LIT state $|{\phi}\rangle$ in hyperspherical harmonics (HH)

Lorentz integral transform (LIT)

The cross section of nuclei excited by external probes (photon, electron, neutrino) is given in terms of response function of the form $R(E)$ = $\int df$ |<f| O |i>| 2 δ (E -E -E) with a given excitation operator O

Consider the LIT: $L(\sigma) = \int dE \, R(E) / [(E - \sigma_R)^2 + \sigma_I^2]$

LIT can be calculated without explicit knowledge of the response function by $L(\sigma) = \langle \phi | \phi \rangle$ where φ fulfills $(H - \sigma_{\overline{R}} - E_i - \sigma_i)$ $|\varphi\rangle = |O|i\rangle$

Solution with HH basis leads to discretized continuum states |n> with

$$
L(\sigma) = \sum_{n} |\langle n| \circ |i \rangle|^2 / [(E_n - \sigma_n)^2 + \sigma_1^2]
$$

If spectrum E_n is sufficiently dense: R(E) $\rightarrow \sigma / \pi$ L(σ)

Inversion of the LIT

LIT is calculated for a fixed $\sigma_{_{\rm I}}$ in many $\sigma_{_{\rm R}}$ points Express the searched response function formally on a basis set with M basis basis functions $\mathsf{f}_{_\mathsf{m}}(\mathsf{E})$ and open coefficients $\mathsf{c}_{_\mathsf{m}}$ with correct $\;$ threshold behaviour for the $f_{_{\rm m}}$ (E) (e.g., $f_{_{\rm m}}$ = $f_{_{\rm thr}}$ (E) exp(- α E/m)). If specific structures, like narrow resonances, are present allow for basis functions $\mathsf{f}_{_{\sf{m}}}(\mathsf{E})$ with such a structure, e.g. Lorentzians with variable position and width

Inversion of the LIT

LIT is calculated for a fixed $\sigma_{_{\rm I}}$ in many $\sigma_{_{\rm R}}$ points

Express the searched response function formally on a basis set with M basis basis functions $\mathsf{f}_{_\mathsf{m}}(\mathsf{E})$ and open coefficients $\mathsf{c}_{_\mathsf{m}}$ with correct $\;$ threshold behaviour for the $f_{_{\rm m}}$ (E) (e.g., $f_{_{\rm m}}$ = $f_{_{\rm thr}}$ (E) exp(- α E/m)). If specific structures, like narrow resonances, are present allow for basis functions $f_{_{\rm m}}$ (E) with such a structure, e.g. Lorentzians with variable position and width

Make a LIT $\,$ of the basis functions and determine $\,$ coefficents c $_{_{\mathrm{m}}}$ by a fit to the $\,$ calculated LIT

Inversion of the LIT

LIT is calculated for a fixed $\sigma_{_{\rm I}}$ in many $\sigma_{_{\rm R}}$ points

Express the searched response function formally on a basis set with M basis basis functions $\mathsf{f}_{_\mathsf{m}}(\mathsf{E})$ and open coefficients $\mathsf{c}_{_\mathsf{m}}$ with correct $\;$ threshold behaviour for the $f_{_{\rm m}}$ (E) (e.g., $f_{_{\rm m}}$ = $f_{_{\rm thr}}$ (E) exp(- α E/m)). If specific structures, like narrow resonances, are present allow for basis functions $f_{_{\rm m}}$ (E) with such a structure, e.g. Lorentzians with variable position and width

Make a LIT $\,$ of the basis functions and determine $\,$ coefficents c $_{_{\mathrm{m}}}$ by a fit to the $\,$ calculated LIT

Increase M up to the point that a sufficient convergence is obtained (structures with too small widths or uncontrolled oscillations should not be present)

Hyperspherical harmonics (HH)

A-body problem: A-1 intrinsic positions/momenta + cm position/momentum

In case of HH the 3A-3 intrinsic variables are given by a hyperradius ρ or a hypermomentum Q and 3A-4 angles described by Ω

The HH basis consists of a hyperradial/hypermomentum part and a hyperspherical part. The expansion is given by

