Shadow formation in gravitational collapse and effect of redshift by spacetime dynamics

Feb. 5th 2024 @IBS-CTPU (Daejeon, Korea)

Yasutaka Koga (Nagoya U.)

Work with N. Asaka (TDSE), M. Kimura (DIT), K. Okabayashi (Kyoto U.) (paper in preparation)

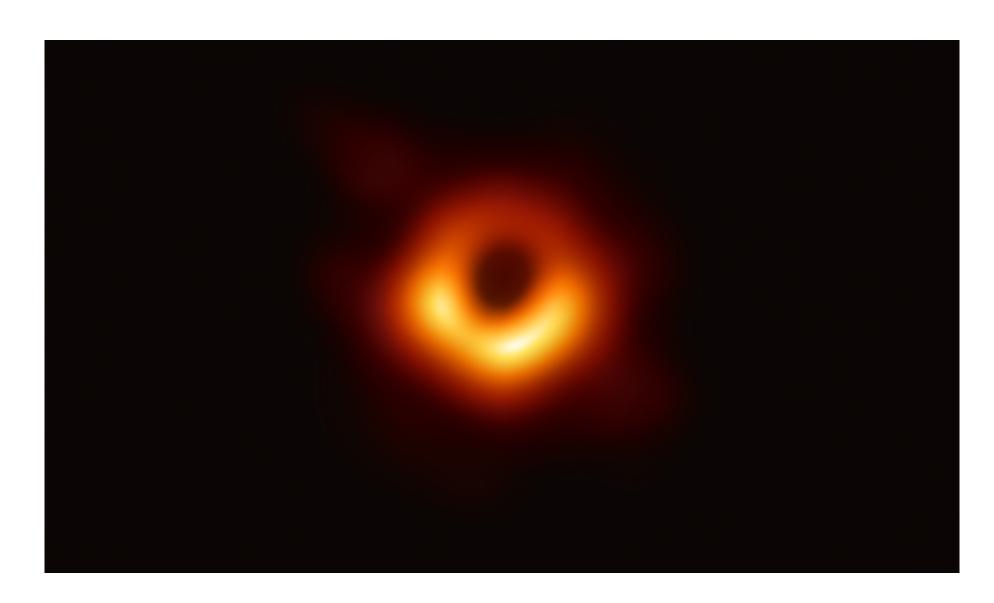
1. Introduction

Observation of BH:

- GW wave during a binary inspiral and merger.
- X-ray emission from a BH jet or accreting matter.
- BH shadow observation.

BH shadow:

- A distant observer observes a BH shadow when a light source exists behind/around the BH.
- Carries information of the immediate vicinity of the BH.
- Very important for testing the theory of gravity in the strong regime.



https://eventhorizontelescope.org

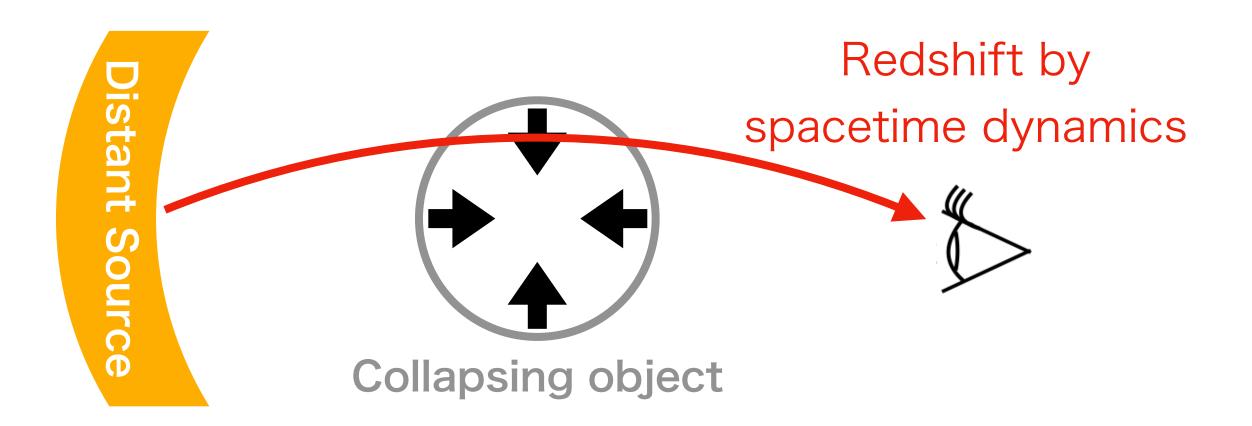
1. Introduction

Study of BH shadow:

- Static/stationary cases have been extensively investigated.
- · However, almost no work on the case of gravitational collapse.
- · In the case, the effect of redshift by spacetime dynamics is expected to be crucial.

In this talk:

- We investigate redshift of light and shadow formation in gravitational collapse.
- We focus on the case where the collapsing object is transmissive s.t. only the spacetime dynamics causes the redshift of light.



Outline

Outline:

- 1. Introduction
- 2. Brief review of static case
- 3. Thin shell model
- 4. General spherically symmetric case
- 5. Summary

2. Brief review of static case

Shadow in Schwarzschild spacetime

Schwarzschild spacetime:

$$ds^{2} = -f(r)dt^{2} + f^{-1}(r)dr^{2} + r^{2}d\Omega^{2}, \ f(r) = 1 - \frac{2M}{r}$$

Null geodesic eq.:

$$k^{\nu}\nabla_{\nu}k^{\mu}=0$$

Conserved quantities:

• Energy: $E := -g(k, \xi_t)$

 ξ_t : timelike Killing vector

6

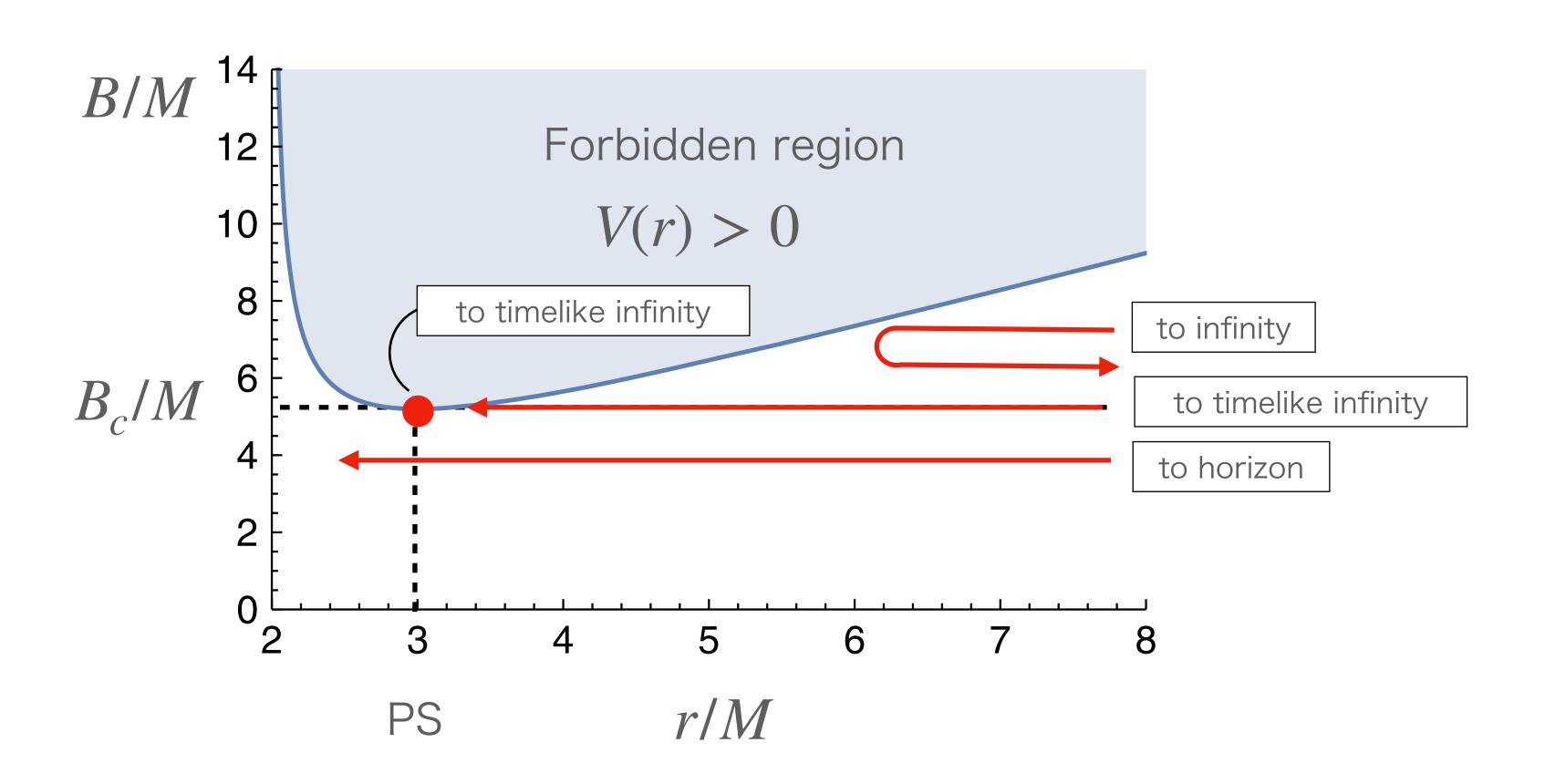
• Angular momentum: $L := g(k, \xi_{\phi})$

 ξ_{ϕ} : Killing vector for the spherical sym.

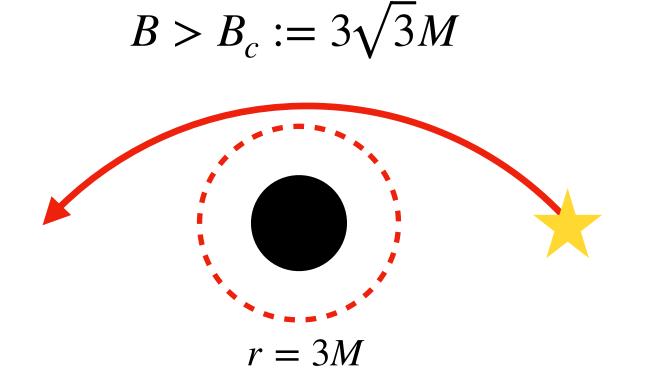
The radial equation:

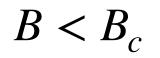
$$\dot{r}^2 + V(r) = 0$$
, $V(r) = B^2 \left(1 - \frac{2M}{r}\right) r^{-2} - 1$. $B := L/E$: conserved impact param.

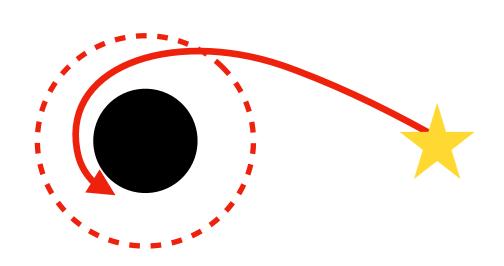
Analysis of light orbits in r - B plane



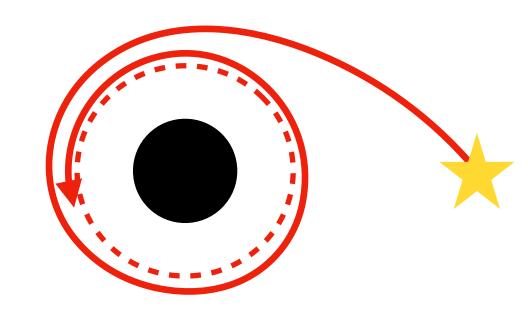
3 types of light orbit from infinity:





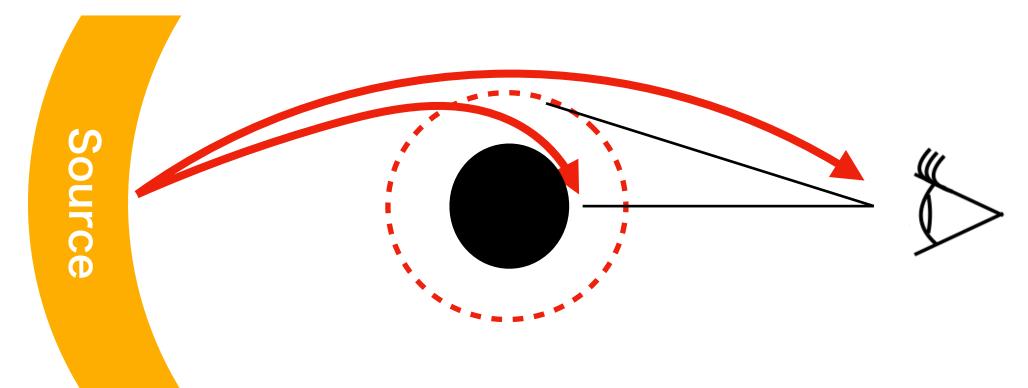


$$B = B_c$$



(wind around the Photon sphere)

