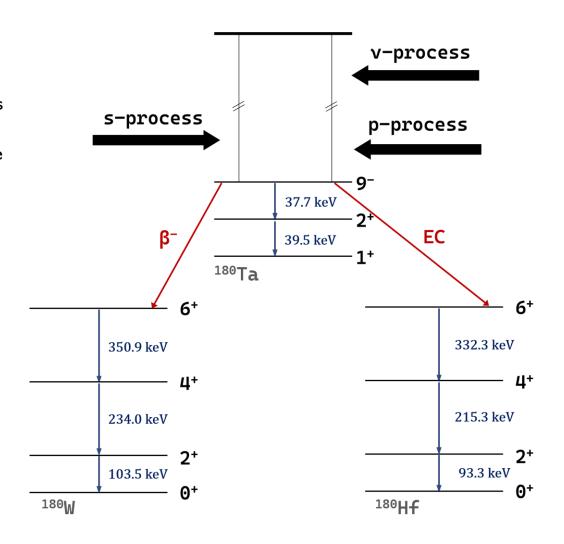
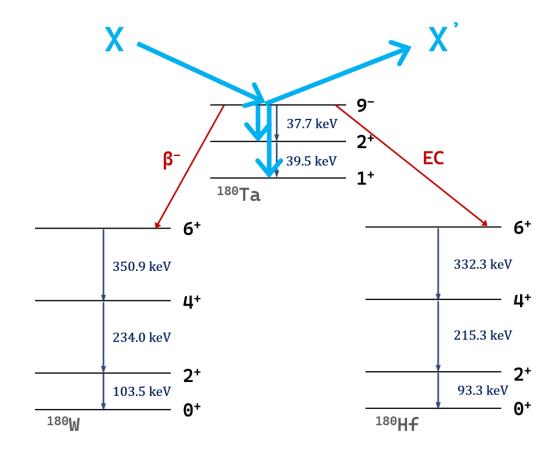
Early-stage developments about studying Ta-180m decay at cryogenic temperature


Woo Tae Kim (IBS-CUP)


Diverse Physics Investigations Using the Tantalum

- Origin of Ta in the Universe
 - The rare existence of ¹80mTa provides insight into nucleosynthesis mechanisms
 - Understand of possible production channels of Tantalum :
 - V-process, s-process, p-process, Thermal excitation in the early universe
- Longest-Lived Metastable Nuclear State
 - 180mTa: The only naturally occurring isomer never observed to decay
 - An extreme case for studying spin traps and nuclear selection rules
 - Theoretical decay modes: β^- , EC, γ -transition, internal conversion, etc
 - Ground-state ¹⁸⁰Ta is unstable

Diverse Physics Investigations Using the Tantalum

- Origin of Ta in the Universe
 - The rare existence of ¹80mTa provides insight into nucleosynthesis mechanisms
 - Understand of possible production channels of Tantalum :
 - V-process, s-process, p-process, Thermal excitation in the early universe
- Longest-Lived Metastable Nuclear State
 - 180mTa: The only naturally occurring isomer never observed to decay
 - An extreme case for studying spin traps and nuclear selection rules
 - Theoretical decay modes: β^- , EC, γ -transition, internal conversion, etc
 - Ground-state ¹⁸⁰Ta is unstable
- Search for Dark Matter with Tantalum (PHYSICAL REVIEW D 101, 055001 (2020))
 - Long-lived nuclear isomers like ^{180m}Ta can probe strongly interacting DM and inelastic DM by utilizing their stored excitation energy.

