
202gPb Production Cross Section Measurements via In-Beam Spectroscopy

Yun-Hsuan "Abby" Lee Department of Nuclear Engineering, University of California, Berkeley

Stacked-target measurements and reaction modeling for Isotope Production by Lawrence Berkeley National Lab, Los Alamos National Lab, and Brookhaven National Lab. Texas A&M is a new addition to version 2.0 of the collaboration.

In the past we have measured cross sections for

- natNb(p,x)
 - o 93Nb(p,4n)90Mo as a monitor reaction for intermediate-energy protons
- ⁷⁵As(p,x)
 - o 72Se (generator for 72As) and 68Ge (generator for 68Ge) for imaging (PET)
- ¹³⁹La(p,x)
 - o 134Ce as a chemical analogue to 225Ac
- natSb(p,x)
 - o 117mSn and 119mSb (generated by 119mTe) as Meitner-Auger emitters for therapy
- natTI(p,x)
- natAg(p,x)
 - o 103Pd as a Meitner-Auger emitter for brachytherapy

In the past we have measured cross sections for

- $^{nat}Nb(p,x)$
 - 93Nb(p,4
- 75 As(p,x)
 - ⁷²Se (ger
- 139 La(p,x)
 - ¹³⁴Ce as
- $^{nat}Sb(p.x)$
 - ^{117m}Sn a
- natTI(p.x)
- $^{nat}Aq(p,x)$

Nuclear Inst. and Methods in Physics Research B

Nuclear Inst, and Methods in Physics Research B 429 (2018) 53-74

journal homepage: www.elsevier.com/locate/nimb

BEAM INTERACTIONS

(PET)

for therapy

Excitation functions for (p,x) reactions of niobium in the energy range of

a Department of Nuclear Engineering, University of California, Berkeley, Berkeley, CA 94720, USA

b Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

^c Isotope Production Facility, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA ^d Department of Medical Physics, University of Wisconsin – Madison, Madison, WI 53705, USA

e Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA

f Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA

¹⁰³Pd as a Meitner-Auger emitter for brachytherapy

In the past we have measured cross sections for

- natNb(p,x)
 - o 93Nb(p,4n)90Mo as a monitor reaction for intermediate-energy protons
- ⁷⁵As(p,x)
 - o 72Se (generator for 72As) and 68Ge (generator for 68Ge) for imaging (PET)
- ¹³⁹La(p,x)
 - o 134Ce as a chemical analogue to 225Ac
- natSb(p,x)
 - o 117mSn and 119mSb (generated by 119mTe) as Meitner-Auger emitters for therapy
- natTI(p,x)
- natAg(p,x)
 - 103Pd as a Meitner-Auger emitter for brachytherapy

In the past we have measured cross sections for

- natNb(p,x)
 - o 93Nb(p.4n)90Ma as a monitor reaction for intermediate-energy protons
- ⁷⁵As(p,x)
 - o 72Se (gener
- 139La(p,x)
 - o 134Ce as a
- natSb(p,x)
 - o 117mSn and
- $^{nat}TI(p,x)$
- $^{nat}Ag(p,x)$
 - o 103Pd as a l

Measurement and modeling of proton-induced reactions on arsenic from 35 to 200 MeV

PHYSICAL REVIEW C **104**, 064615 (2021)

```
Morgan B. Fox, 1,* Andrew S. Voyles, 1,2,† Jonathan T. Morrell, 1 Lee A. Bernstein, 1,2 Jon C. Batchelder, 1 Eva R. Birnbaum, 3 Cathy S. Cutler, 4 Arjan J. Koning, 5 Amanda M. Lewis, 1 Dmitri G. Medvedev, 4 Francois M. Nortier, 3 Ellen M. O'Brien, 3 and Christiaan Vermeulen, 3 1 Department of Nuclear Engineering, University of California, Berkeley, Berkeley, California 94720, USA 2 Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA 3 Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA 4 Brookhaven National Laboratory, Upton, New York 11973, USA 5 International Atomic Energy Agency, P.O. Box 100, A-1400 Vienna, Austria
```

(Received 4 July 2021; revised 4 September 2021; accepted 1 October 2021; published 27 December 2021)

In the past we have measured cross sections for

- natNb(p,x)
 - o 93Nb(p,4n)90Mo as a monitor reaction for intermediate-energy protons
- ⁷⁵As(p,x)
 - o 72Se (generator for 72As) and 68Ge (generator for 68Ge) for imaging (PET)
- ¹³⁹La(p,x)
 - o 134Ce as a chemical analogue to 225Ac
- natSb(p,x)
 - o 117mSn and 119mSb (generated by 119mTe) as Meitner-Auger emitters for therapy
- natTl(p,x)
- $^{nat}Ag(p,x)$
 - 103Pd as a Meitner-Auger emitter for brachytherapy

