

NTSE-2024 Dec. 01-07, 2024 · Pukyong National University

Daejeon16 beyond the *p*-shell nuclei

lk Jae Shin 2024. 12. 05.

Contents

Interactions

Daejeon16 New Daejeon16

Results

Summary and Outlook

Igor Mazur (CENS/IBS) Andrey Shirokov (Moscow State University) Nadezda Smirnova (LP2IB, University of Bordeaux) James Vary (Iowa State University)

X The results supported partially by the NSC with supercomputing resources including technical support (KSC-2024-CRE-0236)

• *Ab initio* nuclear physics

- No-core shell model : all nucleons are treated as active degrees of freedom equally
- *Ab initio* theory requires a **realistic** nucleon-nucleon interactions accurately describing, e.g.
 - ✓ NN scattering data
 - ✓ deuteron properties
- Interaction could be suggested,
 - ✓ phenomenologically
 - \checkmark from the first principles
 - and also combination of two ways above

Historical evolution

- Fitting deuteron rms radius and quadrupole moment by PET : good ³H and ⁴He bindings
- Fitting *p* waves to ⁶Li spectrum : JISP6
- Additional fitting p waves to ¹⁶O binding : JISP16
- More accurate fit to light nuclei : JISP16₂₀₁₀
- from SRG-evolved N3LO : Daejeon16

NNN interaction

- NNN force contribution to nuclear physics is small but can be essential
- However this requires more computing resources (especially memory)
- If we can avoid using 3N forces ?

NNN interaction

• W. Polyzou & W. Glöckle theorem [Few-body Syst. 9, 97 (1990))]

 $H = T + V_{ij} \implies H' = T + V'_{ij} + V_{ijk}$

where V_{ij} and V'_{ij} are phase-equivalent, H and H' are isospectral.

Is it possible to transform as

$$H' = T + V'_{ij} + V_{ijk} \implies H = T + V_{ij}$$

with (approximately) isospectral H and H'?

In other words, intrinsic NNN interaction could be cancelled out by induced NNN interaction?

• Calculation without *NNN* interaction requires so smaller computational resources that we can reach larger model spaces.

- oscillator basis
- truncated potential energy matrix V
- complete infinite kinetic energy matrix T

- do not change scattering phase shifts and bound state energies of two-body system
- but are supposed to modify two-body bound state observables such as the rms radii and electromagnetic moments

M.Shirokov, J.P.Vary, A.I.Mazur and T.A.Weber, Phys.Lett.B 644, 33 (2007)]

Simplest PETs with continuous parameters are used to fit the B.E. of several light nuclei in NCSM calculations.

[A.M.Shirokov, I.J.Shin, Y.Kim, M.Sosonkina, P.Maris and J.P.Vary, "N3LO NN interaction adjusted to light nuclei in *ab exitu* approach," Phys. Lett.B **761**, 87 (2016)]

How to fit :

✓ using petsc (TAO)
 ✓ ground : ³H, ⁴He, ⁶Li, ¹⁰B, ¹²C, ¹⁶O and ⁸He
 ✓ excited : ⁶Li [(3⁺,0), (0⁺,1)], ¹⁰B [(1⁺,0)], ¹²C [(2⁺,0)]
 ✓ target values are estimated from comparison between the results of NCSM calculation and experimental values

wave	¹ <i>s</i> ₀	³ sd ₁	$^{1}p_{1}$	${}^{3}p_{0}$	${}^{3}p_{1}$	³ <i>pf</i> ₂	${}^{3}d_{2}$
angle	-2.997	4.461	5.507	1.785	4.299	-2.031	7.833

- Good convergence on NCSM calculation
- Good description of binding energies and spectra
- Improved description of other observables, e.g. rms radii

[A.M.Shirokov, *et al.*, Phys. Lett. B **761**, 87 (2016)]

[N.Smirnova, et al., Phys.Rev.C 100, 054329 (2019)]

• the spin-orbit splitting between $d_{5/2}$ and $d_{3/2}$ is larger than the empirical value

USDB single particle energies

1 <i>s</i> _{1/2}	0 <i>d</i> _{5/2}	0 <i>d</i> _{3/2}
-3.2079	-3.9257	2.1117

TABLE II. Neutron (" ν ") and proton (" π ") single-pa	article energies (in MeV) obtained from the	OLS transformed Daejeon16 potential (for
A = 18 and $A = 19$) and from bare Daejeon16.		

