

Probing the structure of the weak interactions

D.Zakoucky, P.Alfaurt, P.Ascher, D.Atanasov, B.Blank, F.Cresto, L.Daudin, D.Etasse, X.Fléchard, G.Frémont, M.Gerbaux, J.Giovinazzo, S.Grévy, G.Guignard, J.Ha, B.H.Kim, C.Knapen, S.Lecanuet, S.Lechner, A.Lépine, R.Lica, M.Pomorski, M.Roche, C.Roumegou, N.Severijns, Y.Son, S.Vanlangendonck, M.Versteegen

Experimental project **WISArD** (Weak-Interaction Studies with ³²**Ar D**ecay) online at ISOLDE/CERN

Study the structure of weak interactions: search for 'forbidden' scalar & tensor components by precise measurements of sensitive correlations in low-energy beta-decays

Motivation, sensitive variables

Standard model of electro-weak interactions: V-A character of interaction

$$C_V=1 \text{ (CVC) } C_A=-1.27, C_V'=C_V \& C_A'=C_A C_S=C_S'=C_T=C_T'=C_P=C_P'=0$$
 No Scalar or Tensor

But experimental evidence for $|C_T()/C_A|$ and $|C_S()/C_V|$ only at the % level (After 60 years of efforts !!!)

β-v correlation in β-decay - a parameter (sensitive to both Scalar, Tensor interaction)

- can simultaneously study both "forbidden interactions" Scalar in Fermi decays, Tensor in Gamow-Teller decays
- difficulty to directly detect neutrinos \Rightarrow study recoil nuclei instead of neutrinos \Rightarrow measurement of the shape of

p-spectrum from β -delayed proton decay (WISArD) \rightarrow coefficient α

 $a > 0 \rightarrow emission favored at \theta = 0^{\circ}$, large recoil $a < 0 \rightarrow emission favored at \theta = 180^{\circ}$, small recoil

Decay rate for non polarized nuclei

Decay rate for non polarized nuclei
$$a_F \cong 1 - \frac{|C_S|^2 + |C_s'|^2}{|C_V|^2} = 1 \text{ SM} \qquad b_F \cong Re \frac{C_S + C_S'}{C_V}$$

$$dW = dW_0 \left(1 + a \frac{\mathbf{p}_e \cdot \mathbf{p}_\nu}{E_e E_\nu} + b \frac{m_e}{E_e} \right) \qquad a_{GT} \cong -\frac{1}{3} \left[1 - \frac{|C_T|^2 + |C_T'|^2}{|C_A|^2} \right] = -1/3 \text{ SM} \qquad b_{GT} \cong Re \frac{C_T + C_T'}{C_A}$$

$$a_F \approx 1 - \frac{|C_S|^2 + |C_S'|^2}{|C_V|^2}$$
 =1 SM

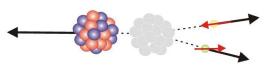
Best measurements:
$$a_F \sim 0.45\%$$
, $a_{GT} < \sim 1\%$

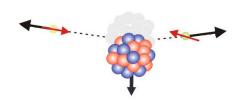
$$a_{GT} \approx -\frac{1}{3} \left[1 - \frac{|C_{\rm T}|^2 + |C_{\rm T}'|^2}{|C_{\rm A}|^2} \right] = -1/3 \text{ S}$$

$$b_{GT} \cong Re \frac{C_T + C_T'}{C_A}$$

β-v correlation coefficient

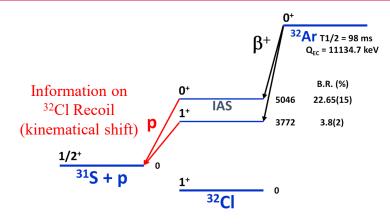
Fierz interference term

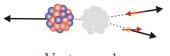

WISArD: measuring \tilde{a} , sensitive to both a & b


$$\widetilde{a} \approx \frac{a}{1 + b \langle m_e / E_e \rangle}$$

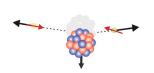
Vector interaction (SM) High energy of recoil nucleus, moving opposite to emitted particles

Scalar interaction (beyondSM) Very small energy of recoil nucleus

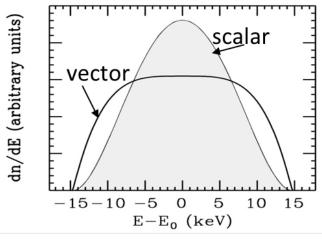

β-delayed proton decay (case of ³²Ar)