In the past we have measured cross sections for

- $^{nat}Nb(p,x)$
 - ⁹³Nb(p,4n)⁹⁰Mo as a monitor reaction for intermediate-energy protons
- 75 As(p,x)

¹⁰³Pd as a Meitner-Auger emitter for brachytherapy

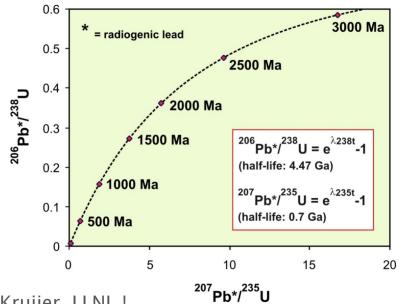
All via the stacked-target method, up to 200 MeV

	o ⁷² Se (gener	Stacked-Foil Activation	'ET)
•	¹³⁹ La(p,x)	Jonathan T. Morrell, ¹ Ellen M. O'Brien, ¹ Michael Skulski, ² Andrew S. Voyles, ³ Dmitri G. Medvedev, ² Veronika Mocko, ¹ Lee A. Bernstein, ^{4,3} and C. Etienne Vermeulen ¹	
	o 134 Ce as a c	¹ Los Alamos National Laboratory, Los Alamos, NM 87545, USA	
•	natSb(p,x)	² Brookhaven National Laboratory, Upton, NY 11973, USA	
		³ University of California, Berkeley, Berkeley, CA 94720, USA	-1
	o 117mSn and	⁴ Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA	r therapy
•	$^{nat}TI(p,x)$	(Dated: February 29, 2024)	
•	$^{nat}Ag(p,x)$		

Measurement of Proton-Induced Reactions on Lanthanum from 55-200 MeV by

In the past we have measured cross sections for

- natNb(p,x)
 - o 93Nb(p,4n)90Mo as a monitor reaction for intermediate-energy protons
- ⁷⁵As(p,x)
 - o 72Se (generator for 72As) and 68Ge (generator for 68Ge) for imaging (PET)
- ¹³⁹La(p,x)
 - o 134Ce as a chemical analogue to 225Ac
- natSb(p,x)
 - o 117mSn and 119mSb (generated by 119mTe) as Meitner-Auger emitters for therapy
- natTl(p,x)
- natAg(p,x)
 - o 103Pd as a Meitner-Auger emitter for brachytherapy


Stacked-target irradiation with decay gamma spectroscopy have

- Pro:
 - Measurements at multiple discrete energies without having to retune the beam
- Cons:
 - Long-lived/stable nuclei produced cannot be seen
 - Isotopes without decay gamma lines cannot be seen

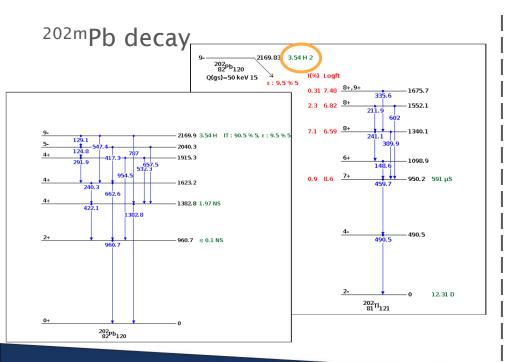
^{202g}Pb production for U-Pb chronometry

- Taking advantage of the ²³⁸U and ²³⁵U decay chains, the U-Pb system allows studies of
 - Timings of mass extinction
 - o Rate of climate change
 - Lunar formation §
- Thermal Ionization Mass Spectroscopy (TIMS)
 - ²⁰²Pb-²⁰⁵Pb double spike for mass fractionation correction
 - Pb isotopic analyses to sub-nanogram quantities!

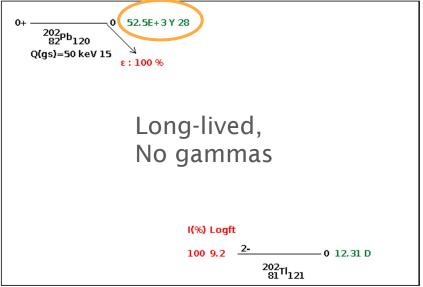
Thanks to T. Kruijer, LLNL!

Y. Amelin and W. J. Davis. Isotopic analysis of lead in sub-nanogram quantities by TIMS using a ²⁰²Pb-²⁰⁵Pb spike. J. Anal. At. Spectrom., 21:1053-1061, 2006.