		OLS						Bare		
	Ec	$A = 18$ $E_{\rm core} = -121.817$			$A = 19$ $E_{\text{core}} = -121.783$			$A = 18$ $E_{\text{core}} = -118.307$		
(nlj)	$1s_{1/2}$	$0d_{5/2}$	$0d_{3/2}$	$1s_{1/2}$	$0d_{5/2}$	$0d_{3/2}$	$1s_{1/2}$	$0d_{5/2}$	$0d_{3/2}$	
$ \epsilon_{\nu}(nlj) \\ \epsilon_{\pi}(nlj) $	-3.576 -0.077	-3.302 0.291	6.675 9.974	-3.572 -0.073	-3.299 0.294	6.677 9.976	-3.115 0.362	-2.953 0.621	6.889 10.174	

[N.Smirnova, *et al.*, Phys.Rev.C 100, 054329 (2019)]

* 132_p1 (in case r005) ==> Daejeon16 ::: pick up one parameter set from fevctlLog of case_r005 ::: 1s0 3sd[ss] 3p0 3p1 3pf[pp] 1p1 3d2 ::: res -2.99726247452 4.46130674849 1.78535330322 4.29913281611 -2.030525 ::: starting points -4.05927139467 5.5337758277 1.53321330908 3.2177908374 ::: 7 nuclei [3H(0.03) 4He(0.09) 6Li(0.5 ex1:0.1 ex2:0.1) 8He(0.25) 10B(0. ::: res [3H(-8.434,+0.49%) 4He(-28.362,-0.27%) 6Li(-31.434,+0.25%) 8He(-25 12C(-88.629,-0.86%) 16O(-122.967,-2.74%)]

* r22002

::: final PETSc parameter set from fevctlLog of case_r22002 ::: 1s0 3sd[ss] 3p0 3p1 3pf[pp] 1p1 3d2 ::: res -3.77744147919 5.26043333132 1.41811625717 4.58920685652 -2.750170 ::: starting points -2.99726247452 4.46130674849 1.78535330322 4.299132816 Daejeon16 angle ::: 7 nuclei [3H(0.03) 4He(0.09) 6Li(0.3 ex1:0.1 ex2:0.1) 8He(0.2) 10B(0.4 ::: res [3H(-8.445,+0.35%) 4He(-28.346,-0.21%) 6Li(-31.230,+0.89%) 8He(-25)

12C(-86.990,+1.01%) 16O(-120.116,-0.35%)]

-

- 20.0

- 20.0

-

-

- New York

* 132_p1 (in case r005) ==> Daejeon16 ::: pick up one parameter set from fevctlLog of case_r005 ::: 1s0 3sd[ss] 3p0 3p1 3pf[pp] 1p1 3d2 ::: res -2.99726247452 4.46130674849 1.78535330322 4.29913281611 -2.030525 ::: starting points -4.05927139467 5.5337758277 1.53321330908 3.2177908374 ::: 7 nuclei [3H(0.03) 4He(0.09) 6Li(0.5 ex1:0.1 ex2:0.1) 8He(0.25) 10B(0. ::: res [3H(-8.434,+0.49%) 4He(-28.362,-0.27%) 6Li(-31.434,+0.25%) 8He(-25 12C(-88.629,-0.86%) 16O(-122.967,-2.74%)]

* r22002

::: final PETSc parameter set from fevctlLog of case_r22002 ::: 1s0 3sd[ss] 3p0 3p1 3pf[pp] 1p1 3d2 ::: res -3.77744147919 5.26043333132 1.41811625717 4.58920685652 -2.750170 ::: starting points -2.99726247452 4.46130674849 1.78535330322 4.299132816 Daejeon16 angle ::: 7 nuclei [3H(0.03) 4He(0.09) 6Li(0.3 ex1:0.1 ex2:0.1) 8He(0.2) 10B(0.4 ::: res [3H(-8.445,+0.35%) 4He(-28.346,-0.21%) 6Li(-31.230,+0.89%) 8He(-25 12C(-86.990,+1.01%) 16O(-120.116,-0.35%)]

* 132 p1 (in case r005) ==> Daejeon16

::: pick up one parameter set from fevctlLog of case r005 ::: 1s0 3sd[ss] 3p0 3p1 3pf[pp] 1p1 3d2 ::: res -2.99726247452 4.46130674849 1.78535330322 4.2991328 ::: starting points -4.05927139467 5.5337758277 1.5332133090 ::: 7 nuclei [3H(0.03) 4He(0.09) 6Li(0.5 ex1:0.1 ex2:0.1) 8H ::: res [3H(-8.434,+0.49%) 4He(-28.362,-0.27%) 6Li(-31.434,+ 120(-88.629,-0.86%) 160(-122.967,-2.74%)]

