The 29th International Nuclear Physics Conference (INPC 2025)

Contribution ID: 547

Type: Contributed Poster Presentation

A search for ${}^7\text{Li}$ solar axion with Li_2MoO_4 detectors in the AMoRE experiment

A search for resonance excitation of ^7Li by the solar axions has been realized with the Li₂MoO₄ scintillation bolometers, used to search for the neutrinoless double beta decay of ^{100}Mo in the AMoRE project at the phase-1 experiment. The detection of 478 keV de-excitation gamma of $^7\text{Li}^*$ would indicate the existence of solar axion. The five Li₂MoO₄ crystals, used as a target and detector for the AMoRE experiment, give this mechanism 14.2% detection efficiency. The data from 1.6 kg Li₂MoO₄ (118.5 g of 7Li contained) crystals were accumulated using phonon sensors at 10-20 mK for 11 months at the Yangyang underground laboratory in Korea. The detailed analysis procedure and the preliminary results are presented. Preliminary, a new upper limit on axion mass is set as ma < 5.6 keV. The sensitivity is expected to be improved to the level of ~2 keV by the AMoRE phase II experiment in preparation now.

Primary authors: SEO, Jeewon (Center for Underground Physics, IBS); SO, Jungho (Institute for Basic Sci-

ence)

Presenter: SEO, Jeewon (Center for Underground Physics, IBS)

Session Classification: Poster Session

Track Classification: Fundamental Symmetries and Interactions in Nuclei