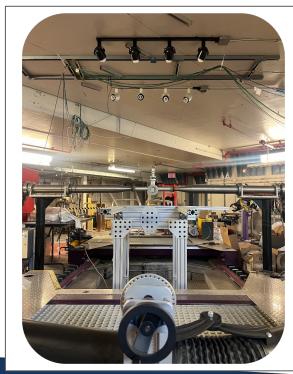
^{202g}Pb production -1

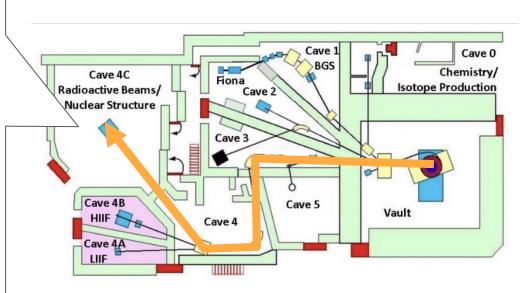

- ^{202g}Pb production cross sections
 - Only one currently available dataset from ANY reaction pathway, measured by Michel et al., via secular equilibrium with ²⁰²Tl
- Our proposed pathway: natTl(p,x)^{202g}Pb

Rolf Michel *et al.* (2002) Cross Sections for the Production of Radionuclides by Proton-Induced Reactions on W, Ta, Pb and Bi from thresholds up to 2.6 GeV, Journal of Nuclear Science and Technology, 39:sup2, 242-245, DOI: 10.1080/00223131.2002.10875084

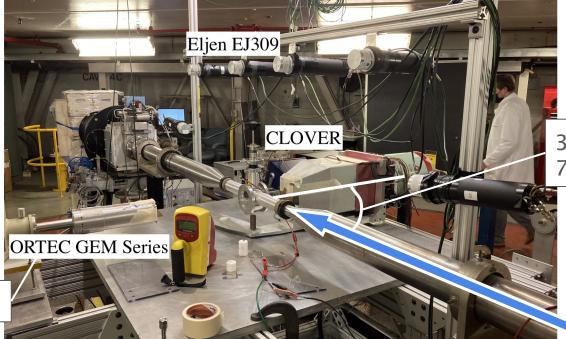

ε = 100.00%	ε = 100.00%	ε = 100.00%	ε = 100.00%	ε = 100.00%
202Pb 52.5E+3 y ε = 100.00%	203Pb 51.92 h ε = 100.00%	204Pb ≥ 1.4E+17 y 1.4% α	205Pb 1.73E+7 y ε = 100.00%	206Pb STABLE 24.1%
201Tl 3.0421 d ε = 100.00%	202Tl 12.31 d ε = 100.00%	203TI STABLE 29.524%	204Tl 3.783 y β = 97.08% ε = 2.92%	205TI STABLE 70.48%
200Hg STABLE 23 10%	201Hg STABLE 13 18%	202Hg STABLE 29.86%	203Hg 46.594 d	204Hg STABLE 6.87%

