

SAMURAI Management Plan 2023—

20th Sep. 2023: SAMURAI Board meeting

14th Jul. 2024: SAMURAI collaboration meeting

Tomohiro Uesaka (RIKEN)

Make SAMURAI more productive and visible

Main directions

- 1. More SAMURAI experiments
- 2. Reduction of redundant efforts in detector preparation and data analysis
- 3. Data sharing within the SAMURAI collaboration
- 4. Explore new capabilities
- 5. More conference invitations to young members

1. More SAMURAI experiments

"At least one SAMURAI campaign every year"

Proposals using a variety of primary beams

Realization of ⁴⁰Ar primary beam (follow-up of Nakamura's LoI)

Reduction of time and efforts in changing setups

1. More SAMURAI experiments

Done in 2024

Light-ion
40Ar, 40Ca

48Ca
70Zn
78Kr

124Xe 238U

NP2312- SAMURAI73R1	Z. Xiao	Observation of the isovector reorientation effect of polarized deuteron and the constraint of nuclear symmetry energy	d _{pol} 190 MeV/u	4.0+0.5 days
NP2312- SAMURAI77	T. Uesaka	Comprehensive research of cluster formation in medium to heavy nuclei ONOKORO Project	⁷⁸ Kr, ¹²⁴ Xe, ²³⁸ U, 345 MeV/u	(7 days)
NP2312- SAMURAI75R1	Y. Matsuda	Study of neutron single-particle states in carbon and calcium isotopic chains using (p,pn) reactions	⁴⁸ Ca, SUP(70}Zn 345 MeV/u	6+0.5 days
NP2212- SAMURAI74	K. Miki	Correlations in multi-neutron systems	¹⁸ O 250 MeV/u	11 +0.5 days
NP2212- SAMURAI66R1	T. Nakamura	Determination of neutron capture reaction cross sections of Cd isotopes at N \geq 82: Part 1	²³⁸ U, 345 MeV/u	(2.5 days)
NP2212- SAMURAI64R1	S. Kim	Reduction factor study at large isospin asymmetry using the (a,ap) reaction	¹⁸ O, SUP(40}Ar 345 MeV/u	(9.0 days)
NP2112- SAMURAI65	H. Liu	Search for the first excited 0 ⁺ state in the doubly-magic nucleus ⁵⁴ Ca	⁷⁰ Zn 345 MeV/u	6.5 days
NP2112- SAMURAI69	A. Obertelli	Momentum distribution of deeply-bound nucleons	¹⁶ O, ⁴⁸ Ca 345 MeV/u	9.5 days
NP2112- SAMURAI68	J. Gibelin	Search for ^{17,18} Be	⁴⁸ Ca 345 MeV/u	6.5 days
NP2012- SAMURAI55R1	T. Aumann	Determination of the nn scattering length from a high-resolution measurement of the nn relative-energy spectrum produced in the 6 He(p,pa)2n, t(p,2p)2n, and d(7 Li, 7 Be)2n reactions	¹⁸ O 345 MeV/u	8.5 days
NP2012- SAMURAI57	T. Uesaka	Cluster and nucleon knockout reaction studies of neutron-rich calcium isotopes	⁷⁰ Zn 345 MeV/u	4 days
NP2012- SAMURAI59	Y. Kondo	Invariant-mass spectroscopy in the vicinity of the possible doubly magic nucleus ²⁸ O	⁴⁸ Ca 345 MeV/u	10.5 days

NP2012- SAMURAI63	W. Lynch	Study of density dependence of the symmetry energy with the measurements of charged pion ratio in heavy RI collisions (III)	^{124,136} Xe 345 MeV/u	9.5 days
NP1912- SAMURAI53	H. Wang	Search for short-range correlated proton- neutron pair in neutron-rich nuclei	²² Ne 250 MeV/u	7.5 days
NP1812- SAMURAI43	A.Corsi	Shell evolution at Z = 14 around 22 Si, mirror of the doubly magic 22 O	⁴⁰ Ca 345 MeV/u	4.5 days
NP1812- SAMURAI44	H. Otsu	Cluster structure study on ground and excited states by means of HI-a invariant mass spectroscopy	²² Ne 250 MeV/u	5 days
NP1812- SAMURAI33R2	Z.Yang	Study on the cluster structure in light nuclei by using (p,pa) reaction on carbon isotopes ^{12,14,16,18,20} C	⁴⁸ Ca 345 MeV/u	5.5 days
NP1812- SAMURAI47	T. Nakamura	Multi-neutron 4n and 6n states in extremely neutron-rich nuclei beyond the neutron drip line	¹⁸ O 345MeV/u	5 days
NP1712- SAMURAI37R1	T. Aumann	Dipole response of the drip-line nuclei $^{24}\mathrm{O}$ and $^{29}\mathrm{F}$	⁴⁸ Ca 345MeV/u	6.5 days
NP1712- SAMURAI32R1	M. Sasano	Study of "Island of Asymmetric Fission"	²³⁸ U 345MeV/u	9 days
NP1612- SAMURAI40	T. Nakamura	Two-neutron correlation measurement for nuclei beyond the neutron drip line	⁴⁸ Ca 345 MeV/u	8.5 days
NP1512- SAMURAI36	N.A. Orr	Search for ²² C (2 ⁺), ²¹ B, ²³ C and ²⁵ N: Structure at and beyond the N=16 subshell closure	⁴⁸ Ca 345MeV/u	Nov 2016, 3 days out of 6 days
NP1512- SAMURAI35	H.L. Crawford	Invariant Mass Measurement of ³⁹ Mg at SAMURAI	⁴⁸ Ca 345 MeV/u	2.5 days

