Consistency of the pion form factor and unpolarized TMDs beyond leading twist in the light-front quark model

Ho-Meoyng Choi (Kyungpook National Univ.)

Based on Phys. Rev. D 110, 014006 (2024)

(in collaboration with Prof. Chueng-Ryong Ji)

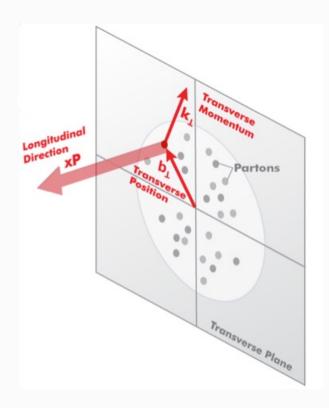
INPC 2025, May 25-30, 2025, DCC, Daejeon, Korea

Outline

- 1. Motivation
- 2. Light-Front Quark Model(LFQM)
 - New Development of self-consistent LFQM
 - Pion Form Factor
- 3. TMDs and PDFs of pion
- 4. Conclusions

1. Motivation

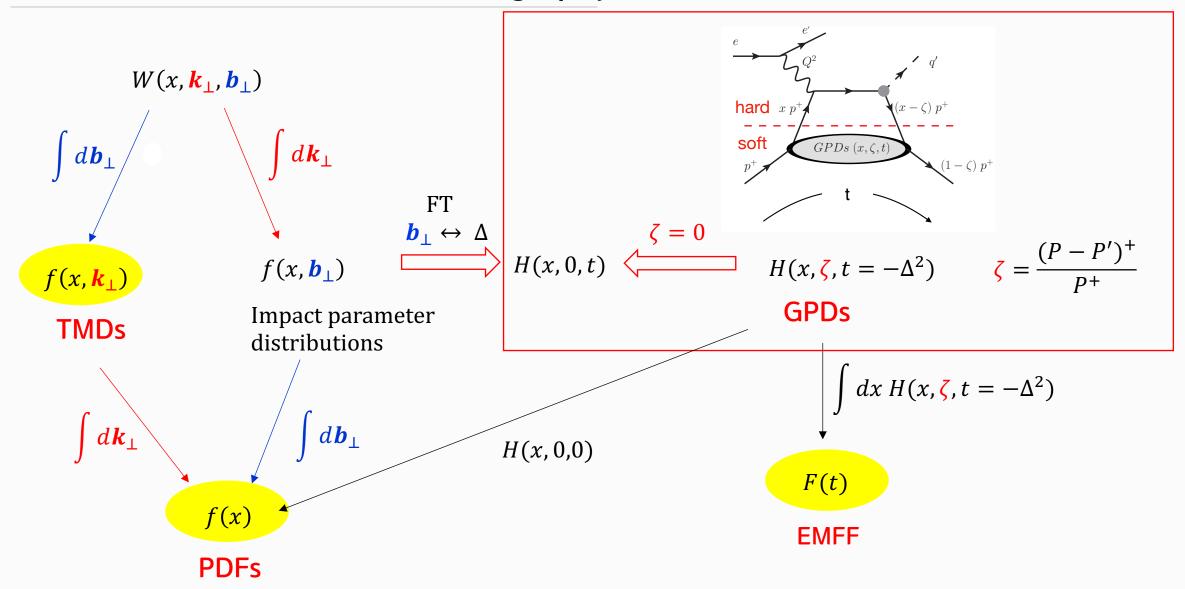
For precision 3D imaging of hadrons, it is essential to access x of partons, along with their k_{\perp} and b_{\perp} , relative to the hadron's direction of motion.



Wigner distribution $W(x, \mathbf{k}_{\perp}, \mathbf{b}_{\perp})$ unifies $(x, \mathbf{k}_{\perp}, \mathbf{b}_{\perp})$ into a 5D phase-space representation of parton structure.

Distribution	Projection from $W(x, \mathbf{k}_{\perp}, \mathbf{b}_{\perp})$	
TMDs	Integrate over b_{\perp}	
GPDs	Integrate over k_{\perp}	
PDFs	Integrate over both $m{b}_{\perp}$ and $m{k}_{\perp}$	
EM Form Factor	Lowest x-moment of GPDs	

3D hadron structure from 5D tomography



We investigate the interplay among the pion's EMFF, TMDs, and PDFs in the Light-Front Quark Model (LFQM).