^{202g}Pb production -2




^{202g}Pb decay

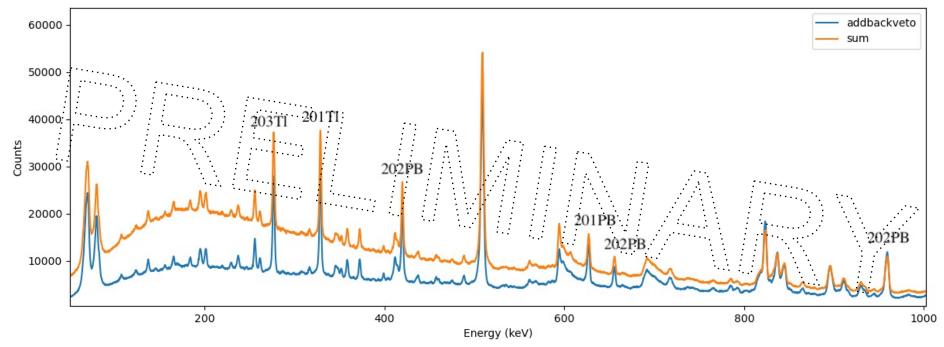
Cave 4C at LBNL's 88-Inch Cyclotron



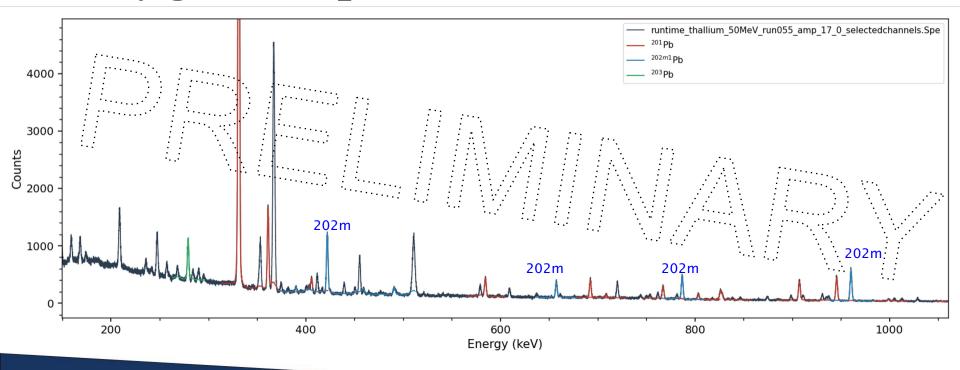
The 88-Inch Cyclotron: A one-stop facility for electronics radiation and detector testing. M.Kireeff-Covo *et al.,.* Measurement, 127, (2018), p. 580-587. https://doi.org/10.1016/j.measurement.2017.10.018

Experimental setup: in-beam spectroscopy

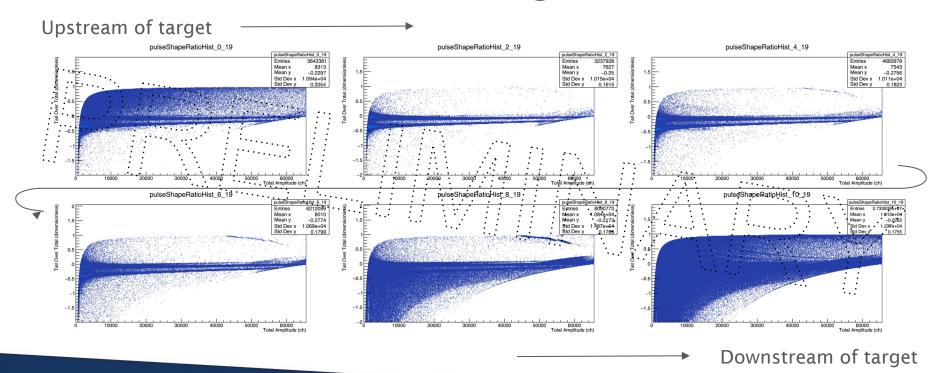
30°, 36°, 48°, 60°, 70°, 80°, 90°, 110°


30 MeV, 50 MeV

proton

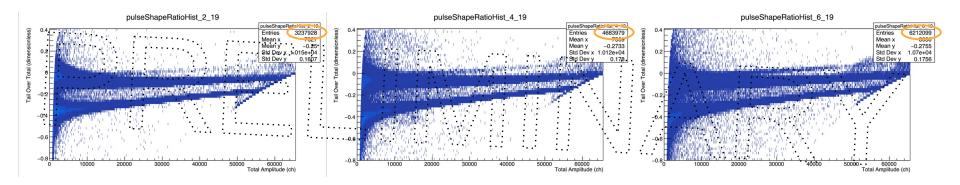

90°

In-beam gamma spectrum (48°)



Decay gamma spectrum

Neutron detection at 6 angles



Neutron detection

Upstream of target

Downstream of target

Proton energy = 50 MeV

Future plans

Building on other works^{1, 2} of the Tri-Lab Effort in Nuclear Data (TREND) -

- The partial cross section measurements of this work are complemented by results of a natTl(p,x) stacked-target irradiation
- Double-differential cross section measurements enable further adjustments of TALYS or CoH parameters
 - Gammas level density, y strength function, ...
 - Neutrons optical model, pre-equilibrium, ...

¹ M. Fox *et al.* Investigating high-energy proton-induced reactions on spherical nuclei: Implications for the preequilibrium exciton model. Phys. Rev. C, 103:034601, Mar 2021.

² C. Apgar *et al.* Investigation of the production of ^{117m}Sn and ^{119m}Te via proton bombardment on natural antimony: Implications for charged particle reaction modeling, in preparation, 2024.

Collaborators and acknowledgement

Y.-H Lee¹, A.S. Voyles¹, C.E. Apgar¹, M.S. Basunia², J.C. Batchelder¹, L.A. Bernstein^{1,2}, J.A. Brown¹, C.S. Cutler⁴, J.M. Gordon¹, T.A. Laplace¹, W. Lin⁴, D.G. Medvedev⁴, J.T. Morrell³, E.M. O'Brien³, K. Rector³, M. Skulski⁴, C.E. Vermeulen³

This work was supported by the U.S. Department of Energy Isotope Program, managed by the Office of Science for Isotope R&D and Production, and was carried out by Lawrence Berkeley National Laboratory (Contract No. DE-AC02-05CH11231).

¹Department of Nuclear Engineering, University of California, Berkeley, Berkeley, California 94720, USA

²Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

³Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

⁴Brookhaven National Laboratory, Upton, New York 11973, USA