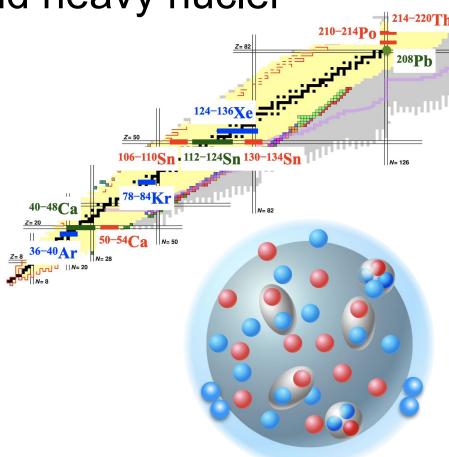

Construction of TOGAXSI array and preparation for upcoming ONOKORO-related experiments

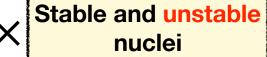

RIKEN Nishina Center Yuki Kubota

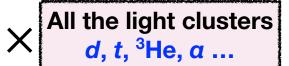
- 1) ONOKORO project and near-future experiments
- 2) Construction status of TOGAXSI telescope

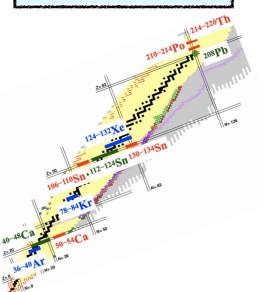
TOtal energy measurement by **GA**gg and verte**X** reconstruction by **SI**licon

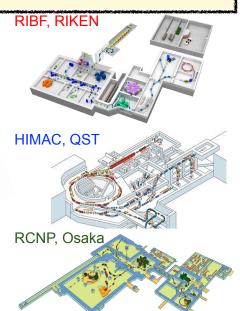
Clustering in medium and heavy nuclei

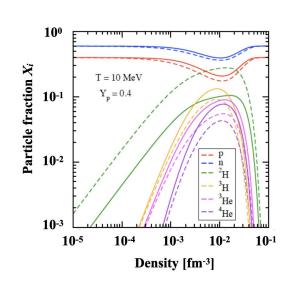
- Quite little is known
- Questions to be answered
 - O How can the mean-field picture be compatible with that with clusters?
 - The peculiarity of low-density surface?
- Isospin dependence is the key
- Interests specific to each cluster
 - \circ Possible access to α preformed in α -decay nuclei
 - Search for deuteron clusters which embody tensor-correlations in nuclei
 - First determination of t/3He ratio








Clustering in medium-heavy nuclei via (p,pX) knockout reaction & elastic scattering


Wide mass region
A = 40-220

Quantities to be extracted

```
    (p,pX) [X: p, d, t, ³He, α]
    First comprehensive cluster knockout reaction studies for medium-mass nuclei α: further evidence of surface-α conjectured by S. Typel
    d: measure of tensor correlation
    t/³He: little is known, apparent isospin dependence is expected
    (p,2p) channel is a byproduct, but provide us with many important information.
```

Cross section integrated over the acceptance and momentum distributions are compared with DWIA calculation

→ "number of the cluster in the nucleus", "spatial distribution"

```
(p,p\alpha) Typel et al.
Yoshida, Ogata et al.
(p,pd) Chazono, Yoshida, Ogata
(p,pt)/(p,p^3He) to be discussed
(p,2p) several existing codes
(p,3p) Gomez-Ramos?
```

First campaign at RCNP (2023 and 2024)

^{40,42,44,48}Ca(*p,pd*), (*p,pt*), (*p,p*³He), (*p,pa*) at 230 (392) MeV, together with ^{6,7}Li, ¹²C, ¹⁶O data

Successful!

Collaboration

Japan: RIKEN, Kyoto, RCNP, Kyushu, Osaka, Konan, Miyazaki

China: Peking University

Korea: CENS IBS France: IJCLab Orsay Jery breliminary

Isospin asymmetry of $t/^3$ He?

Very preliminary

- TDX decreases with the increase of mass
 - Same trend as Sn(p,pα)
- 3 He drops faster than t
 - O Neutron skin?

