
<u>Upgrade</u> of SAMURAI DAQ

- 1. TDC upgrade: higher trigger rate
- 2. QDC upgrade: support for slow trigger
- 3. Offline circuit tuning system

RIKEN Nishina Center Yuki Kubota

Higher trigger rate: 10 kHz trigger

Table 2	J. Gao et al.,	NIM A 1035	166823 (2022).
DAO cubevetome in the	CAMIJD AI20 ovnoris	mont	

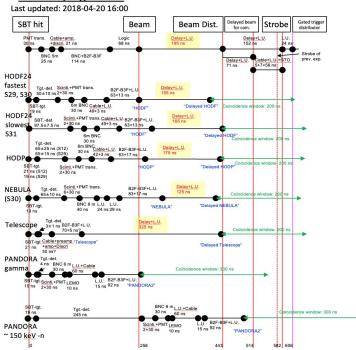
Subsystem	Modules	Deadtime
Beam scintillators	1 Mesytek MQDC-32 1 Mesytek MTDC-32	~ 80 µs
Beam drift chamber (BDC)	4 AMSC AMT-TDC	~ 200 µs
Forward drift chamber 0 (FDC0)	4 AMSC AMT-TDC	~ 170 µs
HodoF24	2 Mesytek MQDC-32 2 Mesytek MTDC-32	~ 60 µs
HodoP	1 CAEN V792 QDC 1 CAEN V775 TDC	∼ 50 µs
NEBULA-Q	10 CAEN V792 QDC	~ 200 µs
NEBULA-T	10 CAEN V775 TDC	~ 120 μs
PANDORA	3 CAEN V1290 TDC	~ 50 μs
Proton drift chamber (PDC)	14 AMSC AMT-TDC	~ 175 μs

Live time = N'/N = 1/(1+N*t)

- N' = total trigger rate
- N = accepted trigger rate
- t = transaction time (dead time)

AMSC AMT-TDC ~200 μ s \rightarrow Fit (TDC) + MPV ~15 μ s

VME readout ~ 60 μs


→ MPV readout ~15 μs

- t ~ 300 µs (FDC2)
 → 77% for 1-kHz trigger
- t ~ 80 µs (VME bus)
 → 71% for 5-kHz trigger
- t ~ 15 μs
 - \rightarrow 87% for **10-kHz** trigger

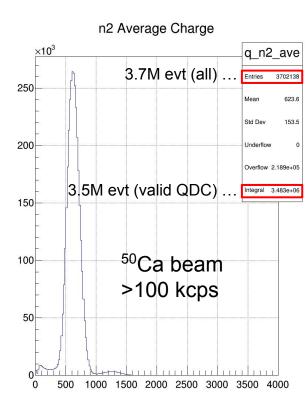
Long cable delay for QDC

¹⁸O campaign 2017

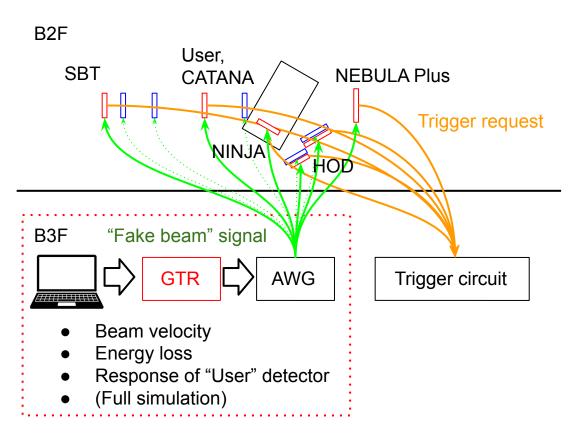
1 Deterioration of the wave form

F3 pla. (<100 ns delay)

F13 pla. (~µs delay)


2024 Spring campaign

② Limitation of waiting for slow trigger (<~500 ns)</p>


Modern FPGA-based system takes ~µs

Workarounds

- (1) Mira QDC → Baba-san's talk
 - ⊙ Software adjustable delay → free from long cable delay
 - #ch = 12
 - beamline plastics (<12ch: F3, F5, F7, F13A, F13B, SBV)
 - HODF24 (48ch) and HODP (32ch)
- (2) "Delayed gating" operation of MQDC-32
 - □ Local (self) trigger → minimum (<100 ns) cable delay
 </p>
 - No new circuits needed
 - ⇒ >90% live time for 400-kHz rate (according to the manual)
 - → Confirmed: 94% live time for >100-kHz beam
 - Ziming adjustment of "experiment trigger" and QDC gate
 - → Needs for offline trigger tuning system
- → Free from long cable delay
- → Slow trigger signal (>µs) can be accepted

Offline circuit tuning system

Procurement

- ✓ GTR (x2)
- ✓ Arbitrary waveform generator
 - ✓ Siglent SDG6022X (x4)
 - ✓ Digital detector emulator CAEN NDT6800 (x1)
- Octal 2-in 4-out linear FIFO
 - Real signal & fake signal

Implementation ... Autumn 2024

Plan of machine study (Autumn 2024)

- Will be proposed to the coming MT committee meeting
- No preference on primary beam.
- Cocktail secondary beam (w/ different Z) is preferred.
- Intensity: 100 cps (tuning) ~ 1 Mcps (dead time measurement)
- Beam time request: 0.5 days
 - Assumption: SAMURAI is ready
 - 3 h: Evaluation of the offline trigger tuning system
 - 3 h: Mira QDC evaluation (SBT)
 - o 3 h: Fit TDC evaluation (BDC, FDC)
 - 3 h: MQDC-32 "delayed gating" evaluation (HOD)

Summary

- 1. TDC upgrade: "Fit" for drift chambers
 - 87% live time for 10 kHz trigger
- 2. QDC upgrade: "Mira" or "delayed gating" of MQDC-32
 - Free from cable delays, deterioration of the signals
 - Slow trigger can be accepted (>µs)
- 3. Offline trigger tuning system
 - Saving precious and expensive beam time
- Machine study (0.5 days) will be proposed