Ta-180 experiments

MAJORANA DEMONSTRATOR ([1])

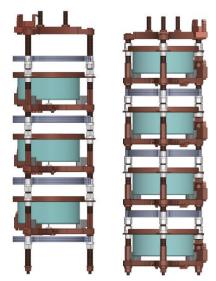
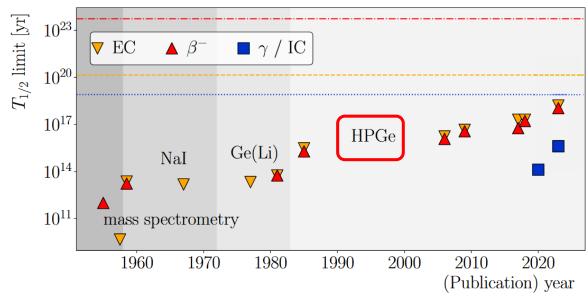



TABLE I. Measured decay half-life limits. Results are given at a 90% C.L. using the one-dimensional spectral fits (SF), a multiplicity-two analysis (2D) where applicable, and the strongest limit for the decay channel. The nomenclature introduced in Eq. (1) is used to describe each decay channel. For the 39.5-keV transition (*), the internal conversion factor is calculated using Ref. [17].

Method	EC		β^-		γ		IC		α	
	Energy (keV)	$T_{1/2}$ (10 ¹⁸ yr)	Energy (keV)	$T_{1/2}$ (10 ¹⁸ yr)	Energy (keV)	$T_{1/2}$ (10 ¹⁸ yr)	Energy (keV)	$T_{1/2}$ (10 ¹⁸ yr)	Energy (keV)	$T_{1/2}$ (10 ¹⁸ yr)
SF	93.3 215.3 332.2	1.23(30) 5.69(55) 10.0(13)	103.6 234.0 350.9	1.54(17) 5.76(75) 9.31(114)	37.7 39.5 93.3 103.6	0.63(8) 0.06(1)* 0.29(4) 0.07(2)	39.5 93.3 103.6	0.06(1)* 0.29(4) 0.07(2)	184.1 204.7 388.8	4.80(42) 5.58(54) 10.2(12)
2D	93.3 + 215.3 93.3 + 332.2 215.3 + 332.2	3.18(56)	103.6 + 234.0 $103.6 + 350.9$ $234.0 + 350.9$	2.65(49) 4.18(78) 15.4(27)					184.1 + 204.7	11.3(22)
Best: this work Previous works		13.3(22) 1.6 [11]		15.4(27) 1.1 [11]		0.63(8) 0.0045 [11]		0.29(4) 0.0045 [11]		11.3(22)
Expected $T_{1/2}$ [12,13,18,19]		10^{20} yr		10^{23} yr		10^{31} yr		10 ^{18–19} yr		10 ²⁸ yr

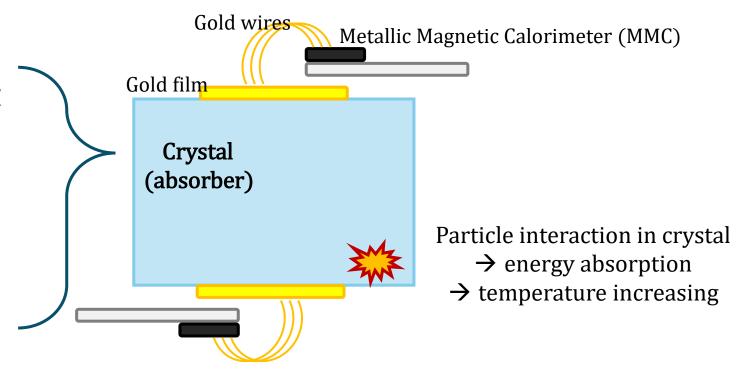
- HPGe detector
- A total of 17.39 kg of Ta disks, total ^{180m}Ta mass of 2.045 g
- New limit up to $1.5\times10^{19}\,\text{yr}$, improve previous results by 1-2 orders of magnitude and represent the most sensitive searches to date for β and EC

Ta-180 experiments

History of tantalum decay measurements with lower limits on each channels. ([2])

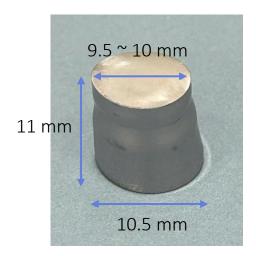
 For γ/IC, the detection efficiency of HPGe detectors is a few percent when using a tantalum metal disk several mm thick. ([2], [3]) therefore, previous experiments employed large quantities of tantalum.

