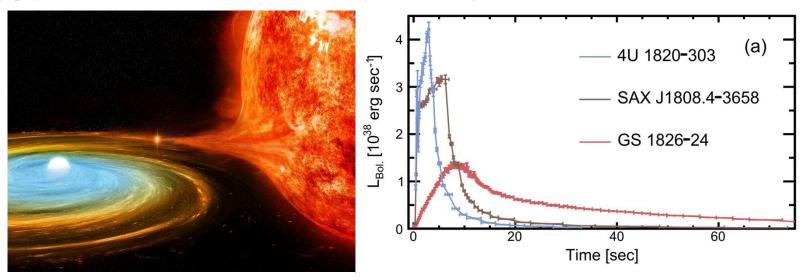
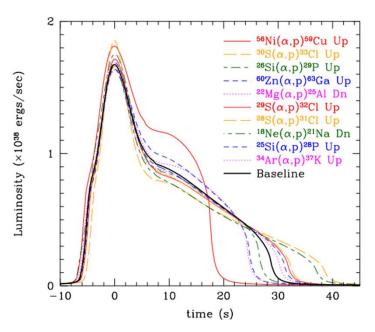
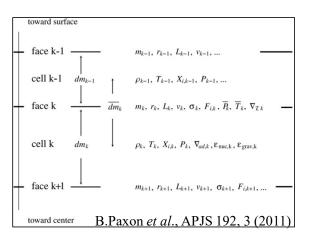
Accelerating sensitivity studies for Type I X-ray burst with deep learning

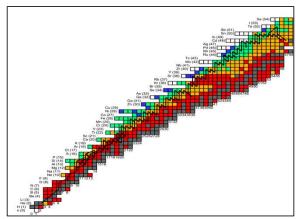

Sohyun Kim (SKKU)

Type I X-ray burst

- The X-ray Burst phenomenon is one of the most important astrophysical sites for probing rapid-proton capture process (rp-process).
- Many physical conditions were not constrained yet, including nuclear network.

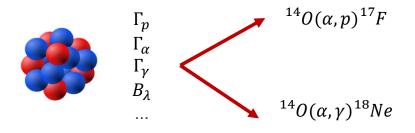

Z.Meisel et al., J.Phys.G:Nucl.Part.Phys. 45 093001 (2018)
D.K.Galloway, A.J.Goodwin and L.Keek, Publ.Astron.Soc.Aust. 34 E019 (2017)

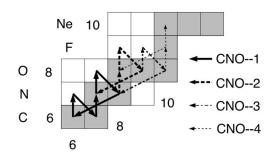


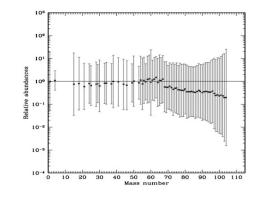

Sensitivity study

• Identify critical nuclear reactions in thermonuclear runaways

It takes too long time and expenses to calculate **hydrodynamics simulation** with a **large size of nuclear network**

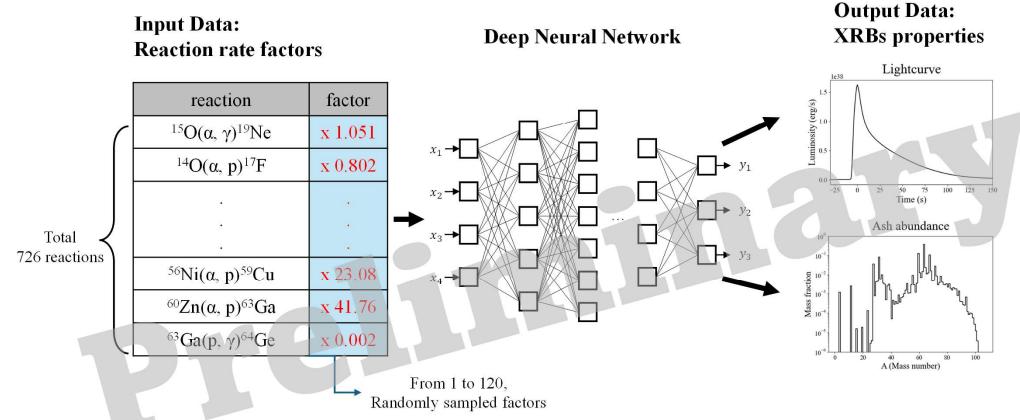

R.H.Cyburt et al., APJ 830, 55 (2016)




Current challenges

- Simulation with hydrodynamic calculations & large nuclear network takes too long time.
- Only single reaction variations have been tested.