 $\sum_{i=1}^n\sum_{j$ $\mathsf{P}_{_{[\mathsf{K}]^{\mathsf{n}}}}\mathsf{Y}_{_{[\mathsf{K}]}}(\Omega)\,\mathsf{R}_{_{[\mathsf{K}]^{\mathsf{n}}}}(\mathsf{p}/\mathsf{Q})$

K is the grand-angular quantum number and [K] stands for a set of quantum numbers associated with K

We use nonsymmetrized HH (NSHH) in momentum space

Collaboration for ⁹Be calculation:

Ylenia Capitani, Elena Filandri, Chen Ji, Giuseppina Orlandini

 $9B$ e described as ααn: αα and αn interactions?

Consider effective range expansion for phase shift $\delta_{_{\rm I}}({\bf k})$ $\mathsf{k}^{2\mathsf{l}+1}\delta_{\mathsf{l}}(\mathsf{k})\ \mathsf{cot}(\delta_{\mathsf{l}}% ^{\mathsf{d}})$) = $-1/a_1 + r_1k^2/2 + O_1k^4 + ...$

with scattering length a and effective range r r_p

 $⁹$ Be described as ααn: αα and αn interactions?</sup>

Consider effective range expansion for phase shift $\delta_{_{\rm I}}({\bf k})$

 $\mathsf{k}^{2\mathsf{l}+1}\delta_{\mathsf{l}}(\mathsf{k})\ \mathsf{cot}(\delta_{\mathsf{l}}% ^{\mathsf{d}})$) = $-1/a_1 + r_1k^2/2 + O_1k^4 + ...$

with scattering length a and effective range r r_p

LO Cluster EFT for resonant partial waves: choose LECs such that experimental results for a_i and r are described

s-wave resonance ${}^{1}S_{o}^{+}$ for α α (${}^{8}Be$) a_o = -1920 fm, r_o = 1.1 fm

 p -wave resonance ${}^{2}P_{3/2}$ for αn (⁵He) a₁ = -62.951 fm³, r₁ = -0.882 fm⁻¹ and s-wave ${}^{2}S_{1/2}$ for α n $a_0 = 2.464$ fm, $r_0 = 1.385$ fm

Cluster EFT

Potentials in momentum space

$$
V(\mathbf{p}, \mathbf{p}') = \sum_{l} V_{l}(\mathbf{p}, \mathbf{p}') (2l+1) P_{l} \cos(\Theta_{\mathbf{p}\mathbf{p}'})
$$

$$
V_{l}(\mathbf{p}, \mathbf{p}') = g(\mathbf{p}) g(\mathbf{p}') \mathbf{p}' \mathbf{p}' \left[\lambda_{0} + \lambda_{1} (\mathbf{p}^{2} + \mathbf{p}'^{2}) \right]
$$

where **p** and **p'** are the relative momenta of the 2-body system and g(p) is a cutoff: g(p) = $exp(-p^4/\Lambda^4)$ Make similar expansion for t-matrix

t ℓ $(p, p') = g(p)g(p') p^{\ell} p'$ ℓ $[\tau_{00}$ (E) + τ₁₀(E) p² + τ₀₁(E) p¹² + τ₁₁(E) p²p¹²]

On-shell: p=p'=k, E=k² /2m

On-shell t-matrix: **t** ℓ ^{on}(E) = g²(k) k^{2ℓ} [τ_{οο}(E)+k²(τ₁₀(E)+τ_{ο1}(E))+ k⁴τ₁₁(E)]

Put t-matrix in Lippmann-Schwinger equation:

 ${\rm t}_{\ell}({\rm p},{\rm p}')={\rm v}_{\ell}({\rm p},{\rm p}') +\int\!\!{\rm d}^{3}{\rm q}/(2\pi)^{3}\;{\rm v}_{\ell}({\rm p},{\rm q})\big[{\rm p}^{2}/2\mu-{\rm q}^{2}/2\mu+i\epsilon\big]^{1}\, {\rm t}_{\ell}({\rm q},{\rm p}')$

and insert the expressions for $t_{\ell}^{}(\mathrm{p},\mathrm{p^\prime})$ and $\mathsf{v}_{\ell}^{}(\mathrm{p},\mathrm{p^\prime})$ then solve LS equation analytically

Note: Because of Coulomb potential $\alpha\alpha$ case is more complicated.