- > Source = detector: Increasing detection efficiency
- \triangleright Enrichment of ¹⁸⁰Ta using thermal diffusion column (From 0.0123% to 0.5 5 %)

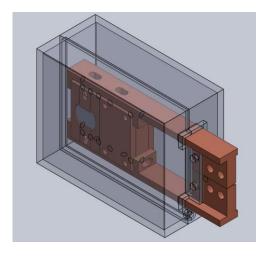

[2] arXiv:2305.17238v3

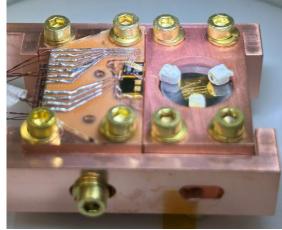
[3] G. Kim, Ph.D. thesis, Ewha Womans Univ., 2019.

^{180m}Ta decay searching at Low temperature


Candidates

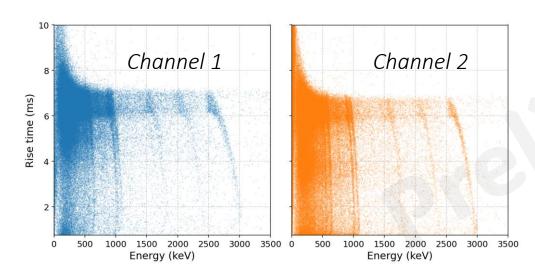
- <u>Ta single crystal: Superconductor</u>
- LiTaO₃: Pyroelectric material
- KTaO₃: potassium background
- Ta₂O₅: high melting point
- NaTaO₃, etc.



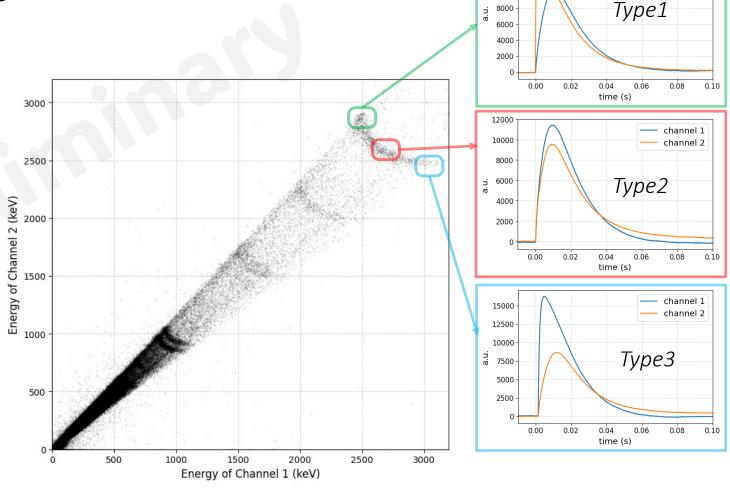

Quasiparticle recombination → Dual phonon channels

Experimental Set up

- Tantalum single crystal
 - 99.99 % impurity
 - Mass: ~ 15.8 g
- Acid cleaning was performed using a BOE solution.
- Using Bress screws and METCLAS 2714 shield to avoid field trap in superconductor.
- Source: ²³²Th (511, 583, 911, 968, 2615 keV γ-ray)
- Operation temperature: ~26 mK


(Left) dual phonon detector design with aluminum shielding

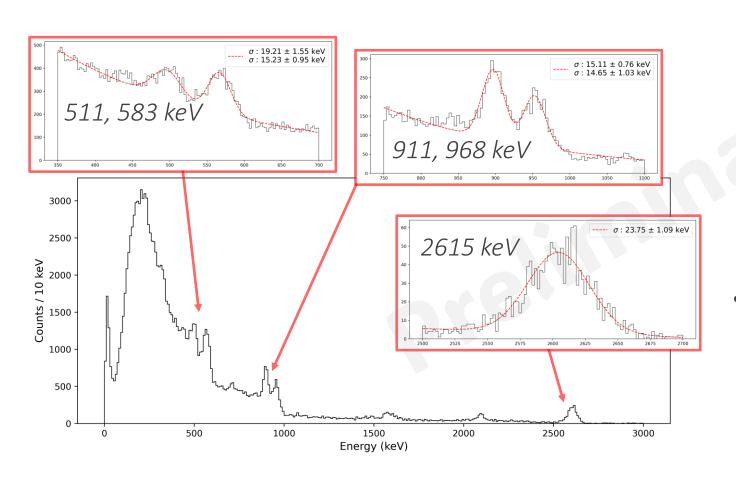
(Right) Gold wire bonding between MMC and gold film on the Ta crystal

