Precision Spectroscopy of Hydrogen-5 as a benchmark for the Hyperhydrogen-6 nucleus

SAMURAI Workshop 2024 Thomas Pohl (ポール トーマス) RIKEN Nishina Center

RIBF NP-PAC-23 Experiment

Miki / Duer, Accepted Proposal, RIBF NP-PAC-23

- ⁸He/⁶He beam at ~200 MeV/nucleon
- Maximum beam intensity of 10^6 pps
- Liquid hydrogen target 2 cm

Several by products:

 ${}^{6(8)}\text{He}(p,2p){}^{5(7)}\text{H}$

 ${}^{6(8)}\text{He}(p,pn){}^{5(7)}\text{He}$

 ${}^{6(8)}\text{He}(p, p^3\text{He}){}^{3(5)}n.$

\rightarrow Interested in ⁵H

Physics with Hypernuclei

- Hypernuclei are nuclei with at least one strange quark
- Possibilities of Hypernuclei stem from the shell structure
- Lightest hyperon is Λ-particle
- Decay time 263 ps due weak decay (no strangeness conservation)
- Observed glue-like effect, when adding hyperon to nucleon

15.07.2024

Interest for Hydrogen-5

- For Z > 1 neutron rich hypernuclei have been found: 6 He, 7 Be, 10 B
- No hypernucleus for Z = 1 unbound nuclei so far
- Hydrogen-5 is most promising canditate
- Measurement of $_{\Lambda}{}^{6}\text{H}$ in FINUDA experiment: B_{Λ} = (4.0 +/- 1.1) MeV

M. Agnello et al., PRL 108, 042501 (2012)

→ Yet, experimental(J-Parc) and theoretical confirmation necessary

Courtesy H. Tamura, Tohoku University

Theoretical calculations

- Theoretical calculation using *tnn* four body system
- Based on structure of Hydrogen-5: E_r = 1.7 +/- 0.3 MeV, Γ = 1.9 +/- 0.4 MeV A. A. Korsheninnikov *et al.*, Phys. Rev. Lett. 87, (2001), 092501
 - \rightarrow (a) Cannot predict a bound state
- (b) Artificial B_{Λ} = 3.24 MeV with respect to ⁵H + Λ
- No $\Lambda N \Sigma N$ coupling included (three-body force of hypernuclei)
- Excitation energy for Λ to Σ is 76 MeV (273 MeV for $\Delta)$
- Three body force is necessary to predict oxygen dripline
- Effect is discussed among theorists: 0 0.6 MeV
- \rightarrow Goal is to reduce experimental error < 100 keV

E. Hiyama et al., Nucl. Phys. A 908, 2013, 29 - 39

Realisation of Measurement

Miki / Duer, Accepted Proposal, RIBF NP-PAC-23

(for p3p FDC2 is not needed)

Particle tracking after the target

- Expected vertex resolution from TOGAXSI silicon detector ~0.2 mm
- Resolution achieved at SAMURAI with FDC1 and only NEBULA:

$$\Delta E_{
m rel} pprox 0.4 \sqrt{E_{
m rel}}$$
 $E_{
m rel}$ = 2.31(3) keV with 8 mm C target

• For $E_{\rm rel} = 1.7 \text{ MeV} \rightarrow \Delta E_{\rm rel} = 0.52 \text{ MeV}$

- Resolution of FDC1 ~ 0.2 mm
 Resolution of fiber tracker ~ 0.5 mm
- From no-relativistiv formula increased to ~0.52 keV when FDC1/Fiber Detector is placed ~1 m from target $\Delta E_{\rm rel} \propto \sqrt{\left(\frac{\Delta v_1}{\bar{v}}\right)^2 + \left(\frac{\Delta v_2}{\bar{v}}\right)^2 + \Delta \theta_{12}^2}$

J.W. Hwang *et al.*, Phys. Lett. B 768, (2017), 503 – 508

Use of FDC2 possible?

- 1. Use at lower voltage
- Use FDC2 and lower voltage
- Trigger could be gated by hodoscope on Z = 1
- \rightarrow Problem: Is efficiency of FDC2 at low voltage high enough?
- 2. Place a dump to block ⁶He and let the triton pass
- ~ 38.8 cm Water for ~200 MeV/nucleon
- ~ 7.1 cm lead for ~200 MeV/nucleon
- Beam profile of ⁶He is expect to be narrow
- \rightarrow Problem: Creation of reaction particles

Yield estimation for ⁵H:

N: 10⁶ x 24 x 3600 particles/day

N(events/day) = N x DAQ x σ x d x ϵ_{2n} x ϵ_{p-p} = 2650060 events/day

→ Sufficient

DAQ: 0.5

 σ : 6 mb (from comparable (p,2p) reactions)

d: 0.142 g/cm²

 ϵ_{2n} : 0.18 (18%) (NEBULA + NEBULA+, no HIME included) ϵ_{p-p} : 0.40 (40%) (STRASSE and TOGAXSI expectation)

Thank you for your attention!

Additonal slides

- Nucleon-Nucleon interaction
- Approximately not much difference between 200 and 400 MeV/nucleon

C. Bertulani et al., Phys. Rev. C 81, 064603, (2010)

Additonal slides

FDC2 efficiency plot

Additonal slides

Reaction	$S_n(^{A-1}N)$ [MeV]	$S_p(^{A-1}N)$ [MeV]	E_{beam} [MeV/u]	$\sigma_{\rm exp}$ [mb]	$\sigma_{\rm theory} \ [{\rm mb}]$	R
$^{13}O(p,2p)^{12}N$	15.0	0.60	401	5.78(0.91)[0.37]	18.96	
$^{14}O(p,2p)^{13}N$	20.1	1.94	351	10.23(0.80)[0.65]	15.09	0.68(7)
$^{15}O(p,2p)^{14}N$	10.6	7.55	310	18.92(1.82)[1.20]	12.19	
${}^{16}\mathrm{O}(p,2p){}^{15}\mathrm{N}$	10.9	10.2	451	26.84(0.90)[1.70]	38.34	0.70(5)
$^{17}O(p,2p)^{16}N$	2.49	11.5	406	7.90(0.26)[0.50]	12.23	0.65(5)
$^{18}O(p,2p)^{17}N$	5.89	13.1	368	17.80(1.04)[1.13]	9.95	
${}^{21}O(p,2p){}^{20}N$	2.16	17.9	449	5.31(0.23)[0.34]	9.16	0.58(4)
$^{22}O(p,2p)^{21}N$	4.59	19.6	415	5.93(0.39)[0.40]	8.54	
$^{23}O(p,2p)^{22}N$	1.28	21.2	448	5.01(0.97)[0.33]	8.06	0.62(13)

Atar *et al.*, PRL 120, 052501 (2018)

²²O has roughly same proton separation energy as ⁶He: \sim 22 MeV