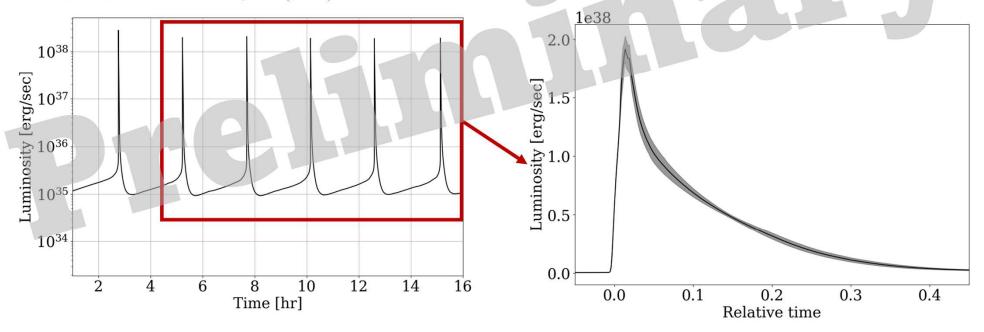
Effect of a nuclear property uncertainty on nucler network


Collective impact of a cycle

Uncertainty propagation

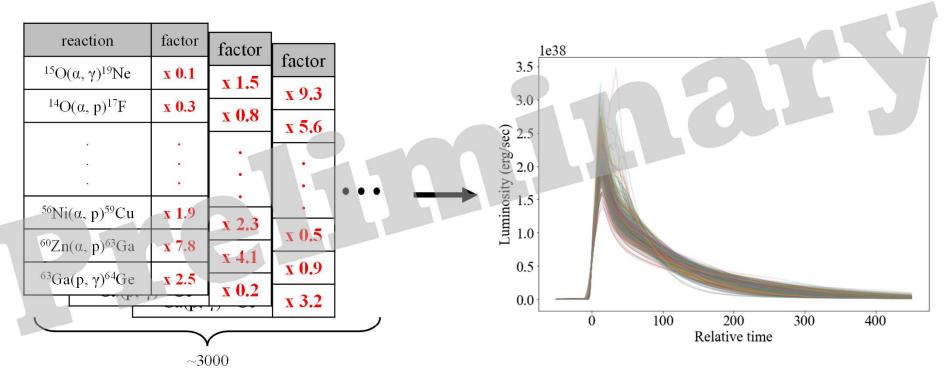
M. Wiescher, J. Gorres and H.Schatz, J.Phys. G: Nucl. Part. Phys 25, R133 (1999) A. Parikh *et al.*, APJS 178, 110 (2008)

- By training $\sim \mathcal{O}(3)$ datasets, computational expense for generating light curves varying $_{726}\mathrm{C}_2$ =263,175 pairs (or any combinations!) of nuclear reaction rates gets affordable.
- Reduced running time can help to explore the effects of multiple reaction variations on nuclear network.

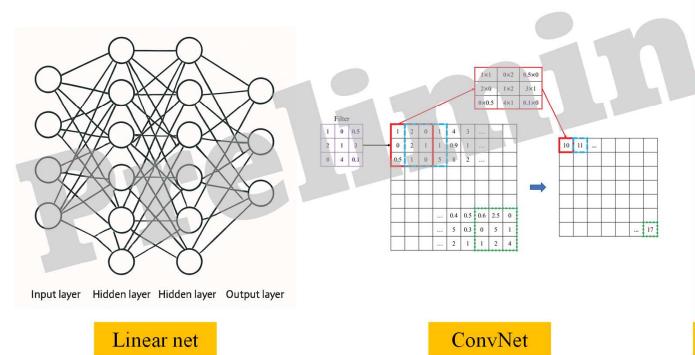


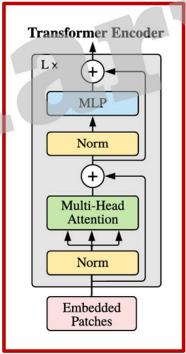
Training data: light curve

- MESA (Modules for Experiments in Stellar Astrophysics) is a 1D multi-zone simulation code.
- Physical parameters best reproduced light curve features of GS 1826-24 were taken.