Near-future programs at SAMURAI

2024 Autumn 2025 Spring 2025 Autumn → CATANA+STRASSE?

- NP2012-SAMURAI57 (from 70 Zn): $^{50-52}$ Ca(p,pX)
 - 3.5 days (+0.5 d for BR).
- NP2112-SAMURAI72 (any primary beam): TOGAXSI commissioning
 - 1.0 days, to be proposed in the coming MT committee meeting.
- NP2312-SAMURAI77: Proposal for Scientific Program (SEASTAR-like), 6 days (+1 d for BR)
 - N = Z nuclei (40 Ca $^{-60}$ Zn) from 78 Kr: tensor force in medium
 - Unstable tin $^{106-110,126-136}$ Sn from 124 Xe, 238 U: extension of stable $^{112-124}$ Sn($p,p\alpha$) at RCNP
 - \circ α decay nuclei ^{214–220}Th from ²³⁸U: α preformation, large reduced α width
- NP2212-SAMURAI74 (K. Miki, M. Duer), from ¹⁸O: ^{8,6}He(p,3p)^{6,4}n, 11 days, graded as **S**
- NP2212-SAMURAI64R1 (S. Kim), from ¹⁸O, ⁴⁰Ar: reduction factor study via $(\alpha, \alpha p)$, 9 days
- NP1812-SAMURAI33R1 (Z.H. Yang), from ⁴⁸Ca: ^{12–20}C(*p,pα*), 5.5 days
- NP2312-SAMURAI76 (Z.H. Yang, S. Huang, Y.L. Sun), from ¹⁸O: ⁹H & ¹²He
- NP2412-SAMURAI?? (P. Li), from ¹⁸O: B(*p,pX*)
- NP2412-SAMURAI?? (S. Koyama), from ¹⁸O: particle decay from IAS in ¹²B, ¹²C, ¹²N

Schedule Experiment

2024 Sep.

2024 Oct. S π RIT ¹³⁶Xe+Sn

2024 Dec. $\{TOGAXSI \text{ commissioning } ONOKORO ^{50-52}Ca(p,pX) \}$

OF Man

2025 Apr. Miki/Duer 6,8 He $(p,3p)^{4,6}n$

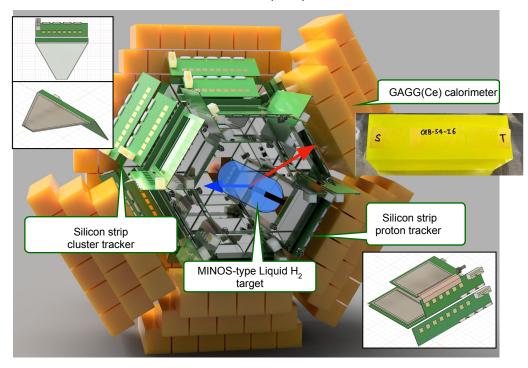
2025 Oct. STRASSE ${}^{56}\text{Ti}(p,3p){}^{54}\text{Ca}(0_2^+)$

ONOKORO N = Z / unstable Sn

TOGAXSI construction

64 GAGGs, Recoil Si

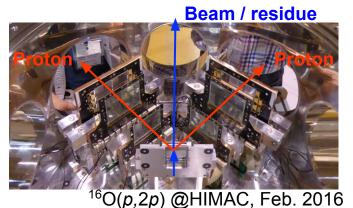
"Demonstrator": 2/6 array

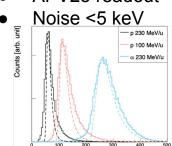

- Cluster Si
- ΔE plastic
- +10 (IBS) +10 (PKU)+25 GAGGs (109 in total)

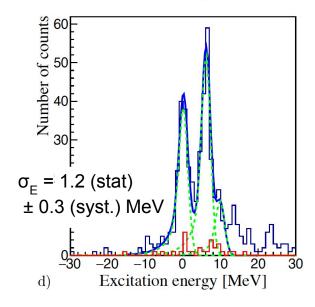
"1st generation": 4/6 array

 138 GAGGs are needed. (+29 more)

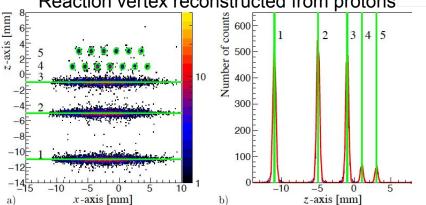
TOGAXSI (戸隠) telescope for cluster knockout measurement