- ³²Ar decays by β-decay to the ³²Cl which subsequently decays by proton decay to ³¹S
- Interested in super-allowed Fermi β-decay $^{32}Ar \rightarrow ^{32}Cl$ to Isobaric Analog State followed by the proton decay $^{32}Cl \rightarrow ^{31}S$
- Protons are emitted from the moving nucleus 32 Cl recoiling after previous β-decay \Rightarrow energy of protons is kinematically shifted
- Significant difference between the effect of kinematic shift on proton energy between scalar β-decay (small recoil energy) and vector β-decay (high recoil energy)

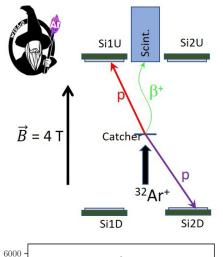


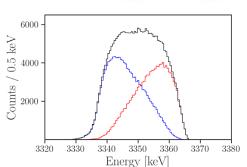
- Shape of proton spectrum reflects energy spectrum of recoil nuclei after the β-decay that is sensitive to the **scalar / vector** character of the weak interaction
- Precise measurements of proton spectra in coincidence with positrons can search for deviations from the shape of allowed vector decay and look for admixture of a "forbidden" scalar one



Vector, *a*=1 high recoil energy large broadening

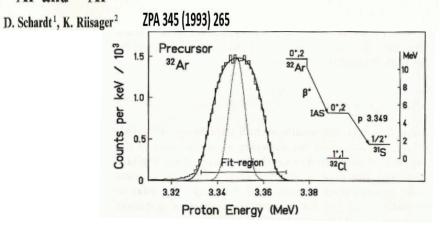
Scalar, *a*=-1 low recoil energy small broadening


Proton peak shape

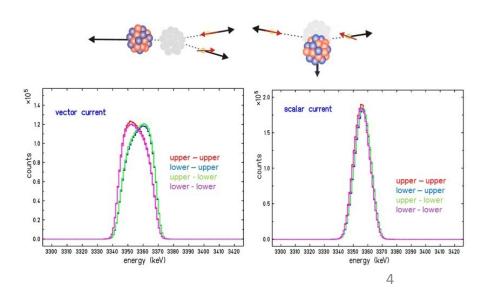

Experiments with β-delayed proton decay of ³²Ar at ISOLDE

Idea to deduce the shape of energy spectrum of recoil nuclei after the β -decay from the kinematical shift of proton-spectrum from β -delayed proton decay of 32Ar is not new

Experiment performed already 30 years ago at ISOLDE – but only the proton peak **broadening** has been measured – very sensitive to peak shape, proton detector response function



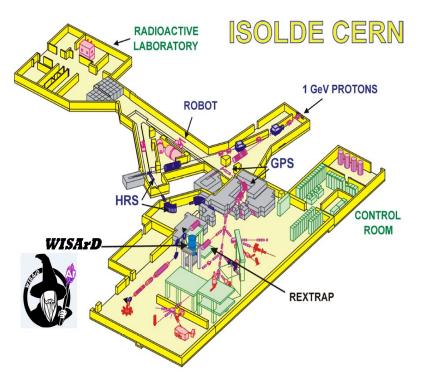
WISArD: detection of proton spectra in coincidence with positrons

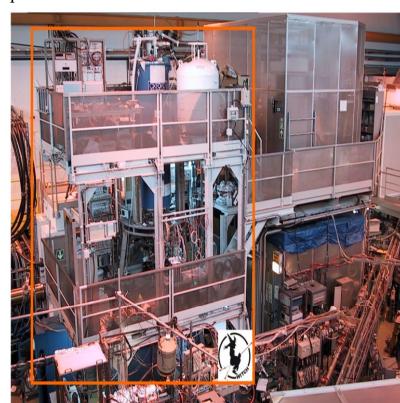

at extreme angles 0 and $180^{\circ} \Rightarrow$ energy shifts for same & opposite emission directions rather than broadened width \Rightarrow shift is a linear function of \tilde{a}