Here the t-matrix can be splitted into $t = t_c + t_{sc}$

where $\bm{{\mathsf{t}}}_{_{\rm C}}$ is the t-matrix connected to the pure Coulomb interaction, while $\mathfrak{t}_{\rm sc}$ is the one associated to the Coulomb-distorted short-range interaction

Compare the analytic solution for the on-shell T-matrix to the effective range expansion (here given without Coulomb)

$$
k^{2l}/t_{\ell}^{on}(E) = -\mu/2\pi \left(-1/a_{\ell} + r_{\ell,e}^2 k^2 - \lambda k^{2l+1} + ... \right), \quad E = k^2/2\mu,
$$

⇒

Quadratic eqs. with two solutions for LECs $\ \lambda_{_{\rm O}}\text{ and }\lambda_{_{\rm 1}}$ for any value of Λ Compare the analytic solution for the on-shell T-matrix to the effective range expansion (here given without Coulomb)

$$
k^{2l}/t_{\ell}^{on}(E) = -\mu/2\pi \left(-1/a_{\ell} + r_{\ell,e}^2 k^2 - \lambda k^{2l+1} + \dots \right), \quad E = k^2/2\mu,
$$

⇒

Quadratic eqs. with two solutions for LECs $\ \lambda_{_{\rm O}}\text{ and }\lambda_{_{\rm 1}}$ for any value of Λ

Compare the analytic solution for the on-shell T-matrix to the effective range expansion (here given without Coulomb)

$$
k^{2l}/t_{\ell}^{on}(E) = -\mu/2\pi \left(-1/a_{\ell} + r_{\ell,e}^{2}k^{2} - \lambda k^{2l+1} + ... \right), \quad E = k^{2}/2\mu,
$$

⇒

Quadratic eqs. with two solutions for LECs $\ \lambda_{_{\rm O}}\text{ and }\lambda_{_{\rm 1}}$ for any value of Λ

FIGURE 4.2: Phase shifts $\delta_1^3(E_n)$ $(l = 1, J = 3/2)$ with experimental data from Morgan and Walter [29] and in the inset the cross section $\sigma_1^3(E_n)$ obtained with $\Lambda = 300$ MeV.

α**n s-wave potential**

Problem: cluster ansatz leads to a deep bound state for α n system and adds spurious eigenvalues to the $\alpha\alpha$ n three-body Hamiltonian which need to be removed

We remove this unphysical states with the so-called projection technique: one replaces the potential $V(p,p^1)$ by

$V(p,p') + \Gamma \phi(p) \phi(p')$

where $\phi(p)$ is the wavefunction of the α n deep bound state. Note: the additional potential term has no effect on the α n phase shifts The parameter Γ should go to infinity (in practice: Γ has to be chosen sufficiently large)

α**n s-wave phase shift**

α**n s-wave phase shift**

Units MeV

Diagonalization of Hamiltonian Low-energy spectrum

Conclusion Γ = 15 MeV is sufficient to exclude unphysical α n bound state

BUT: In $\alpha\alpha$ n states Γ has to be chosen considerably higher

Cutoff dependence of ⁹Be ground-state energy

Wave function is calculated via expansion in hyperspherical harmonics (HH) in momentum space

Cutoff dependence of ⁹Be ground-state energy

 $V_3 = \lambda_3 \exp[-Q^2/\Lambda^2]$ $_{3}$] exp[−(Q'²)/ $\Lambda ^{2}$ Include 3-body force: $V_3 = \lambda_3 \exp[-Q^2/\Lambda^2] \exp[-(Q^2)/\Lambda^2]$

Q and Q' are hypermomenta

Cutoff dependence of ⁹Be ground-state energy

$V_3 = \lambda_3 \exp[-Q^2/\Lambda^2]$ ₃] exp[−Q'²/∧² Include 3-body force: $V_3 = \lambda_3 \exp[-Q^2/\Lambda^2] \exp[-Q^2/\Lambda^2]$