* r22002

::: final PETSc parameter set from fevctlLog of case r22002 ::: 1s0 3sd[ss] 3p0 3p1 3pf[pp] 1p1 3d2 ::: res -3.77744147919 5.26043333132 1.41811625717 4.5892068 ::: starting points -2.99726247452 4.46130674849 1.785353303 Daejeon16 angle ::: 7 nuclei [3H(0.03) 4He(0.09) 6Li(0.3 ex1:0.1 ex2:0.1) 8H ::: res [3H(-8.445,+0.35%) 4He(-28.346,-0.21%) 6Li(-31.230,+ 1.070000000000000]), ((1.5, 0.5), [2.532, 4.64299999999999 12C(-86.990,+1.01%) 160(-120.116,-0.35%)]

6 andgles : 3p0 3p1 3pf[pp] 1d2 3d2 3dg[dd]

```
-fev etarget 1 0.5 0.5 -8.4762 0.03
-fev etarget 2 0 0 -28.2944 0.09
-fev etarget 3 1 0 -31.2973 0.25; 3 0 2.05 0.1; 0 1 3.56 0.1
-fev etarget 4 0 2 -29.0514 0.2
-fev etarget 5 3 0 -59.8529 0.4; 1 0 2.05 0.1
-fev etarget 6 0 0 -87.9101 0.7; 2 0 5.2 0.1
-fev etarget 7 0 0 -118.6314 0.1
-fev etarget 8 2.5 0.5 -119.1967 0.2; 0.5 0.5 2.0 0.03; 1.5
```

***** r22301 [PET @ HW=25MeV]

pointX : ['-6.13906014363', '0.968609219422', '-0.446820987 Current energy levels for nucleus #7: [((3.0, 0.0), [-92.21: [-119.203, -95.231999999999999]), ((4.0, 0.0), [-92.4849999] Current energy levels for nucleus #5: [((3.0, 0.0), [-59.03) [-57.393999999999998, -55.64800000000003]), ((2.0, 1.0), [· Current energy levels for nucleus #4: [((1.0, 2.0), [-22.05] -18.8569999999999999), ((2.0, 2.0), [-23.99899999999999, -Current energy levels for nucleus #1: [((2.5, 0.5), [4.6479] Current energy levels for nucleus #2: [((0.0, 1.0), [0.104]) [-28.495999999999999, -6.552999999999999]), ((1.0, 1.0), Current energy levels for nucleus #3: [((3.0, 0.0), [-29.36 # 7 angles : 1p1 3p0 3p1 3pf[pp] 1d2 3d2 3dg[dg] [-31.3249999999999999]), ((2.0, 1.0), [-25.788]), ((2.0, 0.0 Current energy levels for nucleus #6: [((2.0, 0.0), [-81.61] [-87.62600000000005, -70.8990000000001]), ((1.0, 1.0), Current energy levels for nucleus #8: [((1.5, 0.5), [-104.9--95.356999999999999), ((0.5, 0.5), [-116.593])]

***** r23101 [PET @ HW=20MeV]

pointX : ['-2.99624757311', '0.615026311095', '0.0257810435 Current energy levels for nucleus #7: [((3.0, 0.0), [-93.86) -96.177000000000007]), ((4.0, 0.0), [-94.27800000000006])] Current energy levels for nucleus #5: [((3.0, 0.0), [-59.20] [-57.40500000000001, -55.6809999999999997]), ((2.0, 1.0), [Current energy levels for nucleus #4: [((1.0, 2.0), [-21.74 ((2.0, 2.0), [-23.901, -18.05900000000000])] Current energy levels for nucleus #1: [((2.5, 0.5), [4.6429] 0.5), [2.524999999999999, 4.644000000000001])] Current energy levels for nucleus #2: [((0.0, 1.0), [0.1029] [-28.42000000000002, -6.5279999999999999]), ((1.0, 1.0), [· Current energy levels for nucleus #3: [((3.0, 0.0), [-29.15200000000 [-31.119]), ((2.0, 1.0), [-25.599]), ((2.0, 0.0), [-25.11499999999999 Current energy levels for nucleus #6: [((2.0, 0.0), [-81.72100000000 [-87.813999999999993, -71.314999999999999]), ((1.0, 1.0), [-71.849999 Current energy levels for nucleus #8: [((1.5, 0.5), [-105.315, -98.23 ((0.5, 0.5), [-117.208])]

6 andgles : 3p0 3p1 3pf[pp] 1d2 3d2 3dg[dd]