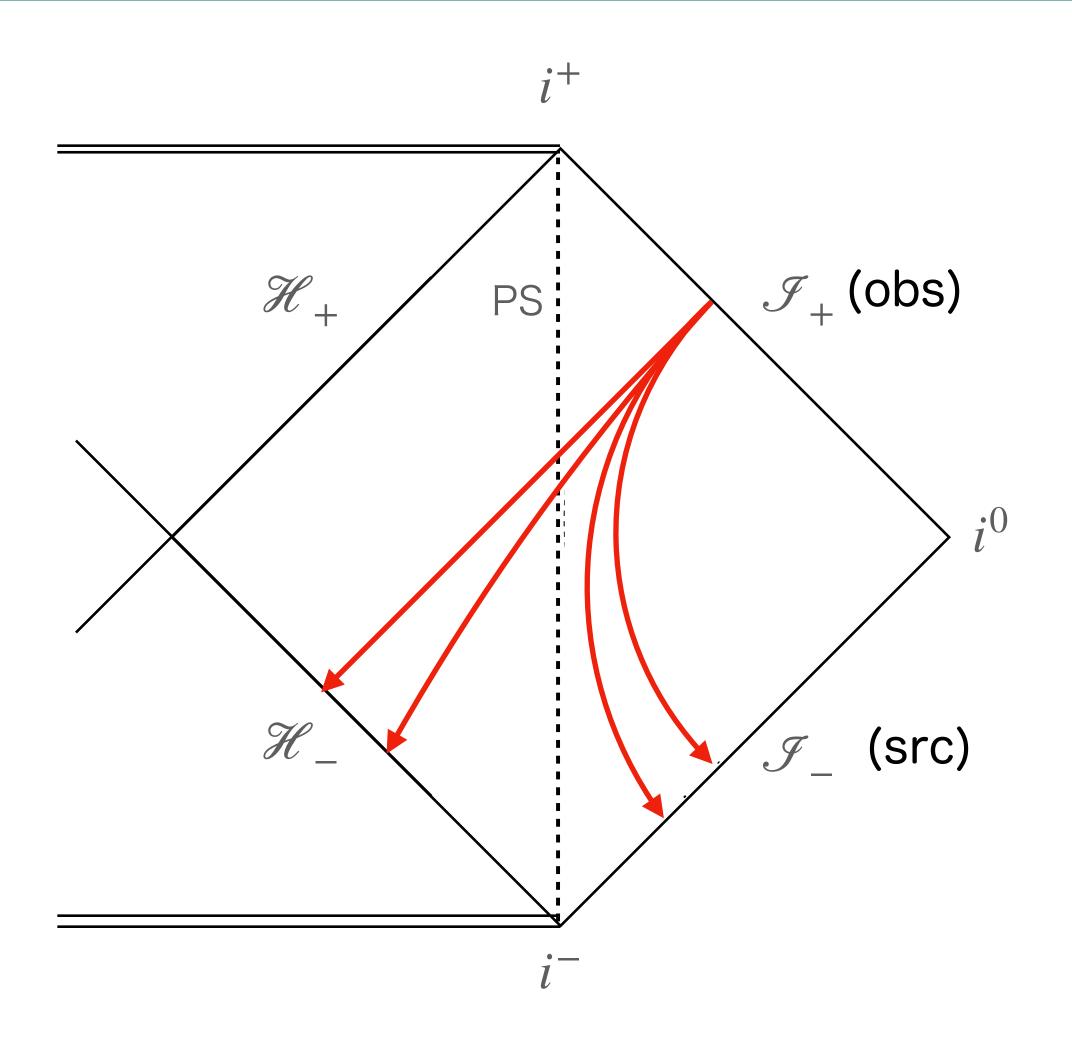
BH shadow with distant light source:



The apparent angular size of the shadow is determined by that of PS (or B_c)

Causal viewpoint

- · Imaging is ray-tracing backward in time.
- Past-directed light from the obs.:
 - For $B > B_c$, from \mathcal{I}^+ to \mathcal{I}^- (i.e. light source).
 - For $B < B_c$, from \mathcal{F}^+ to \mathcal{H}^- (white hole horizon).
- In an eternal BH spacetime, the shadow is a complemental image of the white hole. cf. [YK, Asaka, Kimura, Okabayashi (2022)]



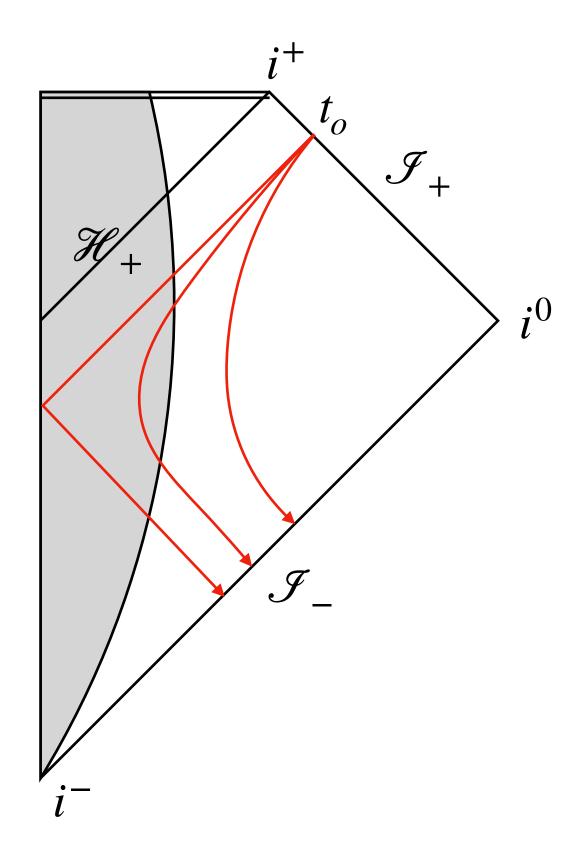
Shadow in gravitational collapse:

- All the past-directed null geodesic from \mathcal{I}^+ go to \mathcal{I}^- (no white hole).
- This fact does not mean that the observer never observes shadow.
- The shadow (dark) image is formed by the effect of redshift of light.

Def. of "redshift factor"

$$\alpha = \frac{E|_{\mathscr{I}^+}}{E|_{\mathscr{I}^-}}, \qquad E := -g(k, \partial_t), \quad k$$
: null geodesic tangent.