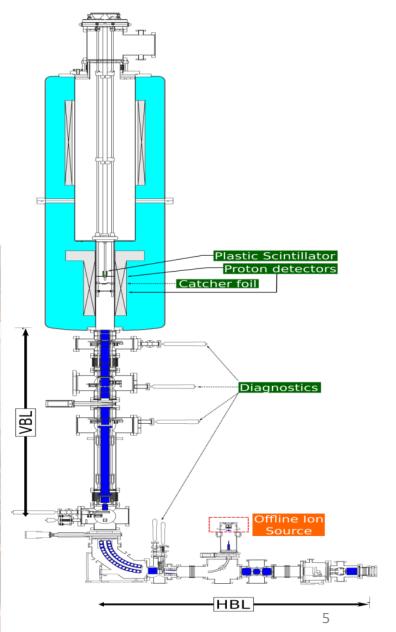
- Higher sensitivity on \tilde{a} (~ x 2.5) and on b (~ x 4.5)
- no dependence on p peak intrinsic shape and p detector response function
- the **strong magnetic field** allows to spatially separate positrons and protons allowing to observe them with different detectors

Beta-neutrino recoil broadening in β -delayed proton emission of ³²Ar and ³³Ar

Simulated proton spectra in coincidence with positrons for the "Fermi peak"

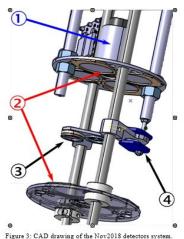



WISArD (Weak-Interaction Studies with ³²Ar Decay) experiment



WISArD – measuring β -delayed proton decay of ³²Ar in β -p coincidence measurement we measure the proton energy shift for same & opposite β emission directions which is a linear function of \tilde{a}

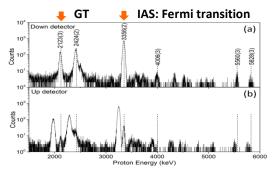
- Whole setup in the magnetic field 4T (up to 9T))
- 32Ar ions at 30keV implanted into the thin mylar foil
- Positrons from the β -decay detected by the narrow forward scintillation detector placed on axis
- Protons from the subsequent p-decay of ³²Cl detected by arrays of Si detectors in forward and backward direction
- Spiraling positrons cannot reach the proton detectors placed off axis


Proof-of-principle experiment 2018

WISArD online proof-of-principle experiment *\bullet\$

Nov 2018, latest run before the CERN shutdown Readily available beta and proton detectors

- ~ 1700 pps of ISOLDE 32 Ar beam instead of 3000 nominal
- ~ 35h of beamtime
- implantation rate into the catcher foil \sim 100 32 Ar ions/s

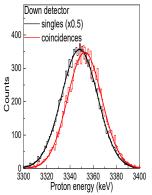


Systematic error budget (in ‰):


	Source	Uncertainty	$\Delta \tilde{a}_{\beta\nu} (10^{-3}$
background	false coinc.	lse coinc. 8%	
proton	detector calibration	0.2%	2
	detector position	$1~\mathrm{mm}$	< 1
	source position	$3~\mathrm{mm}$	3
	source radius	3 mm	1
	B field homogeneity	1%	< 1
	silicon dead layer	$0.3~\mu\mathrm{m}$	5
	mylar thickness	$0.15~\mu\mathrm{m}$	3
positron	detector backscattering	15%	2
	catcher backscattering	15%	21
	threshold	12 keV	8
total			24

-unknown detectors DL
-source profile poorly known
→Can be easily reduced
by factor ~10

→ Must be reduced by factor > 20



Down-shift

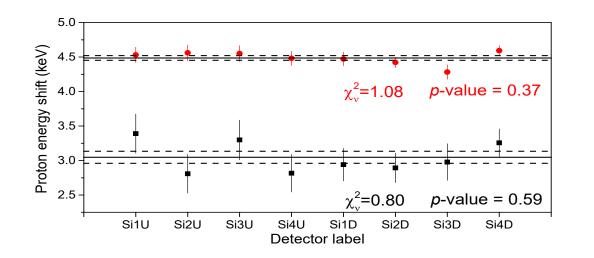
Proton energy (keV)

Up-shift

Typical resolution ~35 keV FWHM

$$\Delta E_F = 4.49(3) \text{ keV}$$
 $\tilde{a}_F = 1.01(3)_{\text{stat}}(2)_{\text{syst}}$
 $\tilde{a}_{GT} = -0.22(9)_{\text{stat}}(2)_{\text{syst}}$