J. Tanaka et al., Nucl. Instr. Meth. B 542, 4 (2023).


c.f. STRASSE + CATANA for (p,2p)

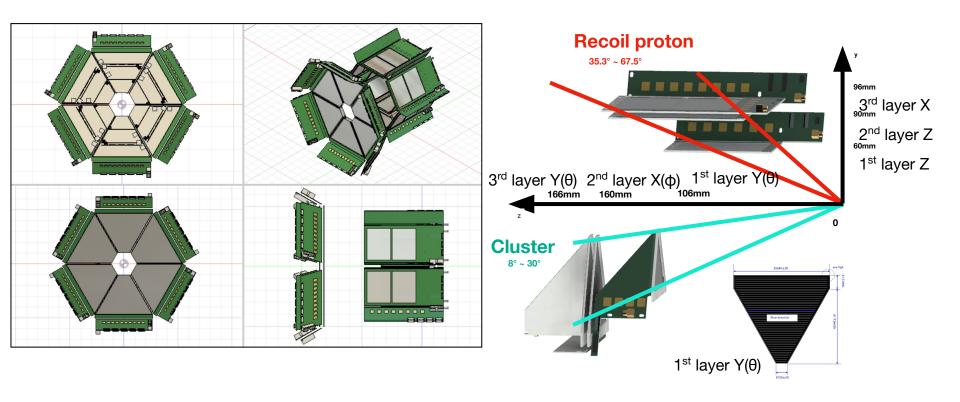

- Recoil proton array
 - Angle 35–70°
 - Energy 80–250 MeV
- Knock-out cluster array
 - Forward angle 8–30°
 - High energy 250A MeV
 - Particle identification: p, d, t, ³He, a
 - High rate ~10⁴ cps
- Si tracker
 - 100-µm thick, 100-µm pitch
 - APV25 readout developed at TU Munich
- GAGG(Ce)
 - Fast, bright, dense, easy to treat (no hygroscopic nature)
 - Large size: 35 mm x 35 mm x 120 mm
 - Photo diode + Digitizer CAEN V2730

Si tracker (Sasano-TUM design)



- Hamamatsu wafer
- 100-µm thick
- 100-µm pitch
- APV25 readout

Reaction vertex reconstructed from protons



Implementation on flexible printed circuits (FPC)

K. Higuchi

Schematic of Si tracker

GAGG(Ce) calorimeter

	GAGG(Ce)	NaI(Tl)	CsI(Tl)
Density [g/cm ³]	6.63	3.67	4.53
Decay time [ns]	92	230	1050
Hygroscopic nature	No	Yes	Yes
# of photon [/MeV]	56000	45000	56000