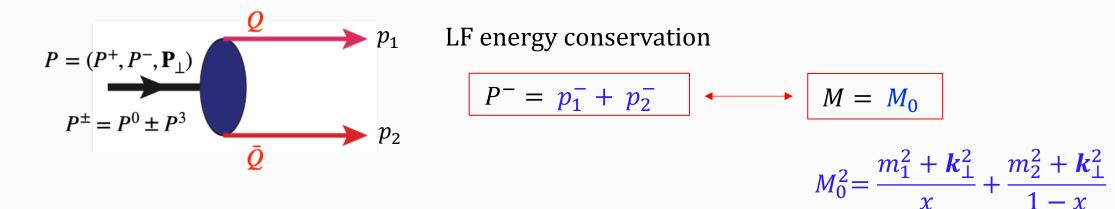
TMD	Twist	Dirac Structure	Interpretation
$f_1^{\pi}(x, \boldsymbol{k}_{\perp})$	2	γ^+	Probability density for unpolarized quarks
$e^{\pi}(x, \mathbf{k}_{\perp})$	3	I(scalar)	Sensitive to quark mass and chiral sym. breaking
$f_3^{\pi}(x, \boldsymbol{k}_{\perp})$	3	γ^i	Related to transvers motion; contributes to azimuthal asymmetries
$f_4^{\pi}(x, \boldsymbol{k}_{\perp})$	4	γ-	Subleading in $1/Q$; relevant for power-suppressed contributions

• Three $(f_1^{\pi}, f_3^{\pi}, f_4^{\pi})$ of them are related with the forward matrix elements $\langle P|\bar{q} \ \gamma^{\mu} \ q|P\rangle$, i.e., EMFF of the pion.

2. Light-Front Quark Model(LFQM)

Two essential aspects of our LFQM

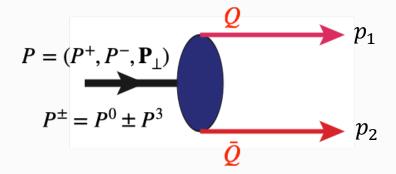
1) Meson state: Noninteracting "on-mass" shell $Q \& \bar{Q}$ representation.



2) The interaction between $Q\bar{Q}$ is incorporated into the mass operator via $M := M_0 + V_{Q\bar{Q}}$

Two essential aspects of our LFQM

1) Meson state: Noninteracting "on-mass" shell $Q \& \bar{Q}$ representation.



LF energy conservation

$$P^- = p_1^- + p_2^- \qquad \longleftarrow \qquad M = M_0$$

$$M_0^2 = \frac{m_1^2 + \mathbf{k}_\perp^2}{x} + \frac{m_2^2 + \mathbf{k}_\perp^2}{1 - x}$$

2) The interaction between $Q\bar{Q}$ is incorporated into the mass operator via $M := M_0 + V_{Q\bar{Q}}$

Bakamjian-Thomas(BT) constuction!

Self-consistent LFQM based on the BT construction

PRD 89, 033011(14); PRD91, 014018(15); PRD95, 056002(17) by HMC and C.-R. Ji PRD 103, 073004(21); Adv. High Energy Phys., 4277321(21) by HMC PRD 107, 053003(23); PRD108, 013006(23) by A. J. Arifi, HMC and C.-R. Ji