2. Reduction of redundant efforts in detector preparation and data analysis

(Semi-)Automated tuning of electronics without a beam

Well-designed and systematic calibrations

Accumulation/share of previous knowledge

Common data analysis platform

Optimized setup for (p,3p)-(p,pa) combined measurement

Working group(s) led by young local members Budget request to Nishina

Data sharing within the SAMURAI collaboration

"A system to open sleeping data to the SAMURAI collaboration members"

Balance between rights of the experimental group and efficient use of data

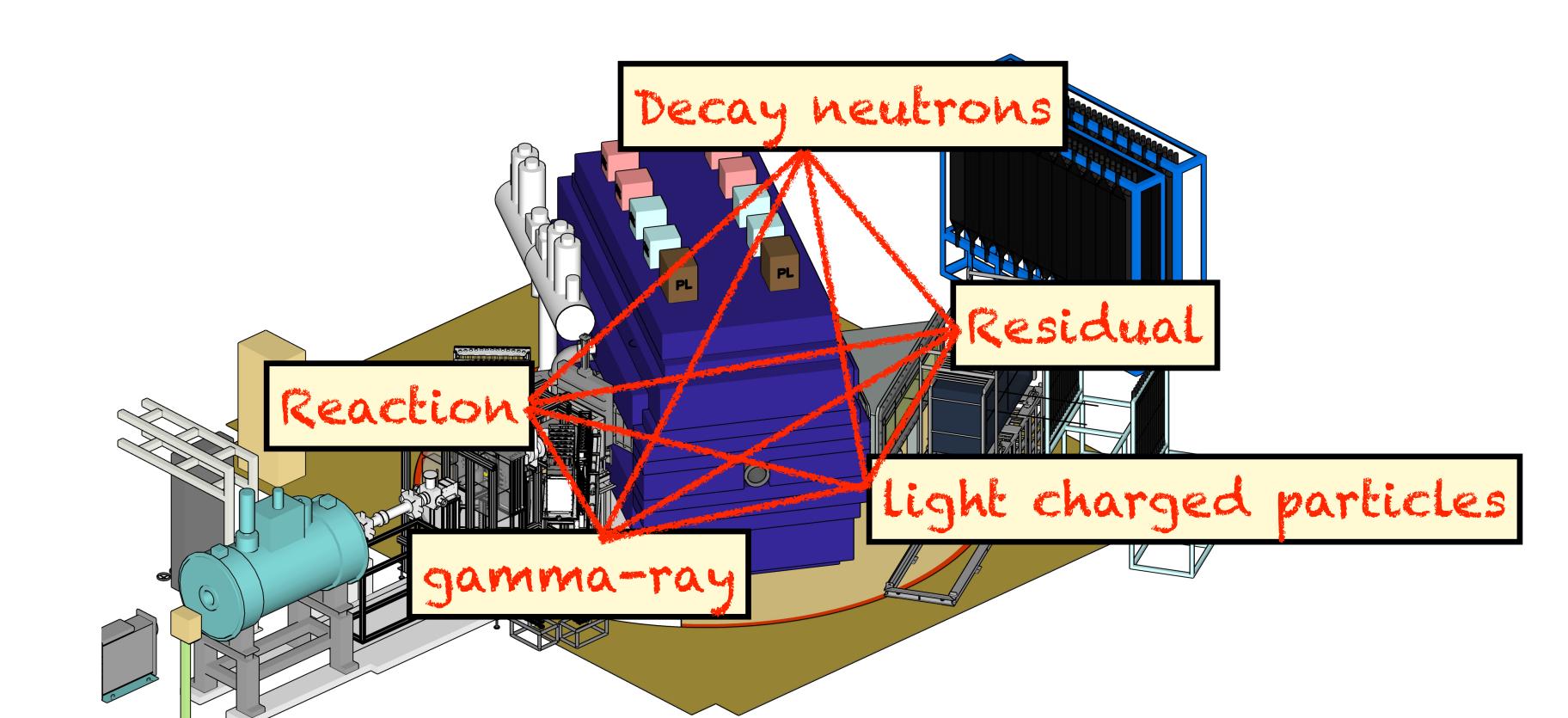
Carefully designed rule is necessary

Explore new capabilities

Decay charged particles

More decay neutron detectors

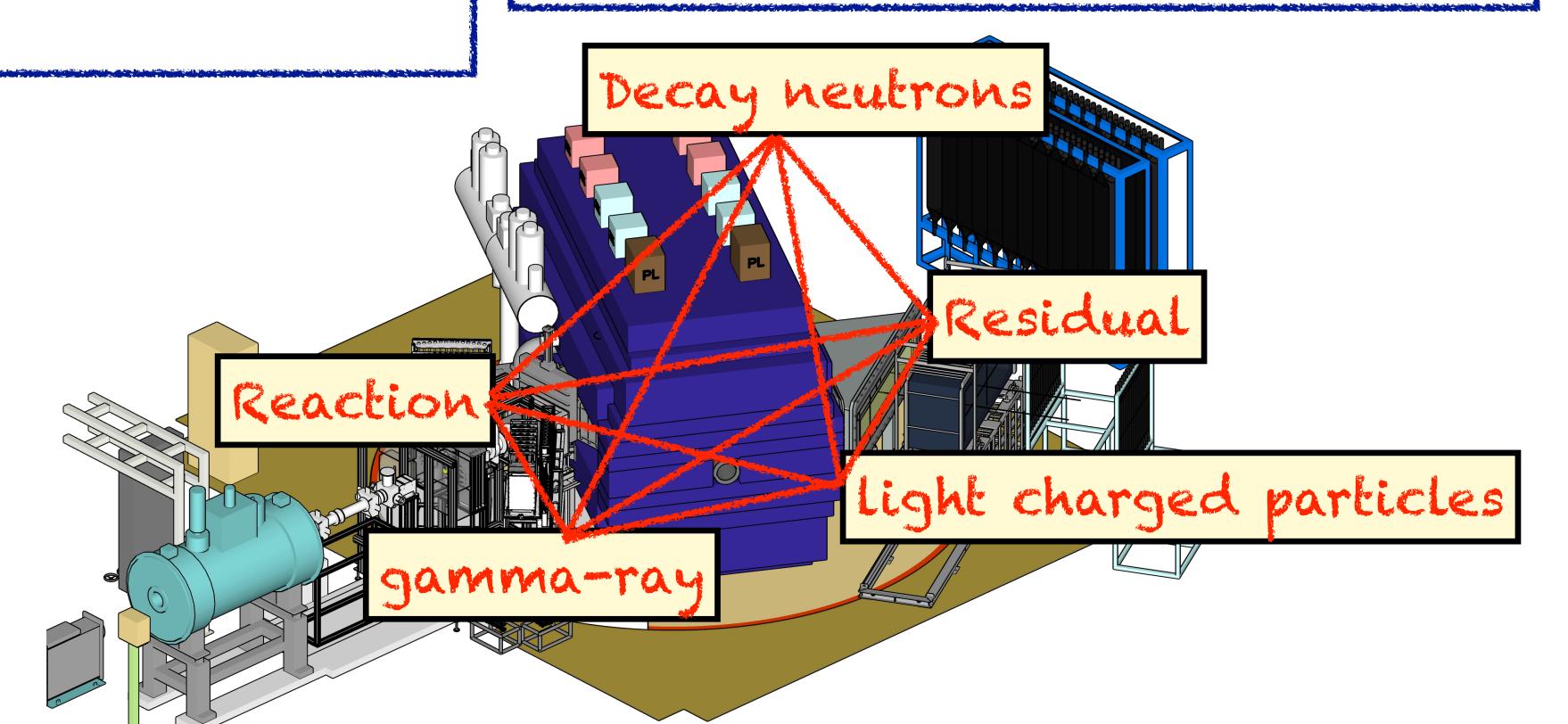
Knocked-out neutron detectors


Efficient and well-planned use of HIME

LAMPS-NDA IBS-Nishina collaborations
Peking-detector
Nakamura-san's new detector

SAMURAI Next

Best use of the large-acceptance capability of SAMURAI Multidimensional data with guaranteed reliability Platforms for reliable and quick data-analysis and simulation



SAMURAI Next

New information from multidimensional data Missing-mass (TOGAXSI/CATANA) × invariant-mass/decay Correlations among multi-neutrons Decay asymmetry measurements

etc. etc.

New Detectors to reinforce the capability LAMPS-NDA HIME PKU-AMDA Nakamura-san's

More conference invitations to young members

Coherent efforts of senior members as conference organizer/committee members

Common presentation material so that anyone can represent SAMURAI

Working groups

- 1. CATANA-STRASSE & TOGAXSI optimization for (p,3p)- $(p,p\alpha)$ Miki, Honga, Kubota, . . .
- 2. Optimization of Scintillation detectors (HIME/LAMPS/Peking) Kondo, Koyama, Siwei, Somebody from IBS
- 3. Upgrade of DAQ electronics, Data analysis platform Kubota, Isobe, Kondo