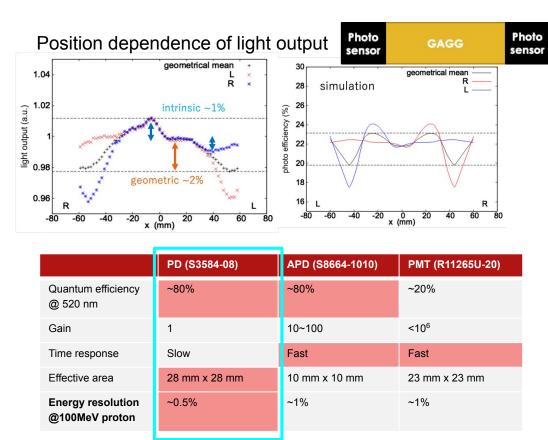
S &B-54-16 T

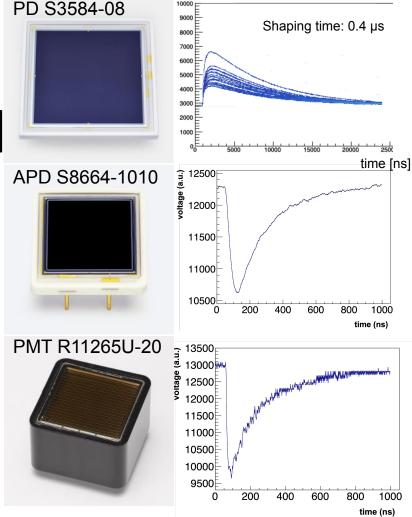
Large crystal: 35 mm x 35 mm x 120 mm

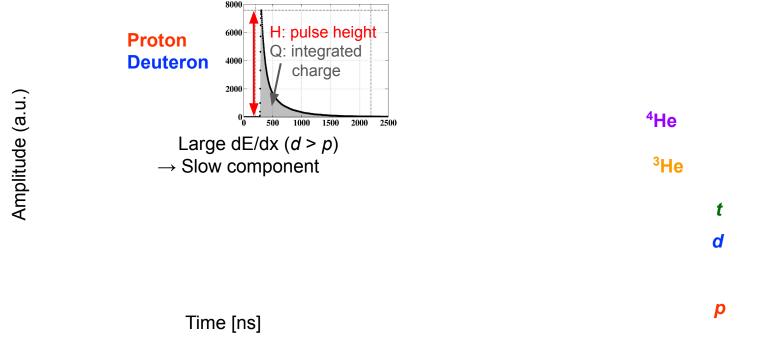
Made-in-Japan inorganic scintillator

Large stopping power → compact setup

Fast decay → high late tolerance (>10 kHz)

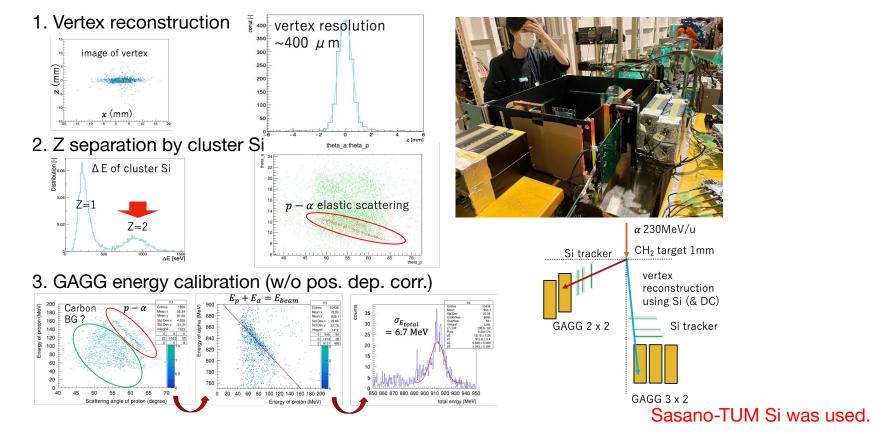

Simple housing → minimization of energy loss


Good energy resolution

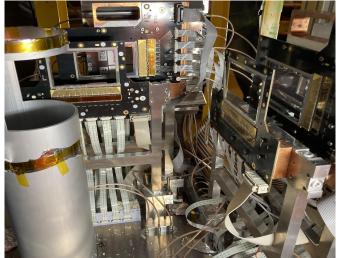


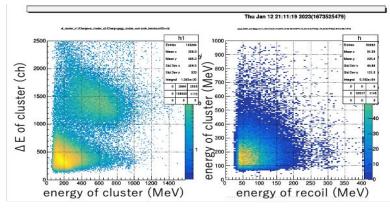
Courtesy of R. Tsuji

Selection of photo sensor



 3σ separation of p and d at Ep > 60 MeV.