Z.Meisel, et al., APJ 860, 147 (2018)

- Default reaction rates are adopted from JINA REACLIB Cyburt, et al., APJS 189 (2010) 240
- Every 726 (α, p) , (p, γ) , and (α, γ) reactions were increased or decreased by random factors.

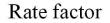

• The light curve data sets were generated with given varied reaction rates.



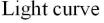
Deep Neural Network

• Various type of DNN structures.

Vision Transformer

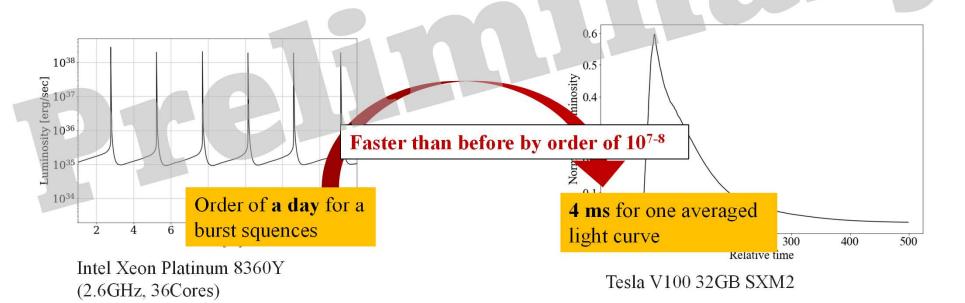


Data pre-processing & Training


• Input(=Features) and Output(=Labels) are pre-processed.

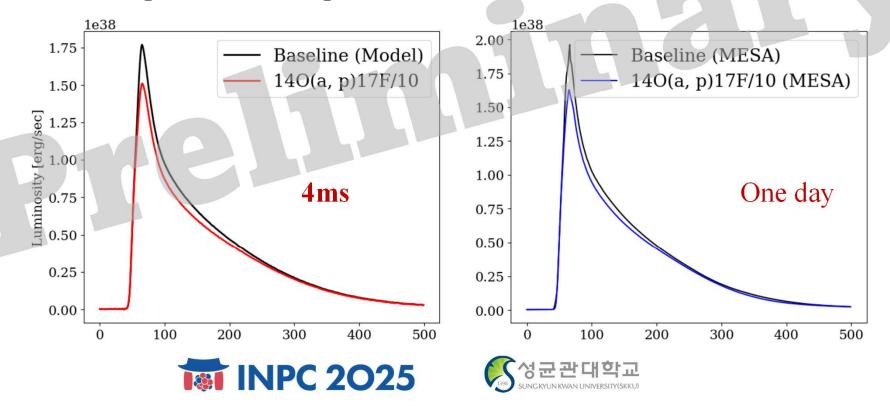
• By modifying the hyper-parameters, appropriate DNN is built up.

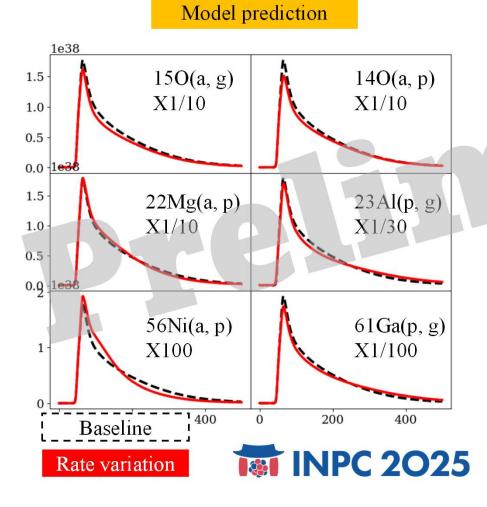
reaction 15O(α , γ) ¹⁹ Ne 14O(α , β) ¹⁷ F	factor x 0.1 x 0.3	0.6 0.5
		Norm Norm Multi-Head Attention A A A A
56 Ni(α , p) 59 Cu 60 Zn(α , p) 63 Ga 63 Ga(p, γ) 64 Ge	x 1.9 x 7.8 x 2.5	0.1 0.0 0.0 0 100 200 300 400 500 Relative time
	I.	Light curve



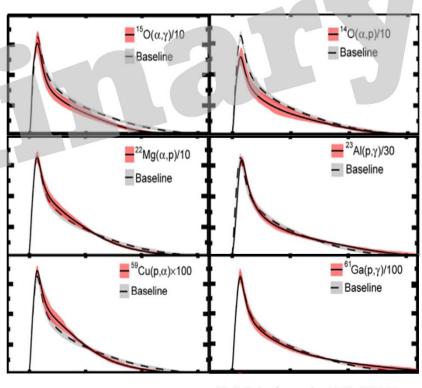
Performance test

- Lightcurve generation takes about 4-ms with the GPU below.
 - Tesla V100 32GB SXM2
- Compare MESA calculation time with CPU.