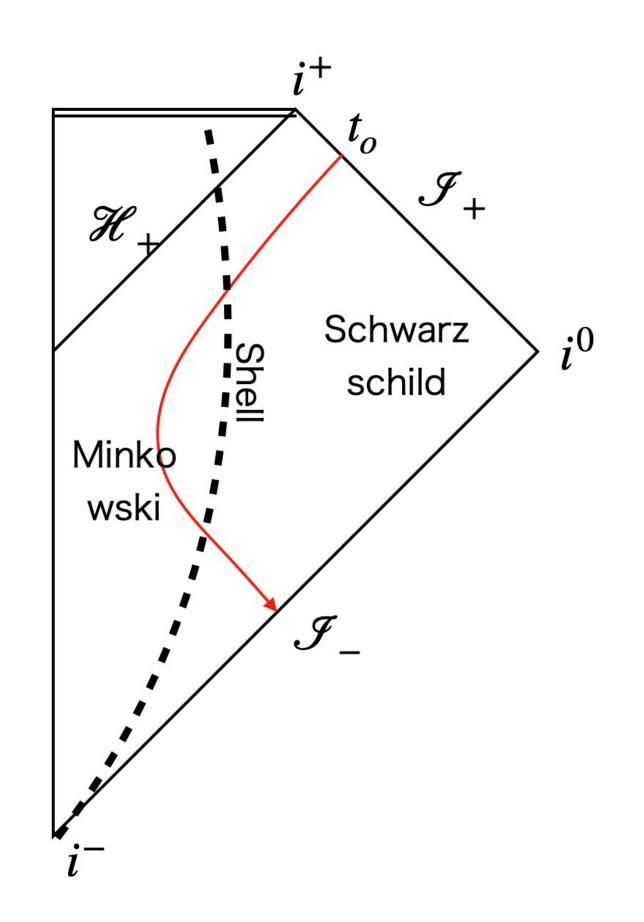
- ∂_t : static Killing vector in the asymptotic region.
- Trivially, $\alpha = 1$ in static spacetime.



3. Thin shell model

3. Thin shell model

A collapsing thin shell model:



Exterior: Schwarzschild spacetime

$$ds_{\text{ex}}^2 = -f(r)dt^2 + f^{-1}(r)dr^2 + r^2d\Omega^2, \ f(r) = 1 - \frac{2M}{r}$$

Interior: Minkowski spacetime

$$ds_{\rm in}^2 = -dT^2 + dr^2 + r^2 d\Omega^2$$

Boundary: a thin shell

$$\Sigma := \partial M_1 \equiv \partial M_2 = \{r = R(\tau)\}$$
 τ : proper time of the shell

- Impose 1st junction condition (equivalence of induced metrics on Σ) & specify $R(\tau)$ by hand.
 - => spacetime is fixed & coord. trans $t \leftrightarrow T$ is obtained.

Energy of null geodesic

Null geodesic motion:

• In the Schwarzschild region:

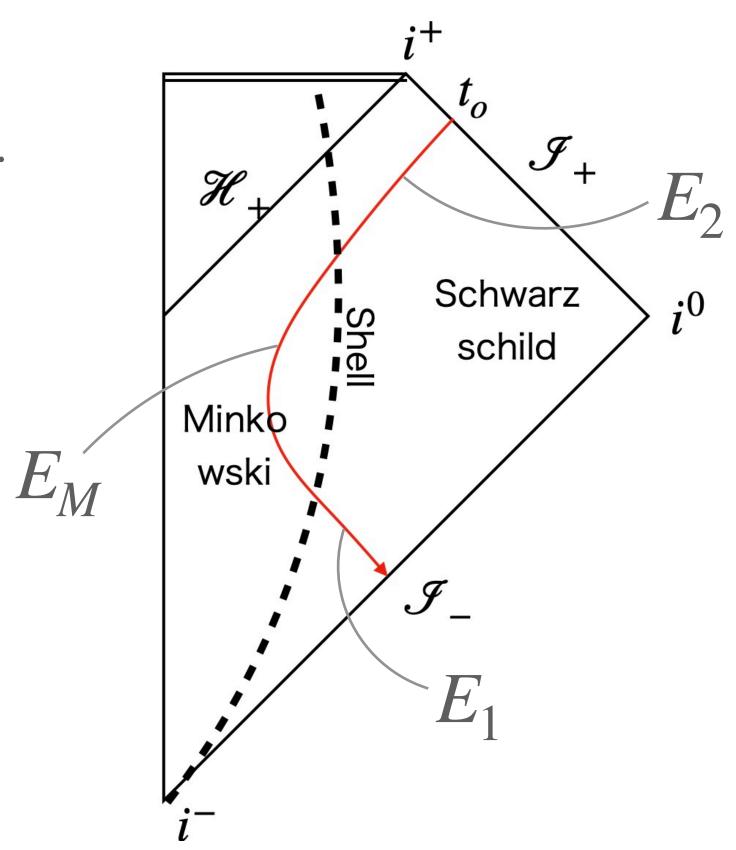
$$E:=-\,g(\partial_t,k),\ \, L:=g(\partial_\phi,k),\ \, \dot{r}^2+V(r)=0,\ \ \, V(r):=E^2-f(r)r^{-2}L^2\,.$$

In the Minkowski region:

$$E_M := -g(\partial_T, k), \quad L := g(\partial_\phi, k), \quad -(T - T_0)^2 + R^2 = = L^2 / E_M^2.$$

• Relation bywn energies, $E \leftrightarrow E_M$:

$$E = -g(\partial_t, k) \qquad E_M = -g(\partial_T, k)$$
 coord. transformation on Σ



Energy of null geodesic

Energy of null geodesic

• Eliminating E_M ,

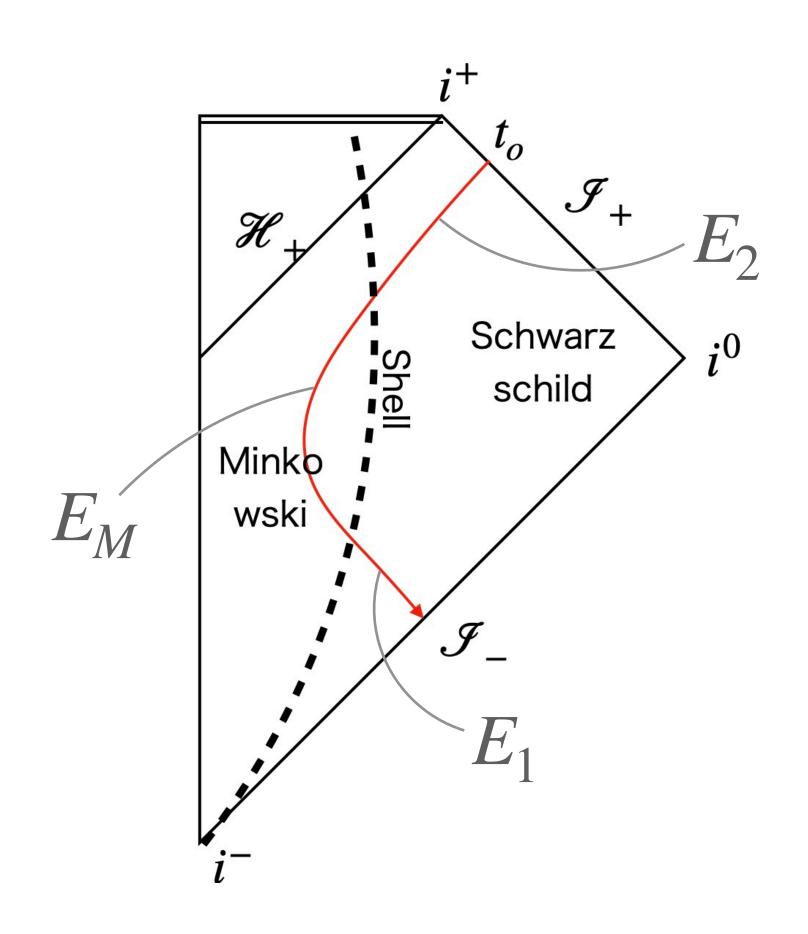
$$\begin{split} \alpha &= \frac{E \, \big|_{\mathcal{I}^+}}{E \, \big|_{\mathcal{I}^-}} = \frac{E_1}{E_2} = \dots \\ &= \frac{f_2}{f_1} \frac{A_1 \left(A_2 - C_2 \sqrt{1 - B_2^2 f_2 r_2^{-2}} \right) + C_1 \sqrt{\left(A_2 - C_2 \sqrt{1 - B_2^2 f_2 r_2^{-2}} \right)^2 - B_2^2 f_2^2 r_1^{-2}}}{\left(A_2 - C_2 \sqrt{1 - B_2^2 f_2 r_2^{-2}} \right)^2 + C_1^2 b B_2^2 f_2^2 f_1^{-1} r_1^{-2}} \end{split}$$