 $3^{\rm rd}$ most precise measurement of \tilde{a}_F



Fermi (IAS): 4.49(3) keV

$$\Delta E = \left| \bar{E}_{coinc} - \bar{E}_{single} \right|$$

GT: 3.05(9) keV

- Extraction of \tilde{a} : MC simulation (GEANT4 for β^+ & *pstar* for protons)
- with decay involving different values of a (-1, -1/3, 0, 1/3, 1) $\rightarrow \tilde{a} = \alpha \times E_{\text{shift}} + Cst$
- varying instrumental parameters in MC → Systematic errors estimation

$$\tilde{a}_{\beta\nu}^{F} = 1.01(3)_{(stat)}(2)_{(syst)}$$
 $\tilde{a}_{\beta\nu}^{GT} = -0.22(9)_{(stat)}(2)_{(syst)}$ V.Araujo-Escalona et al., PRC 101 (2020) 5, 055501

Further experiments planned with upgraded setup

Measurement 2021, perspectives

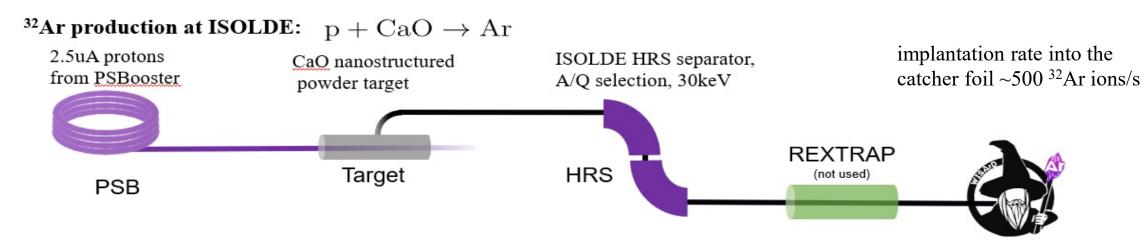
First data taking in 2021 after CERN long shutdown:

after major upgrade of the WISArD setup implantation rate of 32 Ar ions into catcher foil \sim 150/s

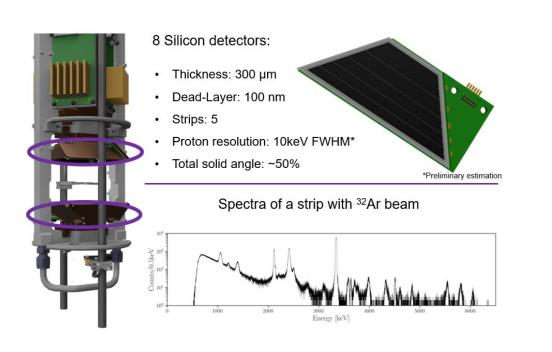
Statistical error reduced to order of 1 ‰

production + transmission + time (beamlines upgrade, 2weeks beamtime) \rightarrow x ~50 in decay statistics dedicated detection setup (higher p-resolution, higher solid angle, lower beta threshold) \rightarrow x ~5 in sensitivity

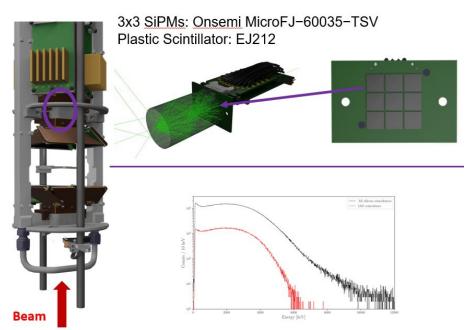
 \Rightarrow able to reach $\sim 0.9 \%$ (F), $\sim 1.4 \%$ (GT)


Systematic errors - see the systematic error budget

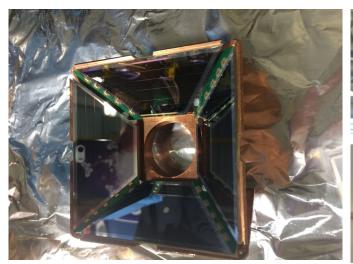
- improving all relevant sources of systematic errors
- no real show stopper to reduce to the ∼1 ‰ level