Preliminary results of sensitivity study

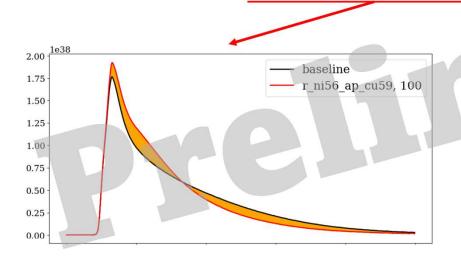


Single reaction variation


- Change every 726 (α , p), (p, γ), and (α , γ) rate factor individually.
- The model prediction is quite similar with MESA calculation.

Comparison with previous study

MESA (from previous study)

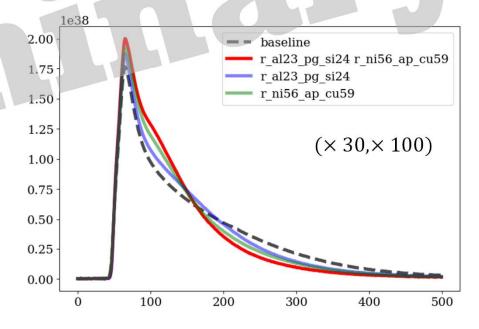


Z. Meisel et al., APJ (2019)

New sensitive reaction list

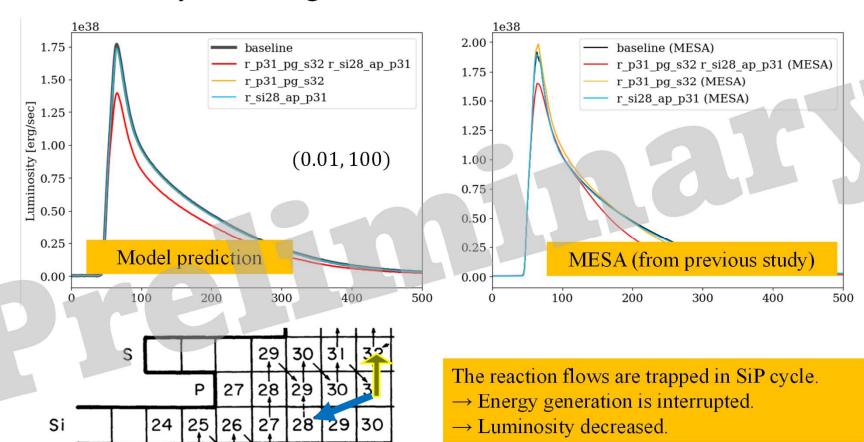
- Define "different factor" to quantify impact of a reaction variation.
- Different factor $\equiv \int |\langle L_{base} \rangle \langle L_{varied} \rangle| dt$ Cyburt, et al., APJ 830, 55 (2016)

Reaction	Up/dowi	n Diff_factor
$^{35}K(p,\gamma)^{36}Ca$	Up	1.75E+38
$^{31}P(p,\gamma)^{32}S$	Down	1.19E+38
$^{23}Na(p,\gamma)^{24}M_{\odot}$	g Down	3.02E+38
$^{20}Ne(\alpha,p)^{23$	а Up	4.06E+38
$^{12}C(\alpha,p)^{15}N$	Down	1.49E+38



Double variations

- Every possible combinations, total **1,000,000 pairs** were investigated in just **a few hours**.
- Overall, their effect on the lightcurve baseline was linearly added up.



• Some special cases indicating **correlation** are found.

• Usually, relevant to cycle in nuclear network (NeNa, ZnGe, NiCu, CNO...).

• Effect of SiP cycle strength

C.Iliadis, et al., Nucl. Phys. A 559, 83 (1993)

Summary

- We are developing X-ray burst emulators by deep learning.
- Dataset was generated using MESA, hydrodynamic simulation code.
- Light curve emulator has been developed and shows good performance.
- Sensitivity study with the emulator identified **new pairs of sensitive reactions**.
- Future works
 - MC uncertainty propagation
 - Training models for recurrence time or abundance study
 - Effect of triple, quadraple... or multiple reaction rate variation
 - Effect of nuclear mass model