$$= \alpha(r_1, r_2, R'_1, R'_2, \sigma_1, \sigma_2, B_2).$$

only 7 parameters determines α

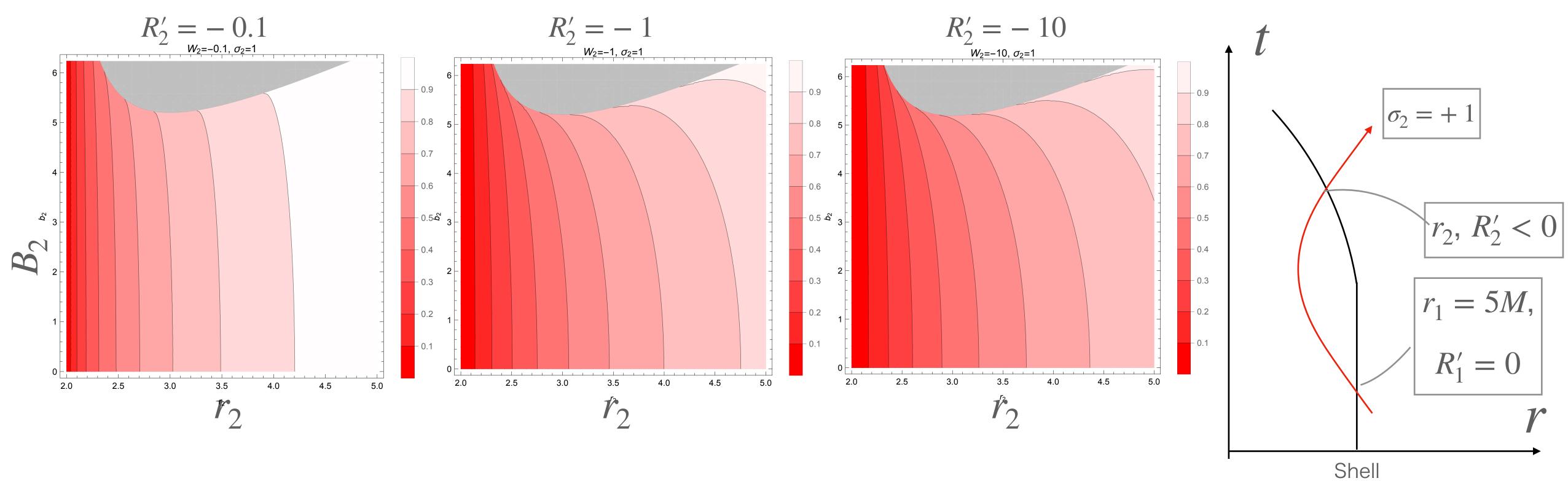
$$A = \sqrt{1 + (R')^2} \sqrt{f + (R')^2} - (R')^2,$$

$$C = \sigma(R') \left(\sqrt{1 + (R')^2} - \sqrt{f + (R')^2} \right), \quad \sigma = \text{Sign}(\dot{r})$$



Redshift in monotonic collapse

Redshift Factor for $(r_1, r_2, R'_1, R'_2, \sigma_1, \sigma_2, B_2) = (5M, r_2, 0, R'_2, -1, +1, B_2)$

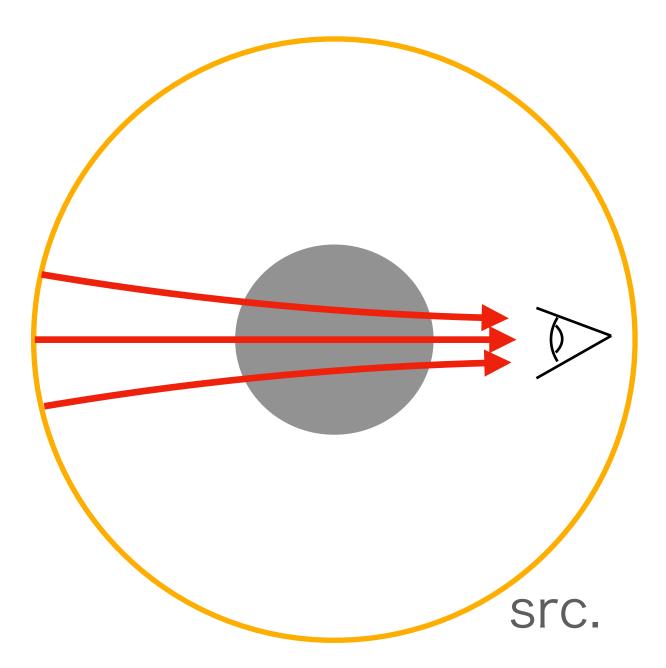


- . Every light is redshifted $\alpha < 1$ if the shell is shrinking and $\sigma_2 > 0$. (no blueshift)
- . High redshift (small α) for rapid collapse (large |R'|) & in the late stage ($r_2 \rightarrow 2M$).

Demostration of Shadow formation

For simplicity, suppose

- · A distant light source distributed on a large sphere.
- The shell dynamics:
 - static at r = 5M for t < 0,
 - collapses with zero internal pressure for $t \ge 0$ (dust shell).