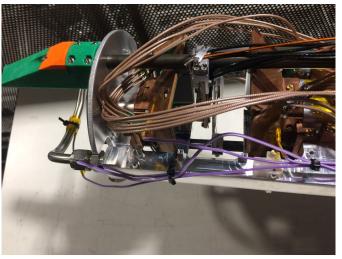

Several further campaigns planned at ISOLDE with successive major upgrades

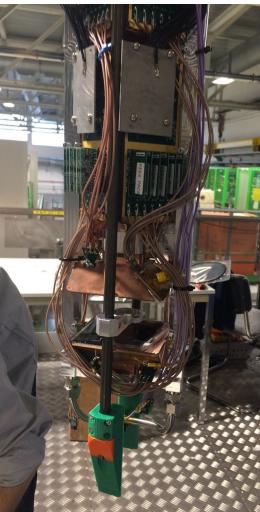
WISArD at ISOLDe 2024, 2025: ³²Ar beam production, detectors

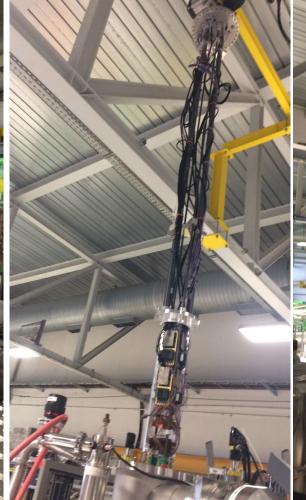


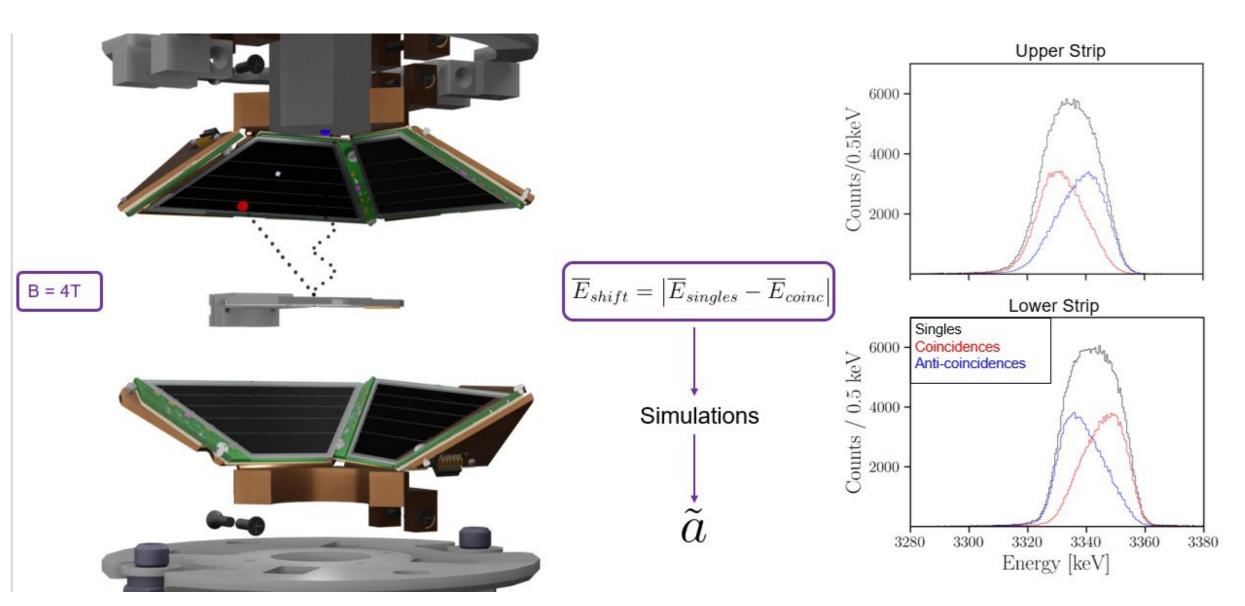
proton detectors

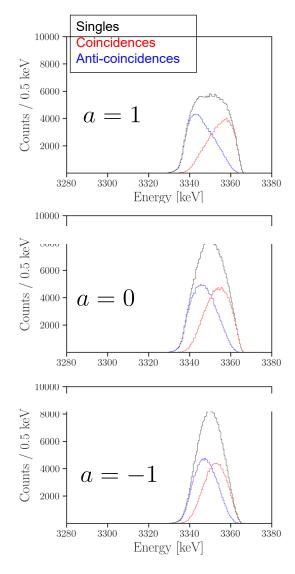


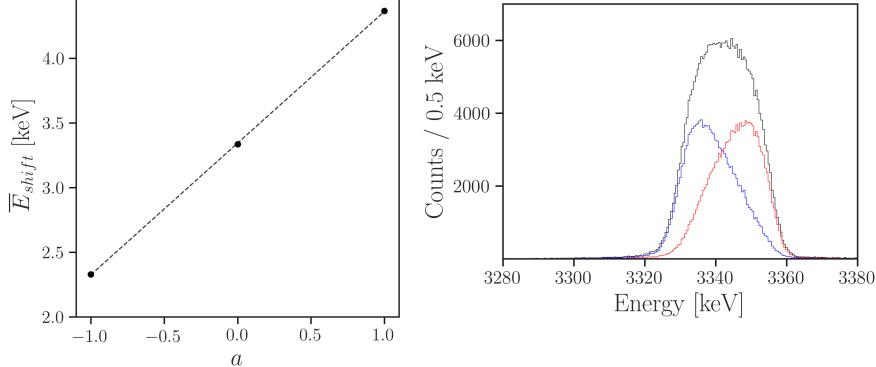

positron detector




WISArD detection tower



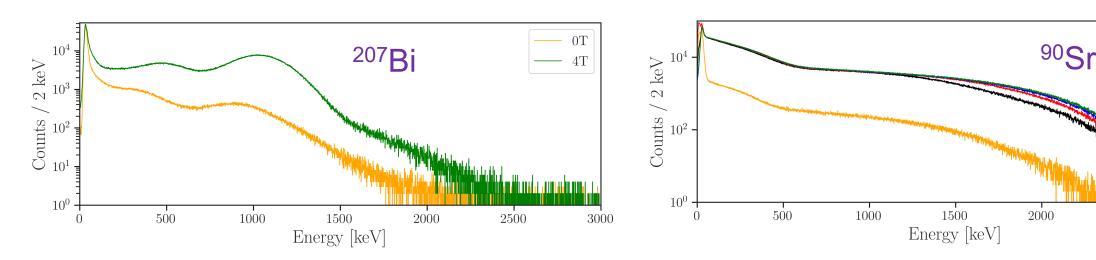

Extraction of a


Extraction of α

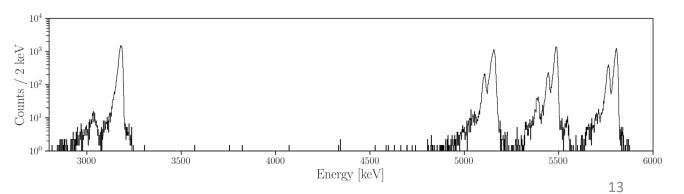
Simulations

Linear dependency between \overline{E}_{shift} and $oldsymbol{a}$

0.1% precision on $\widetilde{a} \rightarrow \sim 5$ eV precision on \overline{E}_{shift}


Offline calibration by RA sources after the ³²Ar online run


2500


3000

β SOURCES: Threshold determination, calibration, detection efficiency as a function of mgt. field B

□ SOUICES: detection efficiency as a function of B, silicon detectors response function

