INPC 2025

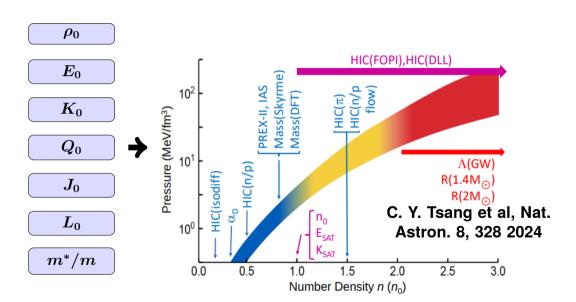
NucleiML



Sarmistha Banik

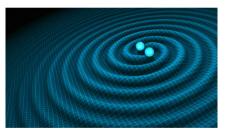
BITS Pilani Hyderabad Campus

Introduction



Constraints at High densities

- Constraints from GW and NICER observations
- GW¹ : GW170817 BNS merger
- NICER²: simultaneous mass-radius measurements

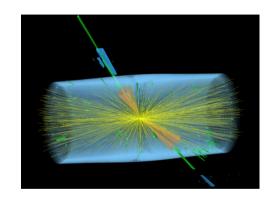


¹Image from **R. Hurt/Caltech-JPL**

²Image from **NICER (NASA)**

Constraints at low densities

- Constraints from Heavy Ion Collisions³ (HICs) and Nuclear physics experiments
- HICs: on symmetry energy and pressure across different densities
- Nuclear Physics: Constraints on global behavior of EoS when included explicitly ⁵



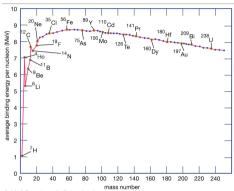
³Representative image from CMS collaboration

⁴C. Y. Tsang et al, Nat. Astron. 8, 328 2024

⁵A. Venneti et al 2024, PLB 854, 138756

Constraints at low densities

- Constraints from Heavy Ion Collisions (HICs) and Nuclear physics experiments
- HICs: on symmetry energy and pressure across different densities
- Nuclear Physics: Constraints on global behavior of EoS when included explicitly ⁷



© 2012 Encyclopædia Britannica Inc

⁶C. Y. Tsang et al, Nat. Astron. 8, 328 2024

⁷ A. Venneti et al 2024. PLB 854, 138756

Implicit and Explicit constraints

Implicit Constraints⁸

- Constraints from HICs and Nuclear physics experiments through limits on symmetry energy $J(\rho)$ and $P(\rho)$ at different densities as well as through NS properties
- Includes those from analyses of nuclear masses

Explicit Constraints⁹

- · Constraints similar to Implicit
- Instead of implicit constraints of nuclear masses, we used explicit constraints on binding energies and charge radii of different nuclei

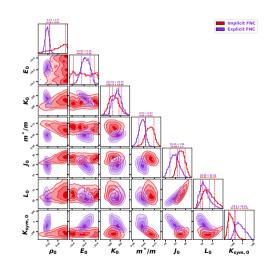
⁸C. Y. Tsang et al, Nat. Astron. 8, 328 2024

⁹A. Venneti et al 2024, PLB 854, 138756

Implicit and Explicit constraints

Key points

- Different approaches to include low density nuclear physics constraints have distinct posterior distributions of the parameters
- Highlights the importance of explicitly constraining finite nuclei properties
- However, computational cost is challenging to extend these explicit constraints to a large diverse set of nuclei
- Present work of NucleiML framework addresses this challenge, with help of machine learning



Formalism

$$\mathcal{L}_{NL} = \mathcal{L}_{nm} + \mathcal{L}_{\sigma} + \mathcal{L}_{\omega} + \mathcal{L}_{\rho} + \mathcal{L}_{int},$$

- \mathcal{L}_{nm} : Nucleons¹⁰: protons and neutrons
- \mathcal{L}_{σ} : σ -meson : short range attraction
- \mathcal{L}_{ω} : ω -meson : very short range repulsion
- \mathcal{L}_{ρ} : ρ -meson : isospin dependent

¹⁰M Dutra et al., Phys. Rev. C 90, 055203 2014.