Dust case

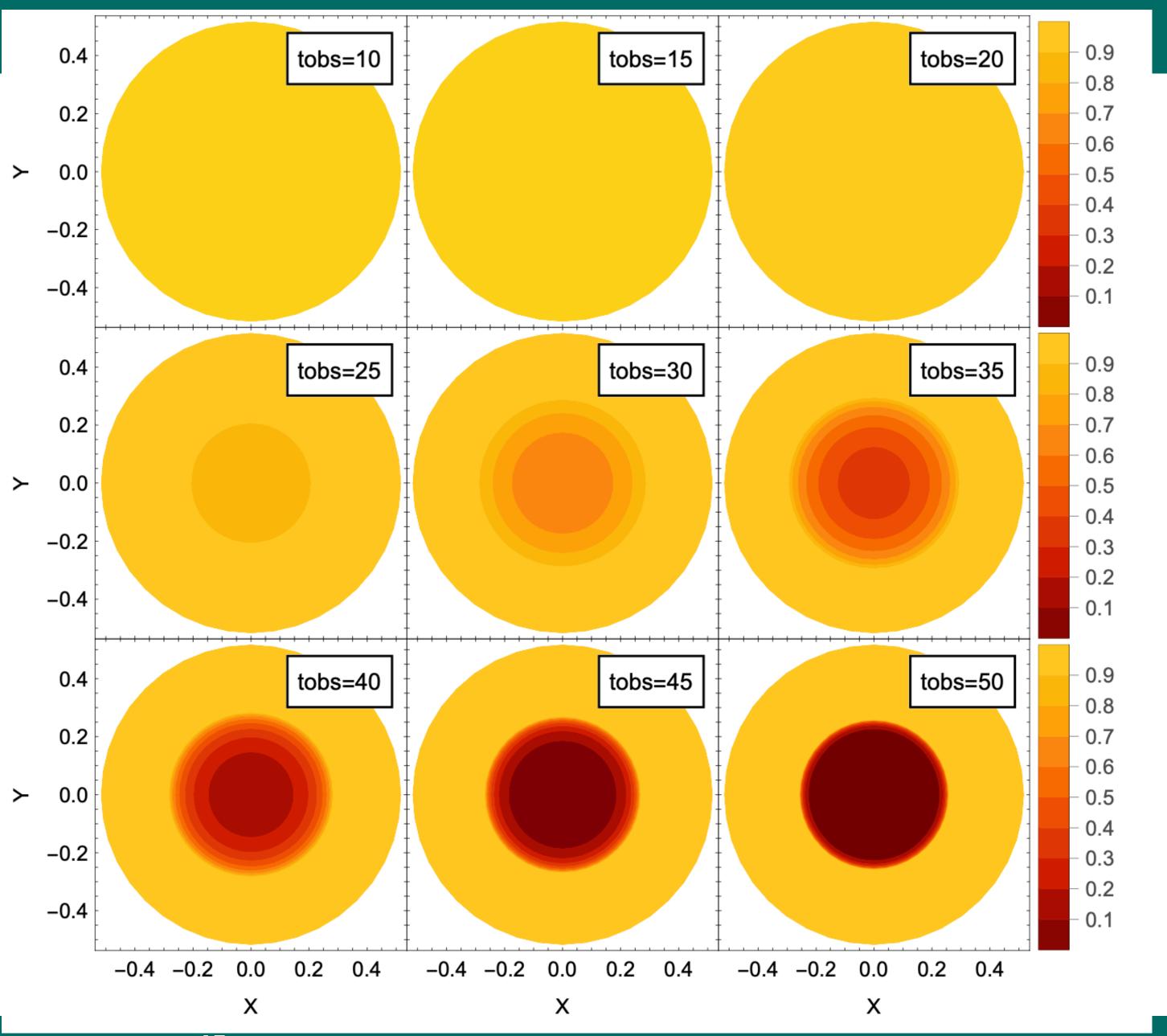
tobs: observation time

X, Y: coords on the celestial sphere

Color: Energy flux

$$. r_o = 20M$$

 $. r_s = 100M$
 $. \mathcal{N}J_s\omega_0 = 1$



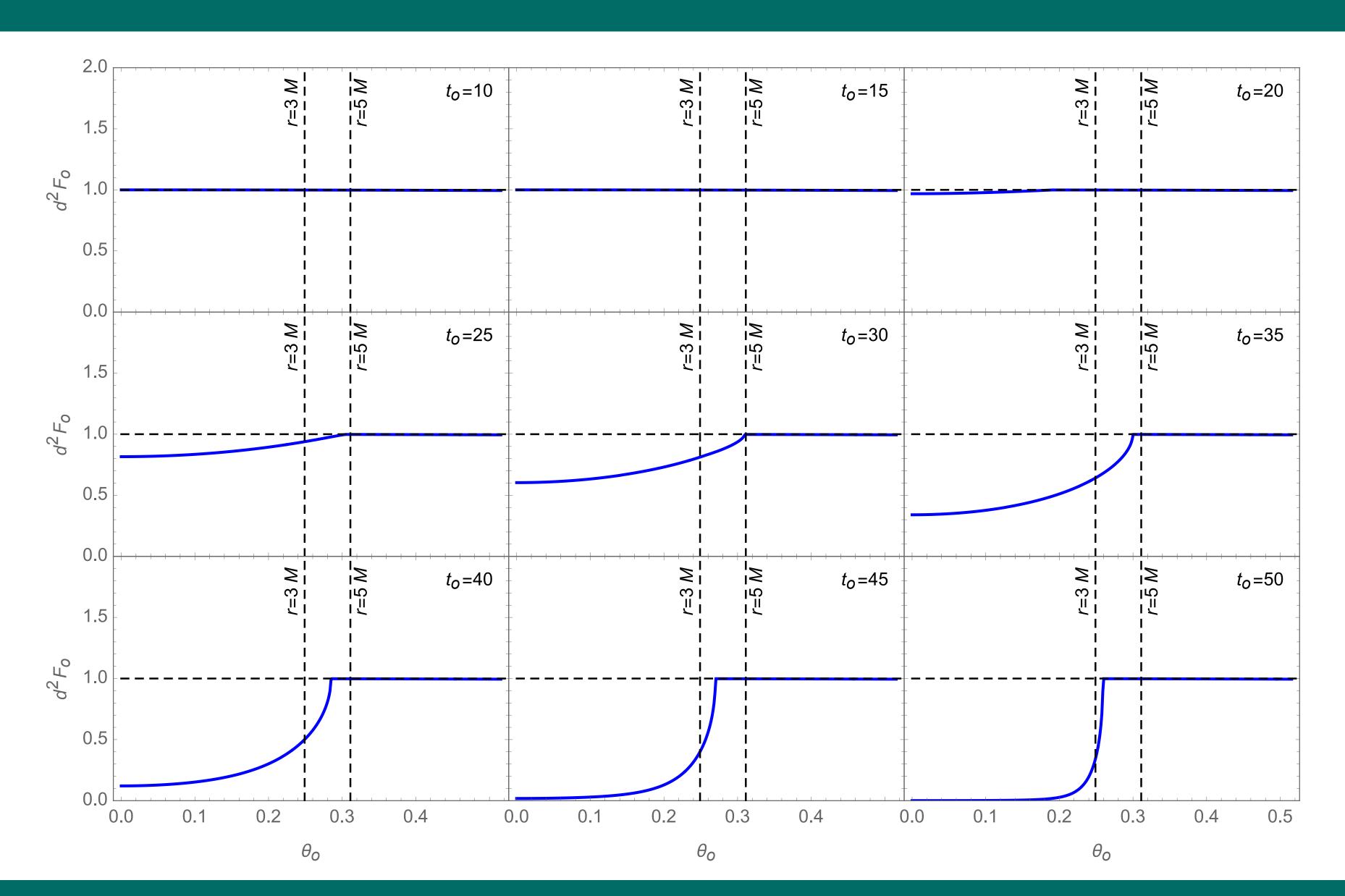
Dust case

 t_o : observation time

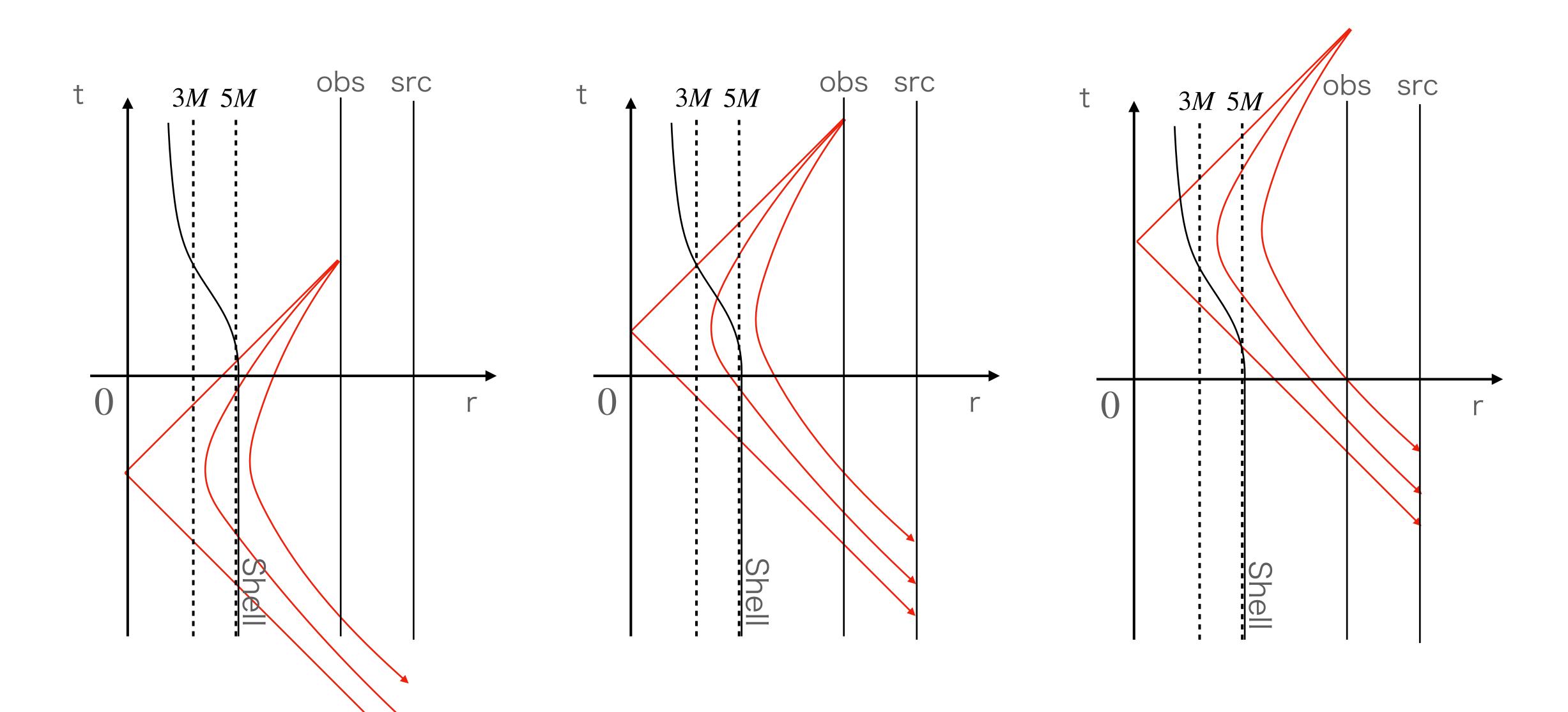
$$\theta_o \sim \sqrt{X^2 + Y^2}$$
: incident angle dFo: Energy flux

$$. r_o = 20M$$

 $. r_s = 100M$
 $. \mathcal{N}J_s\omega_0 = 1$



Dust shell



Question:

- The study in the shell model implies that gravitational collapse leads to redshift of lights.
- · How can we characterize the relation between redshift of lights and spacetime dynamics?

In the following,

- We define the energy of a null geodesic by taking the "Kodama vector" as the reference of time.
- We derive a covariant formula that relates redshift and spacetime dynamics.

Reference of time:

- If the spacetime is static, the static Killing vector ξ_t is the unique reference of time. And the energy of a null geodesic w.r.t ξ_t , $E = -g(\xi_t, k)$, is conserved.
- · If the spacetime is dynamical, there is no unique reference of time.

Kodama vector

• Suppose general, asymptotically flat, spherically symmetric spacetime (\mathcal{M}, g) :

$$g = h_{AB}(x^C)dx^Adx^B + R^2(x^C)(d\theta^2 + \sin^2\theta d\phi^2), \qquad x^C = t, r.$$
submanifold (N,h)

Def. of Kodama vector:

$$K := \operatorname{curl} R = -(\epsilon^{AB} \nabla_B R) \partial_A$$
 ϵ^{AB} : the totally anti-sym tensor of (\mathcal{N}, h)

- Properties:
 - $K \cdot \nabla R = 0$,
 - If static, $K \propto \xi_t$. In vacuum and thus in the asymptotic region, $K = \xi_t$ (can be natural extension of the static KV).
 - g(K, K) = 0 on a trapping horizon.
 - Conserved current: $\nabla_a J^a = 0$, where $J^a := T^a{}_b K^b$.
 - Conservation of the quasi-local mass, "Kodama mass" E(t,r), defined by g(K,K) = 2E/r 1.