$$\langle P'|\bar{q} \Gamma^{\mu} q|P\rangle = \wp^{\mu} \mathcal{F}$$

F: Physical observables

 \wp^{μ} : Lorentz factors

• Apply BT $(M \rightarrow M_0)$ equally to both sides

$$M \to M_0$$

$$\langle P' | \bar{q} \Gamma^{\mu} q | P \rangle = \wp^{\mu} \mathcal{F}$$

$$\wp^{\mu} = (P + P')^{\mu} - q^{\mu} \frac{(P + P') \cdot q}{q^2}$$

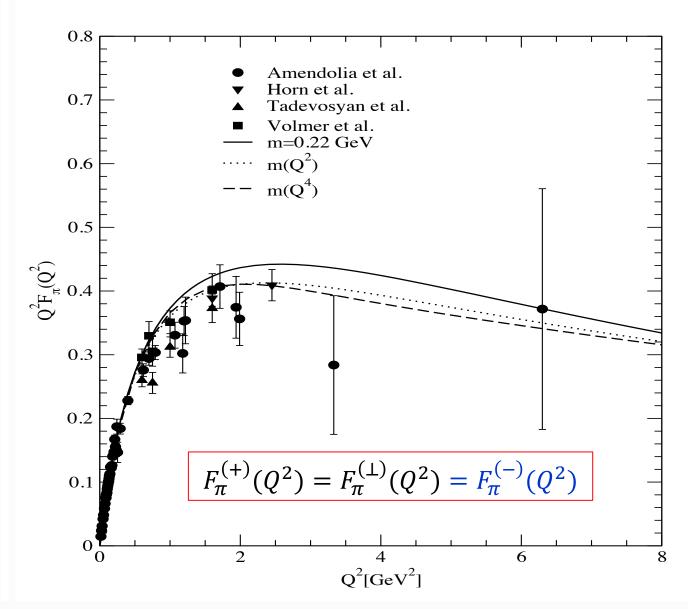
$$q^{\mu} = (P - P')^{\mu}$$

$$\wp \cdot q = 0$$

$$\mathcal{F} = \left\langle P' | \frac{\overline{q} \Gamma^{\mu} q}{\wp^{\mu}} | P \right\rangle_{\text{BT}}$$

 $\mathcal{F} = \left\langle P' \middle| \frac{\overline{q} \Gamma^{\mu} q}{\wp^{\mu}} \middle| P \right\rangle_{\text{DT}} \quad \text{becomes independent of the current components!}$

Current-component independent EMFF



$$f_{\pi}^{LFQM} = 130 \text{ MeV}$$
 $(\text{Exp.=}131 \text{ MeV})$
 $r_{\pi}^{LFQM} = 0.654 \text{ fm}$
 $(\text{Exp.=}0.659(4) \text{fm})$

We have demonstrated, for the first time, the current-component independence of the FF within the LFQM.

$$\int \frac{[dz]}{2(2\pi)^3} e^{ip \cdot z} \langle P | \bar{\psi}(0) \gamma^+ \psi(z) | P \rangle |_{z^+=0} = f_1^q(x, p_T),$$

$$\int \frac{[dz]}{2(2\pi)^3} e^{ip \cdot z} \langle P | \bar{\psi}(0) \gamma_T^j \psi(z) | P \rangle |_{z^+=0} = \frac{p_T^j}{P^+} f_3^q(x, p_T),$$

$$\int \frac{[dz]}{2(2\pi)^3} e^{ip \cdot z} \langle P | \bar{\psi}(0) \gamma^- \psi(z) | P \rangle |_{z^+=0} = \left(\frac{m_\pi}{P^+}\right)^2 f_4^q(x, p_T),$$

In the forward limit

$$2P^{+} \int dx f_{1}^{q}(x) = \langle P|\bar{\psi}(0)\gamma^{+}\psi(0)|P\rangle,$$

$$2p_{T} \int dx f_{3}^{q}(x) = \langle P|\bar{\psi}(0)\gamma^{\perp}\psi(0)|P\rangle,$$

$$4P^{-} \int dx f_{4}^{q}(x) = \langle P|\bar{\psi}(0)\gamma^{-}\psi(0)|P\rangle,$$

PDF TMD
$$f(x) = \int d^2p_T f(x, p_T).$$

Schematic descriptions of EMFF, TMDs, and PDFs of the Pion

$$\langle P'|J^{\mu}|P\rangle = \mathcal{O}^{\mu} F_{\pi}(q^{2}) \qquad \mathcal{O} \cdot q = 0$$

$$\mathsf{EMFF} \qquad F_{\pi}^{(\mu)}(Q^{2}) = \left\langle P'|\frac{J^{\mu}}{\mathcal{O}^{\mu}}|P\rangle_{\mathrm{BT}} = \iint dx \ d^{2}\mathbf{k}_{\perp} \ f^{(\mu)}(x,\mathbf{k}_{\perp},Q^{2})$$