Proof-of-Concept exp. at HIMAC(1): $p-\alpha$ elastic w/ CH₂

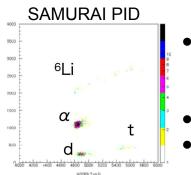


Proof-of-Concept exp. at HIMAC(2): $(p,p\alpha)$ w/ liq. H₂

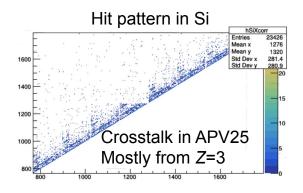
φ40 mm x 100 mm, 50-μm Kapton

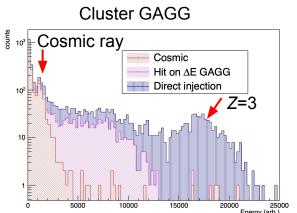
Passed pressure resistance test in accordance with KEK's safety guideline for liq. H₂ target

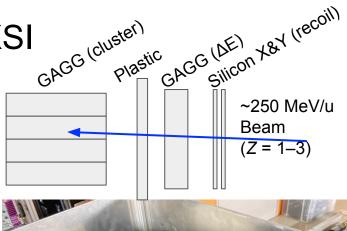
... But exploded and Sasano-TUM Si were heavily damaged


Difficulty in PID was recognized.

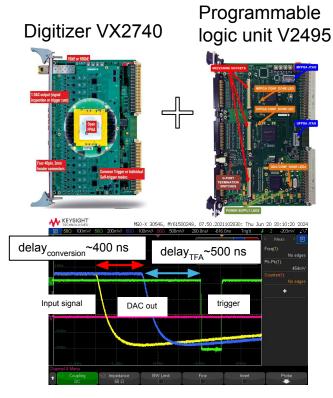
Only Z separation is possible.

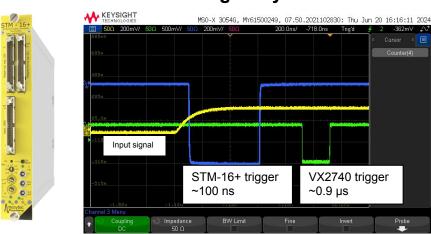

³He/⁴He separation would be very tough.


→ Need for additional ΔE detector


Beam irradiation at RIBF: mini TOGAXSI

- New DAQ scheme (event build w/ timestamp)
 - Quick semi-online analysis
 - Simultaneous cosmic-ray measurement
- Successful operation of "recoil Si"
 - Test data for absolute energy calibration





Workarounds for slow trigger generation (GAGG)

Trigger generation takes ~µs

1) Fast discrimination using Mesytec STM-16+

"Intelligent" trigger cannot be made.

- (p,pX): recoil × cluster \rightarrow OK
- $\bullet \quad (p,3p) \qquad \qquad \rightarrow ???$
- 2 Implementation of Mira QDC or "delayed gating" in HOD.
 - → Talk on 16th: "Upgrade of SAMURAI DAQ"

Schedule Experiment

2024 Sep.

2024 Oct. S π RIT ¹³⁶Xe+Sn

2024 Dec. $\{TOGAXSI \text{ commissioning } ONOKORO ^{50-52}Ca(p,pX) \}$

NOT Man

2025 Apr. Miki/Duer 6,8 He $(p,3p)^{4,6}n$

2025 Oct. STRASSE ${}^{56}\text{Ti}(p,3p){}^{54}\text{Ca}(0_2^+)$

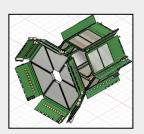
ONOKORO N = Z / unstable Sn

TOGAXSI construction

64 GAGGs, Recoil Si

"Demonstrator": 2/6 array

- Cluster Si (2 of 3 layers)
- ΔE plastic
- +10 (IBS) +10 (PKU)+25 GAGGs (109 in total)

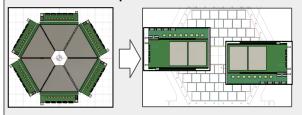

"1st generation": 4/6 array

 138 GAGGs are needed. (+29 more)

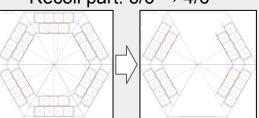
Schedule

Experiment

Readiness of the Si detector


Recoil Si ... already commissioned.

Cluster Si ... not yet delivered.


→ Recoil Si will be used instead.