***** r22301 [PET @ HW=25MeV]

pointX : ['-6.13906014363', '0.968609219422', '-0.44682098 Current energy levels for nucleus #7: [((3.0, 0.0), [-92.2 [-119.203, -95.23199999999999]), ((4.0, 0.0), [-92.484995 Current energy levels for nucleus #5: [((3.0, 0.0), [-59.0 [-57.393999999999998, -55.6480000000003]), ((2.0, 1.0), Current energy levels for nucleus #4: [((1.0, 2.0), [-22.0 -18.8569999999999999), ((2.0, 2.0), [-23.998999999999999, Current energy levels for nucleus #1: [((2.5, 0.5), [4.647 1.07000000000001]), ((1.5, 0.5), [2.532, 4.642999999999 Current energy levels for nucleus #2: [((0.0, 1.0), [0.104 [-28.495999999999999, -6.5529999999999999]), ((1.0, 1.0), Current energy levels for nucleus #3: [((3.0, 0.0), [-29.3 [-31.3249999999999999)), ((2.0, 1.0), [-25.788]), ((2.0, 0. Current energy levels for nucleus #6: [((2.0, 0.0), [-81.€ [-87.62600000000005, -70.8990000000001]), ((1.0, 1.0), Current energy levels for nucleus #8: [((1.5, 0.5), [-104. -95.356999999999999), ((0.5, 0.5), [-116.593])]

***** r23401

-prob starting point 0.0 -6.13906014363 0.968609219422 -0. -prob lower bound -20 -15 -10 -10 -10 0 -20 -prob upper bound 20 5 10 10 10 20 20 1: ['0.0', '-6.13906014364', '0.96860921942', '-0.44€ 2 ~ 99 : 100: ['-0.533909765247', '-9.1345431801', '1.1339210437 '8.17871400871'1 1652.39301899 101: ['-0.530722982632', '-9.13673271', '1.13393724379' '8.18228492379'1 1649.88586189 ['-0.532636622368', '-9.13731999835', '1.132993751 102: '8.18414891898'] 1650.23010976 103: ['-0.530581890876', '-9.13674635921', '1.134136840 '8.18020496978'] 1650.76243189 ['-0.531283181845', '-9.13657941693', '1.134431008 104: 8.18330379078'1 1650.25108073