Extraction of a

Current results of WISArD:

2018: $\tilde{a} = 1.007(32)_{stat}(25)_{sys}$

2021: $\tilde{a} = 1.002(17)_{stat}$

2024 : $\tilde{a} = ?$ On going analysis

Statistical error

2018* \sim 200 000 events $\Delta \tilde{a} = 0.032$

2021 $\sim 700\ 000\ \text{events}\ \Delta \tilde{a} = 0.017$

2024 \sim 12 000 000 events $\Delta \tilde{a} = 0.002$ (estimated)

Systematic error

Main sources	Uncertainty			Improvement	
	2018*	$\Delta \tilde{a}$	(estimated) 2024	$\Delta \tilde{a}$	
β-backscattering	±15%	17	?	?	Thinner catcher, lower threshold
Dead layer thickness	430 ± 300 nm	12	100 ± 5 nm	0.3	New detectors
Catcher thickness	6.70 ± 0.15 µm	5	0.60 ± 0.02 µm	0.3	RBS measurement
Source radius/position	± 3 mm	1	± 0.5 mm	0.2	MCP beam profile
Detector position	± 1 mm	0.3	± 0.5 mm	0.2	Laser alignment
Silicon calibration	~ 5 keV	10	~ 1 keV	2	³³ Ar runs, new detectors

 $x10^{-3}$

Thanks to the whole WISArD team

Thanks for your attention