Relativistic Mean Field (RMF) theory

Interaction strength determined by coupling parameters : g_{σ} , g_{ω} , g_{ρ} , A, B, C, and Λ_v

$$\mathcal{L}_{nm} = \bar{\psi} \left(i \gamma^{\mu} \partial_{\mu} - m \right) \psi + g_{\sigma} \sigma \bar{\psi} \psi - g_{\omega} \bar{\psi} \gamma^{\mu} \omega_{\mu} \psi - \frac{g_{\rho}}{2} \bar{\psi} \gamma^{\mu} \vec{\rho}_{\mu} \vec{\tau} \psi,$$

$$\mathcal{L}_{\sigma} = \frac{1}{2} \left(\partial^{\mu} \sigma \partial_{\mu} \sigma - m_{\sigma}^{2} \sigma^{2} \right) - \frac{A}{3} \sigma^{3} - \frac{B}{4} \sigma^{4},$$

$$\mathcal{L}_{\omega} = -\frac{1}{4} \Omega^{\mu\nu} \Omega_{\mu\nu} + \frac{1}{2} m_{\omega}^{2} \omega^{\mu} \omega_{\mu} + \frac{C}{4} \left(g_{\omega}^{2} \omega_{\mu} \omega^{\mu} \right)^{2},$$

$$\mathcal{L}_{\rho} = -\frac{1}{4} \vec{B}^{\mu\nu} \vec{B}_{\mu\nu} + \frac{1}{2} m_{\rho}^{2} \vec{\rho}_{\mu} \vec{\rho}^{\mu},$$

$$\mathcal{L}_{int} = \frac{1}{2} \Lambda_{v} g_{\omega}^{2} g_{\rho}^{2} \omega_{\mu} \omega^{\mu} \vec{\rho}_{\mu} \vec{\rho}^{\mu}.$$

Algorithm of RMF

 g_{σ} , g_{ω} , g_{ρ} , A, B, C, Λ_v

Ann. Phys. 198, 132 1990

Gambhir et al,

Solving the field equations

Algorithm of RMF

 $g_{\sigma}, g_{\omega}, g_{\rho}, A, B, C, \Lambda_v$

Solving the field equations using basis expansion

Gambhir et al, Ann. Phys. 198, 132 1990

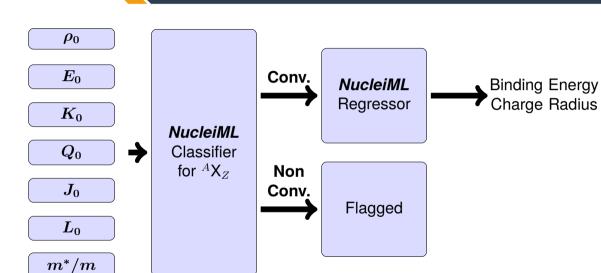
Algorithm of RMF

Solving the Field equations Using basis expansion

calculating binding energy and charge radius of given nuclei ${}^{A}\mathbf{X}_{Z}$

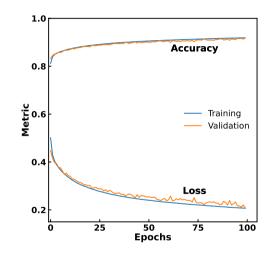
Gambhir et al, Ann. Phys. 198, 132 1990

NucleiML



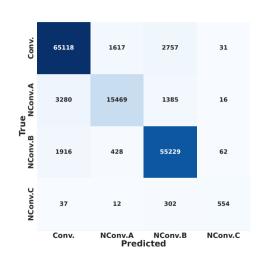
Neural Network Training and Performance

- Dataset Construction: Randomly sampled seven NMPs determine the coupling constants
- Data Composition: Each data point includes NMPs, coupling parameters, BE, R_{ch} and a classification flag (Convergent, Non-convergent A/B/C).
- Classifier Training: The model is trained using categorical cross-entropy, with performance validated on a separate set to ensure generalization.
- Performance: Training stabilizes with 0.2 loss and 92% accuracy, showing effective learning and minimal overfitting.

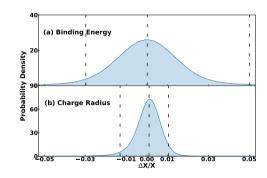


Classifier

- Confusion Matrix: true vs. predicted labels; diagonals indicate correct classifications, off-diagonals show misclassifications.
- Classifier Strengths: Strong classification accuracy for Convergent and Non-convergent B, with decent performance on Non-convergent A.
- Class Imbalance Impact: Low accuracy for Non-convergent C is due to its low representation in the training data.
- Four-Class Justification: Maintaining four classes enhances distinction from Convergent cases, supporting better performance in Bayesian inference by reducing misclassification and improving sampling reliability.

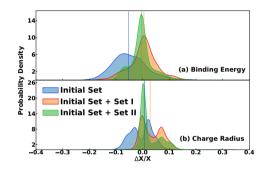


- **Deviation Metric:** Prediction accuracy is assessed using relative deviation, $\frac{\Delta X}{X} = \frac{X_{true} X_{pred}}{X_{true}} \text{ , where X is BE or charge radius}$
- Distribution Analysis: deviation distributions peaking near zero, indicating high prediction accuracy.
- Confidence Intervals: 95% of BE predictions fall within 3–5% deviation; for charge radius, within 1%.
- Regressor Precision: Tighter CI and narrower distribution for charge radius highlight superior prediction performance.
- Reasoning: Higher accuracy for charge radius is due to its more constrained range across nuclei compared to BE.