6 andgles : 3p0 3p1 3pf[pp] 1d2 3d2 3dg[dd] * 132 p1 (in case r005) ==> Daejeon16 ::: pick up one parameter set from fevctlLog of case r005 -fev etarget 1 0.5 0.5 -8.4762 0.03 # 6 andgles : 3p0 3p1 3pf[pp] 1d2 3d2 3dg[dd] ::: 1s0 3sd[ss] 3p0 3p1 3pf[pp] 1p1 3d2 -fev etarget 2 0 0 -28.2944 0.09 ::: res -2.99726247452 4.46130674849 1.78535330322 4.2991328 -fev etarget 3 1 0 -31.2973 0.25; 3 0 2.05 0.1; 0 1 3.56 0.1 ***** r22301 [PET @ HW=25MeV] -fev etarget 4 0 2 -29.0514 0.2 ::: starting points -4.05927139467 5.5337758277 1.5332133090 pointX : ['-6.13906014363', '0.968609219422', '-0.44682098 -fev etarget 5 3 0 -59.8529 0.4; 1 0 2.05 0.1 Current energy levels for nucleus #7: [((3.0, 0.0), [-92.2 ::: 7 nuclei [3H(0.03) 4He(0.09) 6Li(0.5 ex1:0.1 ex2:0.1) 8H -fev etarget 6 0 0 -87.9101 0.7; 2 0 5.2 0.1 [-119.203, -95.23199999999999]), ((4.0, 0.0), [-92.484995 ::: res [3H(-8.434,+0.49%) 4He(-28.362,-0.27%) 6Li(-31.434,+ -fev_etarget 7 0 0 -118.6314 0.1 Current energy levels for nucleus #5: [((3.0, 0.0), [-59.0 12C(-88.629,-0.86%) 160(-122.967,-2.74%)] -fev etarget 8 2.5 0.5 -119.1967 0.2; 0.5 0.5 2.0 0.03; 1.5 [-57.393999999999998, -55.6480000000003]), ((2.0, 1.0), Current energy levels for nucleus #4: [((1.0, 2.0), [-22.0 ***** r22301 [PET @ HW=25MeV] -18.8569999999999999), ((2.0, 2.0), [-23.998999999999999, * r22002 pointX : ['-6.13906014363', '0.968609219422', '-0.446820987; Current energy levels for nucleus #1: [((2.5, 0.5), [4.647 Current energy levels for nucleus #7: [((3.0, 0.0), [-92.21: ::: final PETSc parameter set from fevctlLog of case r22002 1.070000000000001]), ((1.5, 0.5), [2.532, 4.642999999999 [-119.203, -95.231999999999999]), ((4.0, 0.0), [-92.4849999] ::: 1s0 3sd[ss] 3p0 3p1 3pf[pp] 1p1 3d2 Current energy levels for nucleus #2: [((0.0, 1.0), [0.104 Current energy levels for nucleus #5: [((3.0, 0.0), [-59.03) [-28.495999999999999, -6.5529999999999999]), ((1.0, 1.0), ::: res -3.77744147919 5.26043333132 1.41811625717 4.5892068 [-57.3939999999999998, -55.64800000000003]), ((2.0, 1.0), [Current energy levels for nucleus #3: [((3.0, 0.0), [-29.3 ::: starting points -2.99726247452 4.46130674849 1.785353303 Current energy levels for nucleus #4: [((1.0, 2.0), [-22.05] [-31.324999999999999)), ((2.0, 1.0), [-25.788]), ((2.0, 0. Daejeon16 angle -18.8569999999999999), ((2.0, 2.0), [-23.99899999999999, -Current energy levels for nucleus #6: [((2.0, 0.0), [-81.€ ::: 7 nuclei [3H(0.03) 4He(0.09) 6Li(0.3 ex1:0.1 ex2:0.1) 8H Current energy levels for nucleus #1: [((2.5, 0.5), [4.6479 [-87.62600000000005, -70.8990000000001]), ((1.0, 1.0), ::: res [3H(-8.445,+0.35%) 4He(-28.346,-0.21%) 6Li(-31.230,+ 1.070000000000000]), ((1.5, 0.5), [2.532, 4.64299999999999 Current energy levels for nucleus #8: [((1.5, 0.5), [-104. 12C(-86.990,+1 Δ° ` cåffend' θhergy revers "bb nucreus #0. [((2.0, 0.07,"["διthergy levels for nucleus #2: [((0.0, 1.0), [0.104]) -95.356999999999999), ((0.5, 0.5), [-116.593])] [-87.65500000000001, -70.9180000000006]), ((1.0, 1.0), 99999999999, -6.55299999999999999), ((1.0, 1.0), Current energy levels for nucleus #8: [((1.5, 0.5), [-104nergy levels for nucleus #3: [((3.0, 0.0), [-29.36 # 7 angles : lpl 3p0 3p1 3pf[pp] 1d2 3d2 3dg[dg] 72 -95.39300000000001]), ((0.5, 0.5), [-116.619])] 99999999999), ((2.0, 1.0), [-25.788]), ((2.0, 0.0 73 nergy levels for nucleus #6: [((2.0, 0.0), [-81.6]) ***** r23401 ***** r23304 74 0000000005, -70,899000000000011), ((1.0, 1.0), E. -prob starting point 0.0 -6.13906014363 0.968609219422 -0. 75 -prob starting point 0.0 -6.13906014363 0.968609219422 -Onergy levels for nucleus #8. [//] 5 0 5) [-]04.4 bound -20 -15 -10 -10 -10 0 -20 igestimate ((2.0, 0.0), [-25.425999999999999])] -prob lower bound -20 -15 -10 -10 0 -10 76 bound 20 5 10 10 10 20 20 105.2810000000001, -97.77200000000000]), ((2.5, 0.5), [-118. .⁰².0'. '-6.13906014364', '0.96860921942', '-0.44€ 77 -prob upper bound 20 5 10 10 10 20 10 78 1: ['0.0', '-6.13906014364', '0.96860921942', '-0.44 1753.31517286 starting from r2230).533909765247', '-9.1345431801', '1.1339210437 79 2~28 371'1 1652.39301899 80 29: ['-0.00238453698183', '-6.13957670481).530722982632', '-9.13673271', '1.13393724379' -0.446820987236 -1.2750766695 8.61612476985 1.01787306243 '1.02026693348'1 1753.78969219 379'1 1649.88586189 81 30: ['0.00367268707103', '-6.13944318864', '0.9659403!).532636622368', '-9.13731999835', '1.132993751 '1.01911557011'] 1754.63064306 398'] 1650.23010976 .44682098724', '-1.2750766695', '8.61612476985', '1.01787306243').530581890876', '-9.13674635921', '1.134136840 82 83 Result: ['0.0', '-6.13906014364', '0.96860921942', '-0.44 978'1 1650.76243189 J.531283181845', '-9.13657941693', '1.134431008 nergy levels for nucleus #2: [((0.0, 1.0), [0.1029 '8.18330379078'] 1650.25108073 D000000002, -6.527999999999999), ((1.0, 1.0), [· nergy levels for nucleus #3: [((3.0, 0.0), [-29.15200000000 No change of 1p1 channel is better), ((2.0, 1.0), [-25.599]), ((2.0, 0.0), [-25.1149999999999 nergy levels for nucleus #6: [((2.0, 0.0), [-81.721000000000 9999999993, -71.31499999999999), ((1.0, 1.0), [-71.849999 Current energy levels for nucleus #8: [((1.5, 0.5), [-105.315, -98.23