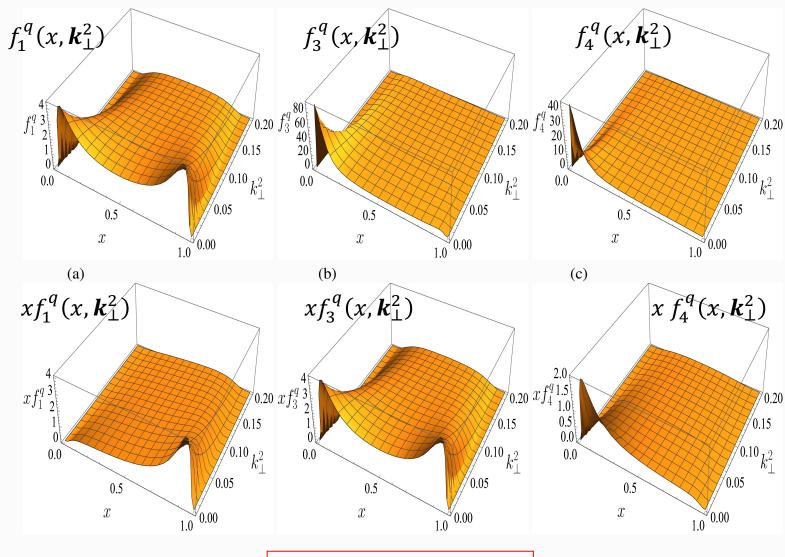
$$\downarrow \text{ as } Q^{2} \to 0$$

$$F_{\pi}^{(\mu)}(0) = 1 = \lim_{Q \to 0} \left\langle P'|\frac{J^{\mu}}{\mathcal{O}^{\mu}}|P\rangle_{\mathrm{BT}} = \iint dx \ d^{2}\mathbf{k}_{\perp} \ f^{(\mu)}(x,\mathbf{k}_{\perp}) \ \mathsf{TMDs}$$

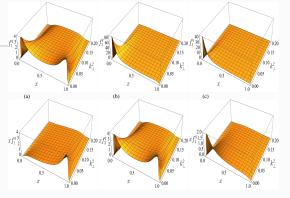
$$= \int dx \ f^{(\mu)}(x) \ \mathsf{PDFs}$$

Precise extraction of EMFF is crucial for correctly determining TMDs and PDFs!

Unpolarized TMDs for Pion



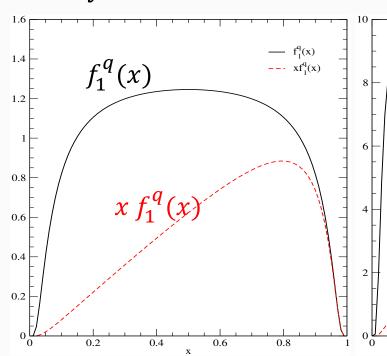
$$x f_3^q(x, \mathbf{k}_{\perp}^2) = f_1^q(x, \mathbf{k}_{\perp}^2)$$



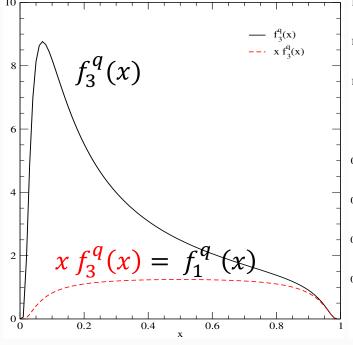
$$\int d^2 \boldsymbol{k}$$

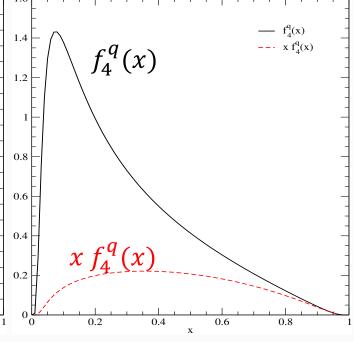
We prove this, for the first time.