HH convergence in function of grand-angular quantum number K

Only E1 transitions are considered, since $9Be$ has $J^{\pi}=$ (3/2)⁻ one has $\left(1/2\right)^{+}$, $\left(3/2\right)^{+}$ and $\left(5/2\right)^{+}$ final states

Only E1 transitions are considered, since $9Be$ has $J^{\pi}=$ (3/2)⁻ one has $\left(1/2\right)^{+}$, $\left(3/2\right)^{+}$ and $\left(5/2\right)^{+}$ final states

Current operator in LO resulting from minimal coupling in free Lagrangian in limit of vanishing photon momentum proportional to

$$
e (p_{\alpha_1, \perp} + p_{\alpha_2, \perp}) / m_{\alpha} \qquad \text{(convection current)}
$$

Only E1 transitions are considered, since $9Be$ has $J^{\pi}=$ (3/2)⁻ one has $\left(1/2\right)^{+}$, $\left(3/2\right)^{+}$ and $\left(5/2\right)^{+}$ final states

Current operator in LO resulting from minimal coupling in free Lagrangian in limit of vanishing photon momentum proportional to

$$
e (p_{\alpha_1, \perp} + p_{\alpha_2, \perp}) / m_{\alpha} \qquad \text{(convection current)}
$$

However, interaction Lagrangian is momentum dependent

Only E1 transitions are considered, since $9Be$ has $J^{\pi}=$ (3/2)⁻ one has $\left(1/2\right)^{+}$, $\left(3/2\right)^{+}$ and $\left(5/2\right)^{+}$ final states

Current operator in LO resulting from minimal coupling in free Lagrangian in limit of vanishing photon momentum proportional to

$$
e (p_{\alpha_1, \perp} + p_{\alpha_2, \perp}) / m_{\alpha} \qquad \text{(convection current)}
$$

However, interaction Lagrangian is momentum dependent

$$
\Rightarrow
$$
 existence of two- and more-body currents

Siegert theorem: use continuity equation to replace current by charge operator

Convergence checks for LIT via increase of number of HH basis functions

Transition to 1/2+

Dependence on $\mathbf{cut\,} \Lambda_{_3}$ of three-body potential

Transition to 1/2+

Inversion of LIT

Transition to 1/2+

Comparison to experimental data

Transition to 1/2+

Inclusion of transitions to 3/2+ and 5/2+

Inclusion of transitions to 3/2+ and 5/2+

Effect of many-body currents

1/2+

Effect of many-body currents

 $1/2+$ 1/2+, $3/2+$, $5/2+$

Effect of many-body currents

⁶He as αnn **cluster**

In collaboration with Edna Pinilla, Pierre Descouvemont, Giuseppina Orlandini (arXiv:2409.03074)

⁶He as αnn **cluster**

In collaboration with Edna Pinilla, Pierre Descouvemont, Giuseppina Orlandini (arXiv:2409.03074)

αn interaction as before nn interaction for $^1\text{S}_{{}_0}$ derived in the same way as before (via $\text{a}_{_0}$ and $\text{r}_{_{0}}$)

However, here we use an HH expansion in coordinate space. Coordinate space two-body potentials V(r,r') are determined from Fourier transforms of the momentum space V(p,p') potentials.

Correctness has been checked by calculating the corresponding phase shifts

Three-body force given here by: $\mathsf{V}_{_{3}}$ = $\lambda_{_{3}}$ exp $[-\rho^{2}/\rho_{_{0}}]$ \approx 2] with hyperradius ρ and cutoff $\rho_{_0}^{}$

E1 strength calculated with electric dipole operator (Siegert theorem)

FIG. 3. Convergence of the E1 strength distribution of ⁶He with K_{max} .

FIG. 4. Convergence of the E1 strength distribution of ⁶He with the number of the Lagrange-Laguerre basis functions N .

Convergence check of HH expansion

Various 3-body potential strengths for $J^{\pi} = 1^-$ Same as bound state: red curve Stronger attractions for green and violett curves

Outlook

Similar treatment for the low-energy photodisintegration of other nuclei?

¹²C (α αα state): Calculation of E2 transition from carbon state 2+ to Hoyle state some initial steps have been taken

 16 O(4 α state)

 10Be