((0.5, 0.5), [-117.208])]

Daejeon16 : from SRG evolved N3LO with λ =1.5 fm⁻¹ at $\hbar\Omega$ =25 MeV

wave	¹ <i>s</i> ₀	³ sd ₁	${}^{1}p_{1}$	${}^{3}p_{0}$	³ p ₁	³ <i>pf</i> ₂	$^{1}d_{2}$	³ d ₂	$^{3}dg_{3}$
Daejeon16	-2.997	4.461	5.507	1.785	4.299	-2.031	-	7.833	-

New Daejeon16 : from Daejeon16 at $\hbar\Omega$ =25 MeV

wave	¹ <i>s</i> ₀	$^{3}sd_{1}$	$^{1}p_{1}$	${}^{3}p_{0}$	$^{3}p_{1}$	³ <i>pf</i> ₂	$^{1}d_{2}$	$^{3}d_{2}$	$^{3}dg_{3}$
r22301	-	-	-	-6.139	0.969	-0.446	-1.275	8.616	1.018
r23701] -	1.605	-	-2.124	1.324	2.721	-3.644	-0.502	-11.538

¹⁶ O	Nmax=8	extrapol.	Nmax=10	extrapol.
exp.		-127.619		-127.619
Daejeon16	-129.553	-131.411	-130.481	-131.265
r22301	-126.077	-128.144	-126.971	-127.687
r23701	-126.959	-129.597	-128.223	-129.565

-100

-105

<u>7</u>6

1. To take differences between ^{17}O spectra and ^{16}O g.s.

Daejeon16

2. To adopt extrapolation

- 1. To take differences between $^{17}\mathrm{O}$ spectra and $^{16}\mathrm{O}$ g.s.
- 2. To adopt extrapolation

⁶Li @ Nmax=12 & HW=15.0 MeV

⁶ Li	exp.	Daejeon16	r22301	r23701
3+,0	2.186	1.885	1.971	1.705
0+,1	3.563	3.538	3.552	3.505
2+,0	4.312	5.062	5.555	5.028
2+,1	5.366	5.603	5.480	5.474

¹⁰B @ Nmax=6 & HW=17.5 MeV

¹⁰ B	exp.	Daejeon16	r22301	r23701
1+,0	0.718	1.693	1.756	2.019
0+,1	1.740	1.960	1.750	2.058
1+,0	2.154	3.401	3.467	3.644
2+,0	3.587	5.771	6.268	6.150
3+,0	4.774	7.457	7.941	7.832
2+,1	5.164	5.879	5.763	5.968

⁴ He	Nm=16	extrapol.	Nm=18	extrapol.	•
exp.		-28.296		-28.296	
Daejeon16	-28.372	-28.372	-28.372	-28.372	
r22301	-28.498	-28.498			
r23701	-28.356	-28.356			

⁴ He+ ⁴ He	extrapol.	Nm=18	extrapol.
exp.	-56.592		-56.592
Daejeon16	-56.744		-56.744
r22301	-56.996		
r23701	-56.712		

⁸ Be	Nm=12	extrapol.	Nm=14	extrapol.
exp.		-56.500		-56.500
Daejeon16	-56.470	-56.775	-56.629	-56.847
r22301	-55.940	-56.219		
r23701	-56.044	-56.435		

¹ Be	Nmax	Daejeon16	r22301	r23701	exp.	•
/2+	3~7	-64.6	-63.9	-64.6		
	5~9	-64.9(3)	-64.2(3)	-63.7(9)	-65.483	
	7~11	-65.22(7)	-64.4(2)	-64.2(4)		
/2-	2~6	-64.0	-63.8	-63.8		
	4~8	-64.4(4)	-64.4(5)	-63.78(1)	-65.163	
	6~10	-64.62(2)	-64.40(5)	-64.1(3)		*