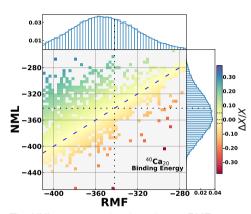


Performance

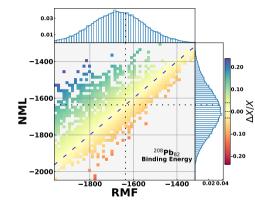
- Initial Limitation: The original regressor, trained on five closed-shell nuclei, shows broad deviations when predicting unseen nuclei, indicating poor generalization.
- Training Set Expansion: Adding neutron-rich nuclei (²⁴O, ⁵⁸Ca, ⁷⁸Ni) improves prediction accuracy, with a narrower deviation distribution and median closer to zero.
- Further Refinement:Including ⁶⁸Ni and ⁹⁰Zr further reduces deviation spread, confirming that a diverse training set enhances regressor performance on untrained nuclei.



Binding energy of some Nuclei



The NML regressor closely replicates RMF predictions for nuclei like $^{40}\mathrm{Ca}$ and $^{208}\mathrm{Pb},$ with deviations mostly within ±5% for BE and ±1% for $\mathrm{R}_{ch}.$

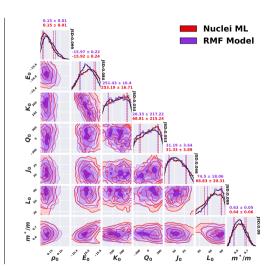


This indicates that the model closely approximates RMF results, with slightly greater variability in binding energy predictions compared to charge radius estimates.

A Bayesian Example

Bayesian Run

- Implmentation in a bayesian analysis An effective way to analyze the accuracy of NucleiML model
- Posteriors of NucleiML align well with those of RMF model
- NML enables 10x faster Bayesian inference than RMF (30 min vs. 4.5 hrs) with comparable posterior distributions.



Conclusion and future outlook

Key takeaways

- NML Framework: NucleiML (NML) uses a Classifier and two Regressors to replicate RMF predictions for binding energies and charge radii.
- Model Accuracy: The Classifier achieves 92% accuracy; Regressors predict nuclear properties within 5% error for 95% of the test set.
- Generalization: Accuracy improves on unseen nuclei when trained on a more diverse dataset.
- Bayesian Integration: NML enables 10x faster Bayesian inference than RMF (30 min vs. 4.5 hrs) with comparable posterior distributions.

Thank you

Birla Institute of Technology and Sciences, Pilani Hyderabad Campus

Work Presented here is from

"NucleiML: A machine learning framework of ground-state properties of finite nuclei for accelerated Bayesian exploration"

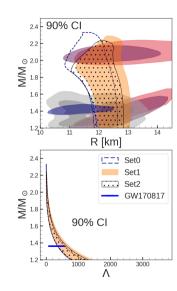
Venneti A, Mondal C, Imam SMA, **Banik S**, and Agrawal BK

In Review, arXiv:2504.03333

Do we need hadron-quark phase transitions inside neutron star cores to satisfy nuclear and astrophysical observations?

Bayesian with hadronic and hybrid EOSs*

- hybrid EOS model = Crust + Relativistic Mean Field model [Malik et al., Phys. Rev. D (2023)] + phase transition [Albino et al., J. Phys.: Conf. Series (2022)] + Mean Field theory of Quantum Chromodynamics [Fogaça et al., Phys. Lett. B (2011)]
- Bayesian analysis with constraints from PSR J0030+0451, PSR J0740+6620, and PSR J0437-4715 and GW170817
- smooth hybrid EOSs are slightly more favoured according to pulsar observations but GW data remains indecisive



^{*}Bayesian evaluation of hadron-quark phase transition models through neutron star observables in light of nuclear and astrophysics data

D. Guha Roy, A. Venneti, T. Malik, S. Bhattacharya, **S. Banik** Phys. Lett. B 859 (2024) 139128

Conformality of matter inside hybrid stars

- parameter $d_c=\sqrt{\Delta^2+(\Delta')^2}$, where Δ is renormalized trace anomaly, proposed in Annala et al., Nature Commun. (2023), as a measure of conformality
- quark matter remains strongly interacting, and the conformal limit is not reached at the NS center
- even with purely nucleonic degrees of freedom, d_c gradually decreases below 0.2 around 5 $\rho_{B,0}$
- for hybrid models d_c crosses this threshold at lower densities
- threshold value for d_c (horizontal dashed line) might not be universally applicable across models