• The energy of light associated with *K*:

$$E := -g(k, K),$$
 k: a null (/timelike) geodesic tangent

Redshift factor:

$$\alpha := \frac{E|_{\mathcal{J}^+}}{E|_{\mathcal{J}^-}} = \frac{\int_{-\infty}^{+\infty} \nabla_k E d\lambda + E|_{\mathcal{J}^-}}{E|_{\mathcal{J}^-}}$$

The derivative:

$$\nabla_k E = -\nabla_k g(k, K) = -g(\nabla_k k, K) - g(k, \nabla_k K) = -\nabla_{(a} K_{b)} k^a k^b$$

$$\therefore \text{ geodesic eq.}$$
Symmetric d

Symmetric derivative of the Kodama vector is a geometrical quantity that characterizes redshift

Symmetric derivative of Kodama vector:

Proposition: In a 4-dim spherically symmetric spacetime, the Kodama vector satisfies

$$\nabla_{(a}K_{b)}=4\pi R\widetilde{\mathcal{T}}_{ab},$$

where

$$\widetilde{\mathcal{T}}_{ab} := \epsilon_a^{\ c} \mathcal{T}_{cb}$$

is the dual of \mathcal{T} ,

$$\mathcal{T}_{ab} = T_{ab}^{\mathcal{N}} - \frac{1}{2} h_{ab} h^{cd} T_{cd}^{\mathcal{N}}$$

is the trace-free part of $T_{ab}^{\mathcal{N}}$, and $T_{ab}^{\mathcal{N}}$ is the restriction of the energy momentum tensor T_{ab} onto (\mathcal{N}, h) .

Proof: Einstein equation.

Derivative of the energy:

Theorem: The local redshift of energy of a light associated with Kodama vector is given by

$$\nabla_k E = -4\pi R \widetilde{\mathcal{T}}(k,k) .$$

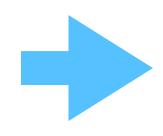
Note this is valid for a timelike geodesic tangent u instead of null k.

Meaning of the theorem:

Rewrite the energy momentum as

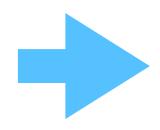
$$\widetilde{\mathcal{T}}(k,k) = \widetilde{\mathcal{T}}(\bar{k},\bar{k}) = \mathcal{T}(\bar{k},\tilde{\bar{k}}) = T_{\mathcal{N}}(\bar{k},\tilde{\bar{k}}) = -T(\bar{k},\bar{n})$$

 \bar{k} : projection of k onto (\mathcal{N}, h) , \tilde{k} : contraction with ϵ^a_b , $\bar{n} := -\tilde{k} = -\epsilon^a_b \bar{k}^b \partial_a$: radial outward vector orthogonal to \bar{k} .

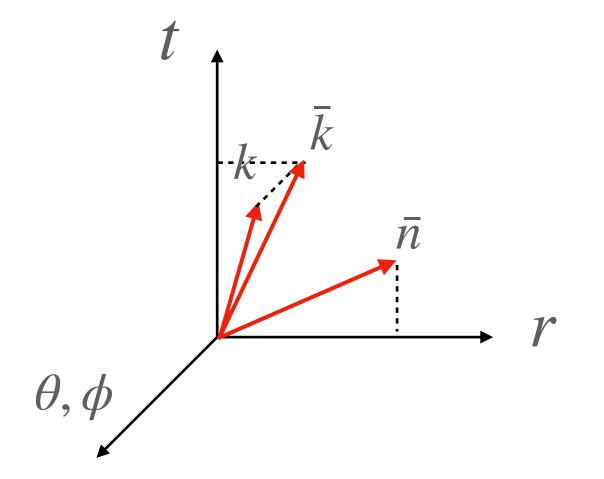


The energy current in the direction of \bar{n} .

$$\nabla_{u}E = -4\pi R \widetilde{\mathcal{T}}(k,k) = -\frac{-4\pi R^{2}T(\bar{k},\bar{n})}{R} =: -\frac{\delta M}{R}$$



Loss of the potential energy due to the increase of the mass inside the sphere of R at the moment.



The thin shell case:

The dual energy momentum tensor:

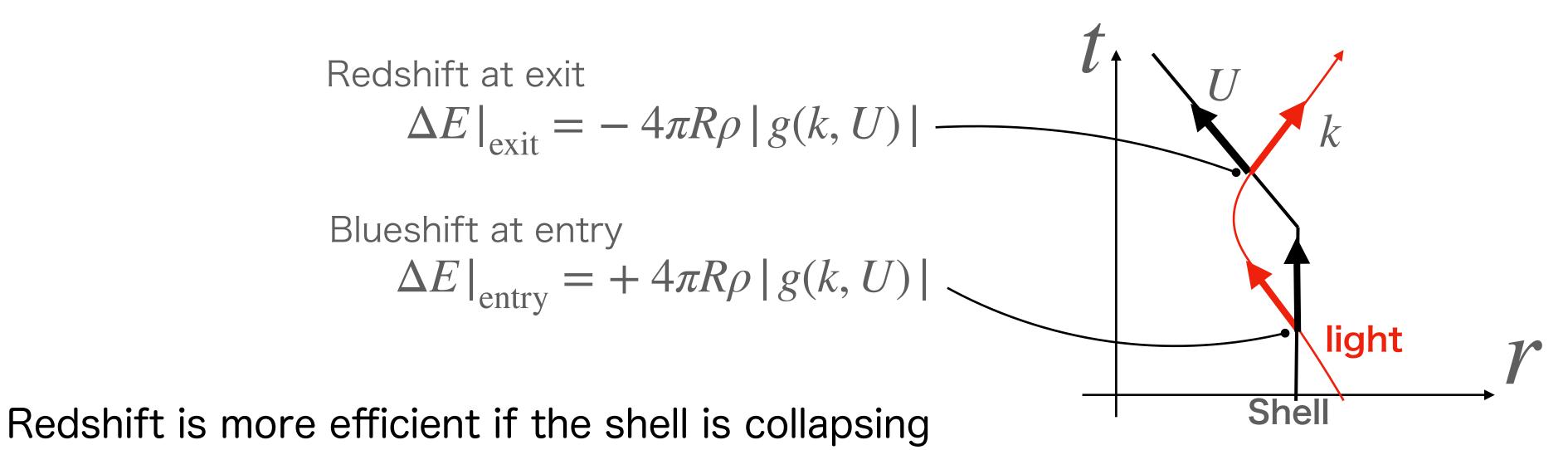
$$\widetilde{\mathcal{T}}_{ab} = -\delta(l)\rho U_{(a}N_{b)}$$

U: shell's 4-velocity, N: orthonomal vector to U,

 $\rho = S(U, U)$: shell's rest mass energy,

l: a radial coordinate s.t. l = 0 on Σ and g(dN, dN) = 1.

• The redshift when crossing the shell:



5. Summary

5. Summary

Summary:

- · Tendency of redshift of lights is confirmed in gravitational collapse of a thin shell model.
- Proposed the general covariant formula $\nabla_k E = -4\pi R\widetilde{\mathcal{T}}(k,k)$ of redshift by taking the Kodama vector as a reference.
- · The formula gives a very clear interpretation of redshift due to the spacetime dynamics.

Discussion:

- · Can we prove the generality of redshift in gravitational collapse?
- Beyond spherical symmetry?
- Application to other gravitational or astrophysical phenomena?