- 1/2⁺ ground state of ¹¹Be
 - ✓ loosely bound by 0.5 MeV with respect to the ¹⁰Be+n threshold
 - ✓ slightly separated by only 0.3 MeV from excited 1/2⁻ state

Summary and Outlook

beyond Daejeon16

- We have adopted additional PET to Daejeon16 in order to extend its application to the heavier region
- Two candidates for the new Daejeon16 interaction show the better description the p/sd-shell nuclei at least around ¹⁶O
- Further study
 - $\checkmark\,$ More study various nuclei using the new candidate interactions
 - \checkmark To find appropriate partial waves and optimized angles

대전광역시 유성구 국제과학로 1 1, Gukjegwahak-ro, Yuseong-gu, Daejeon, Korea

THANK YOU!

Backup

PET (phase-equivalent transformation)

Hamiltonian can be expressed as an infinite dimensional matrix [H] in the oscillator basis $\{|n\rangle\}$.

matrix elements of [H] $: H_{nm} = \langle n|H|m \rangle$

PET is based on the unitary transformation as

 $\left[\widetilde{H}\right] = \left[U^{\dagger}\right]\left[H\right]\left[U\right]$

with the help of the unitary matrix [U] which is supposed to be of the form

$$\begin{bmatrix} U \end{bmatrix} = \begin{bmatrix} U_0 \end{bmatrix} \bigoplus \begin{bmatrix} I \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} U_0 \end{bmatrix} & 0 \\ 0 & \begin{bmatrix} I \end{bmatrix} \end{pmatrix}$$

where [I] is the infinite dimensional unit matrix.

PET (phase-equivalent transformation)

Clearly the spectra of Hamiltonians H and \tilde{H} are identical. Corresponding eigenfunction can be written as

 $\left[\widetilde{\Psi}\right] \,=\, \left[U^{\dagger}\right] \,\left[\Psi\right]$

in the oscillator basis $\{|n\rangle\}$. Then the difference is

$$\Delta[\Psi] = \begin{bmatrix} \widetilde{\Psi} \end{bmatrix} - \begin{bmatrix} \Psi \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} U^{\dagger} \end{bmatrix} - \begin{bmatrix} I \end{bmatrix} \end{pmatrix} \begin{bmatrix} \Psi \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} U_0 \end{bmatrix} & 0 \\ 0 & 0 \end{pmatrix} \begin{bmatrix} \Psi \end{bmatrix}.$$

That is, the only difference is shown as a superposition of a finite number of functions. If we consider a simple 2 \times 2 matrix [U_0] as

$$[U_0] = \begin{pmatrix} \cos\beta & \sin\beta \\ -\sin\beta & \cos\beta \end{pmatrix},$$

then only two oscillator basis $|0\rangle$ and $|1\rangle$ are related.

PET (phase-equivalent transformation)

The superposition of a finite number of \mathcal{L}^2 functions cannot affect the asymptotics of scattering wave functions.

$$\widetilde{\Psi} = \Psi + \sum_{i}^{N} c_{i} |i\rangle \Rightarrow \lim_{r \to \infty} \widetilde{\Psi}(r) = \lim_{r \to \infty} \Psi(r) \quad \text{when } |i\rangle \in \mathcal{L}^{2}$$

Since the scattering phase shifts and the S – matrix are defined through the asymptotic behavior of the wave functions, the phase shifts δ associated with the Ψ and $\widetilde{\Psi}$ are identical.

So the Hamiltonians H and \tilde{H} are phase-equivalent.

PET (phase-equivalent transformation)

Practically,

 $\begin{bmatrix} \widetilde{V} \end{bmatrix} = \begin{bmatrix} V \end{bmatrix} + \begin{bmatrix} \Delta V \end{bmatrix}$ $= \begin{bmatrix} V \end{bmatrix} + \left(\begin{bmatrix} \widetilde{H} \end{bmatrix} - \begin{bmatrix} H \end{bmatrix} \right)$ $= \begin{bmatrix} \widetilde{H} \end{bmatrix} - \left(\begin{bmatrix} H \end{bmatrix} - \begin{bmatrix} V \end{bmatrix} \right)$ $= \begin{bmatrix} U^{\dagger} \end{bmatrix} \left(\begin{bmatrix} V \end{bmatrix} + \begin{bmatrix} T \end{bmatrix} \right) \begin{bmatrix} U \end{bmatrix} - \begin{bmatrix} T \end{bmatrix}$