- # available GAGGs: 84 = 64 (RIKEN) + 10 (IBS) + 10 (PKU)
 - o Recoil: 7/seg, 4 seg.
 - Cluster: ~18/seg, 2 seg.
 - ΔE (cluster): 4/seg, 2 seg.
 - → Requires **72** in total

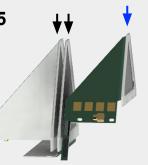
Cluster part: $6/6 \rightarrow \sim 2/6$

Recoil part: $6/6 \rightarrow 4/6$

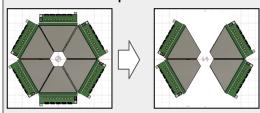
TOGAXSI construction

64 GAGGs, Recoil Si

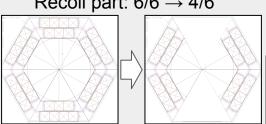
"Demonstrator": 2/6 array


- Cluster Si (2 of 3 layers)
- ΔE plastic
- +10 (IBS) +10 (PKU)+25 GAGGs (109 in total)

"1st generation": 4/6 array


 138 GAGGs are needed. (+29 more)

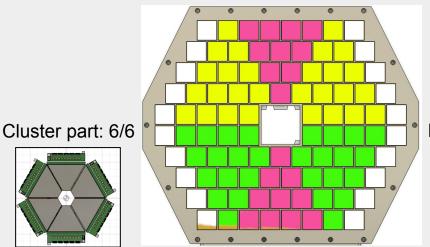
Schedule Experiment


- Cluster Si (2 of 3 layers) will be ready.
 - Is the missing 1st layer necessary for tracking? → Simulation is ongoing (Pohl).
 - Budget funded (Miki), but production not yet started.
- # available GAGGs: 109 = 64 + 10 + 10 + 25
 - +25 crystals will be delivered.
 - Recoil: 7/seg, 4 seg.
 - Cluster: 19/seq, 4 seq.
 - → Requires **104** in total

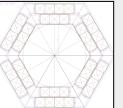
Cluster part: $6/6 \rightarrow 4/6$

Recoil part: $6/6 \rightarrow 4/6$

TOGAXSI construction


- 64 GAGGs, Recoil Si
- "Demonstrator": 2/6 array
- Cluster Si (2 of 3 layers)
- ΔE plastic
- +10 (IBS) +10 (PKU) +25 GAGGs (109 in total)
- "1st generation": 4/6 array

138 GAGGs are needed. (+29 more)


Schedule Experiment

- # available GAGGs: 109
 - Recoil: 7/seg, 6 seg.
 - Cluster (side): 14 (19)/seg, 4 seg.
 - Cluster (top/bottom): 10/seg, 2 seg.
 - → Requires 118 (138) in total
 - \rightarrow +9 (29) GAGGs are needed to complete the full array.

15 kUSD/crystal \rightarrow 135 (435) kUSD

Recoil part: 6/6

TOGAXSI construction

- 64 GAGGs, Recoil Si
- "Demonstrator": 2/6 array
- Cluster Si (2 of 3 layers)
- ΔE plastic
- +10 (IBS) +10 (PKU)+25 GAGGs (109 in total)
- "1st generation": 4/6 array

 138 GAGGs are needed. (+29 more)

Commissioning

- Will be proposed to the coming MT committee meeting
- Secondary beams: p, d, t, 3 He, α , 12 C or 16 O
- Intensity: 1 kcps (tuning) ~ 1 Mcps (trigger rate measurement)
- Beam time request: 1.0 days
 - 6 h: startup of detector, electronics, trigger
 - \circ 6 h: p-X elastic scattering for p, d, t, 3 He, α
 - Energy calibration of GAGG
 - Alignment of Si tracker
 - 12 h: First (p,pX) in inverse kinematics (12 C or 16 O)

Summary

- ONOKORO: clustering in heavy nuclei via knockout reaction
- TOGAXSI: detector array for cluster knockout in inverse kinematics
 - Demonstrator in summer 2024
 - 1st generation in spring 2025
- First SAMURAI experiment in December 2024
- We welcome new collaborators and GAGGs! <u>onokoro-contact@ml.riken.jp</u>
 - Kickoff meeting for RIBF exp. on July 23 (Tue) 16:30 (JST) / 9:30 (CEST)