$$2\int dx \ f_4^q(x) = 1$$

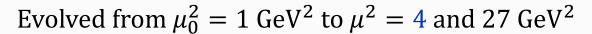


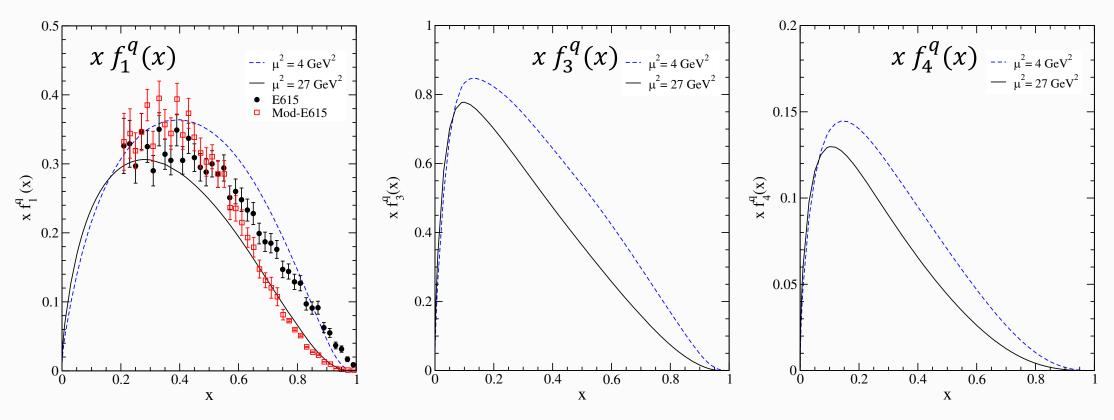
 $\int dx \ f_1^q(x) = 1$





QCD Evolution of Pion PDFs

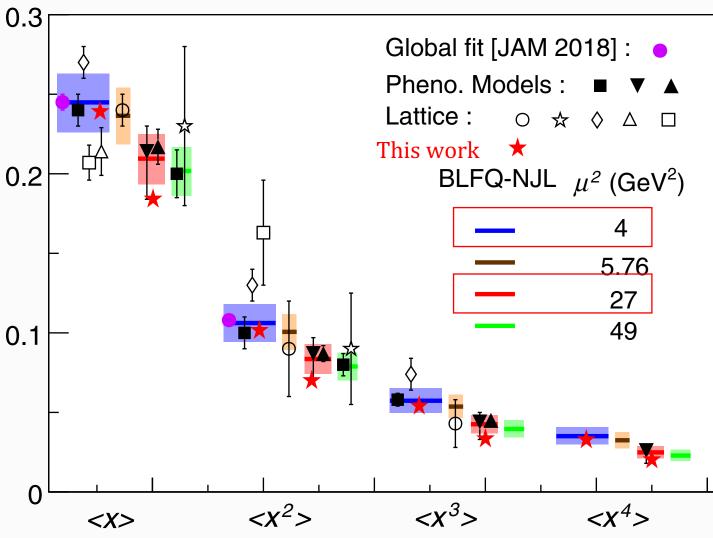




We use the **Higher Order Perturbative Parton Evolution toolkit (HOPPET)** to solve the NNLO DGLAP equation.

Lowest four moments of pion valence PDF

Mellin moments:
$$\langle x^n \rangle = \int_0^1 dx \ x^n f(x)$$



Adopted from J. Lan et al. (BLFQ Collab.), PRL 122, 172001 (2019)

4. Conclusions

• We developed a new method for ensuring self-consistency in the LFQM.

Our LFQM: Noninteracting $Q \& \bar{Q}$ representation consistent with the Bakamjian-Thomas(BT) constuction!

$$P^- = p_q^- + p_{\bar{q}}^-$$
 , i. e. $M^2 \to M_0^2$

$$\langle 0|\bar{q}\;\Gamma^{\mu}q|P\rangle=\mathfrak{F}\;\wp^{\mu}$$
 \mathfrak{F} : physical observables \wp^{μ} : Lorentz factors

$$\mathfrak{F} = \left\langle 0 \left| \frac{\overline{q} \Gamma^{\mu} q}{\mathfrak{D}^{\mu}} \right| P \right\rangle = \iint dx \, d^2 \mathbf{k}_{\perp} \, \cdots \, \left(\frac{\Gamma^{\mu}}{\mathfrak{D}^{\mu}} \right) \cdots$$

Constrained by BT construction!

This allows one to obtain the physical observables independent of the current components!

Partial Extractions of TMD, PDF, GPD from Pion Form Factor

Form factor:
$$F^{(\mu)}(t) \equiv \iint dx \ d\mathbf{k}_{\perp} \ f^{(\mu)}(x, \mathbf{k}_{\perp}, t)$$
 Note) $Q^2 \to -t$

$$f^{(\mu)}(x, \mathbf{k}_{\perp}, t \to 0)$$

$$\int d\mathbf{k}_{\perp}$$
TMD $f(x, \mathbf{k}_{\perp})$ GPD $H(x, 0, t)$

$$H(x, 0, t) = \int d\mathbf{k}_{\perp} \ f^{(+)}(x, \mathbf{k}_{\perp}, t)$$
 GPD at $\zeta = 0$

$$2f_4^q(x, \mathbf{k}_{\perp}) \leftrightarrow f^{(-)}(x, \mathbf{k}_{\perp}, 0)$$

$$\int d\mathbf{k}_{\perp}$$

$$H(x, 0, 0)$$

 $f_1^q(x)$: twist-2 PDF

 $f_4^q(x)$: twist-4 PDF

0.5