- 1. Add kinetic term to original potential in order to construct Hamiltonian
- 2. Take unitary transformation
- 3. Subtract kinetic term to obtain potential part

Binding energies

Nuelous	Nature	r22301		r23701		Daejeon16			JISP16		
nucleus		Theory	hw	Theory	hw	Theory	hw	Nmax	Theory	hw	Nmax
³ Н	8.482	8.472	12.5	8.439	12.5	8.442	12.5	16	8.370(3)	15	20
³ He	7.718	7.773	12.5	7.742	12.5	7.744	12.5	16	7.667(5)	17.5	20
⁴ He	28.296	28.498(0)	15	28.356(0)	17.5	28.372(0)	17.5	16	28.299(0)	22.5	18
⁶ He	29.269	29.45(3)	12.5	29.183(1)	15	29.39(3)	12.5	14	28.80(5)	17.5	16
⁸ He	31.409	31.75(2)	12.5	30.958(8)	15	31.28(1)	12.5	14	29.9(2)	20	14
٥Li	31.995	32.04(1)	12.5	31.744(3)	15	31.98(2)	12.5	14	31.48(3)	20	16
¹⁰ B	64.751	64.28(0)	17.5	64.6(1)	17.5	64.79(3)	17.5	10	63.9(1)	22.5	10
¹² C	92.162	91.0(3)	20	92.28(9)	20	92.9(1)	17.5	8	94.8(3)	27.5	10
¹⁶ O	127.619	127.7(5)	20	129.57(9)	20	131.3(1)	17.5	10	145(8)	35	8

Excitation energies

Nucleus, level	Nature	r22301		r23701		Daejeon16			JISP16		
		Theory	hw	Theory	hw	Theory	hw	Nmax	Theory	hw	Nmax
⁶ He											
(0+,1)	0	0		0		0			0		
(2+,1)	1.797	1.81	12.5	1.78	12.5	1.91(5)	12.5	14	2.3(1)	17.5	16
۴Li											
(1+,0)	0	0		0		0			0		
(3+,0)	2.186	1.98	12.5	1.72	15	1.91(1)	12.5	14	2.55(7)	20	16
(0+,1)	3.563	3.50	12.5	3.47	15	3.50(4)	12.5	14	3.65(6)	17.5	16
(2+,0)	4.312	4.81	12.5	4.44	15	4.4(3)	12.5	14	4.5(2)	20	16
(2+,1)	5.366	5.38	15	5.21	12.5	5.36(7)	12.5	14	5.9(1)	17.5	16
(1+,0)	5.65					5.0(4)	12.5	14	5.4(2)	17.5	16

Excitation energies (continued)

Nucleus,	Nature	r22301		r23701		Daejeon16			JISP16		
level		Theory	hw	Theory	hw	Theory	hw	Nmax	Theory	hw	Nmax
¹⁰ B											
(3+,0)	0	0		0		0			0		
(1+,0)	0.718	0.82	17.5	1.01	17.5	0.5(1)	15	10	0.9(2.4)	22.5	10
(0+,1)	1.740	1.58	17.5	1.87	17.5	1.74(7)	17.5	10	1.8(1.4)	25	8
(1+,0)	2.154	2.88	17.5	2.95	17.5	2.8(2)	17.5	10	4.1(1.7)	30	10
(2+,0)	3.587	4.90	17.5	4.83	17.5	4.3(2)	15	10	3.8(2)	27.5	10
(3+,0)	4.774	5.72	17.5	5.71	17.5	5.1(7)	17.5	10	5.6(3)	22.5	10
(2+,1)	5.164	5.47	17.5	5.58	17.5	5.49(9)	17.5	10	4.6(3)	22.5	10
¹² C											
(0+,0)	0	0		0		0			0		
(2+,0)	4.439	5.16	17.5	4.61	20	4.57(15)	17.5	8	3.9(4)	27.5	10

¹⁸F spectrum

state	r22	301	r23	701	Daeje		
	Nm=6	Nm=8	Nm=6	Nm=8	Nm=6	Nm=8	exp.
1+,0	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3+,0	-0.115	0.175	-0.300	-0.311	0.589	0.595	0.937
0+,1	1.310	1.001	1.108	1.131	1.744	1.229	1.042
5+,0	1.639	1.455	1.520	1.385	2.839	2.158	1.121

Optimal HO basis (for all states)

r22301 & r23701 : 20 MeV (Nm=6) / 18 MeV (Nm=8)

Daejeon16 : 18 MeV (Nm=6, 8)