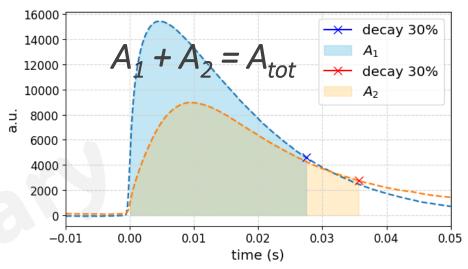


Install the 2nd Tantalum experiment in the R&D dilution refrigerator.

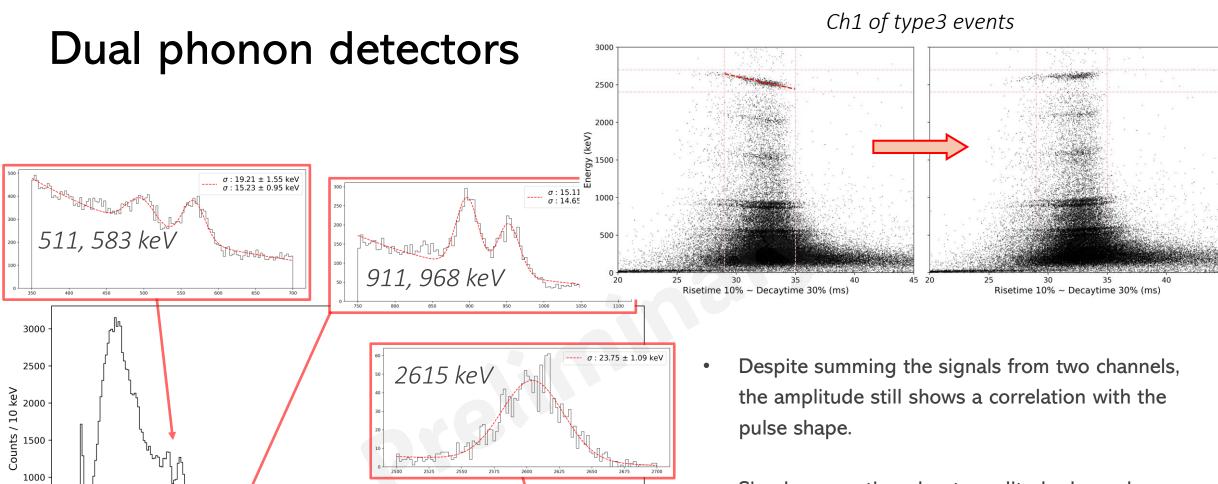
Dual phonon detectors

- Preliminary result for dual phonon detectors of Ta single crystal.
- Pulses from the two detectors show the different shape by the quasiparticle recombination effect.
- The amplitude is highly sensitive to signal shape parameters such as rise time and pulse width.



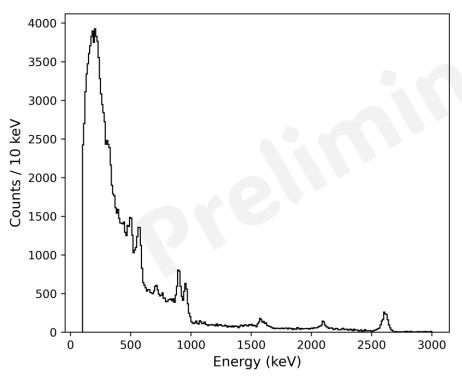

--- channel 1 --- channel 2

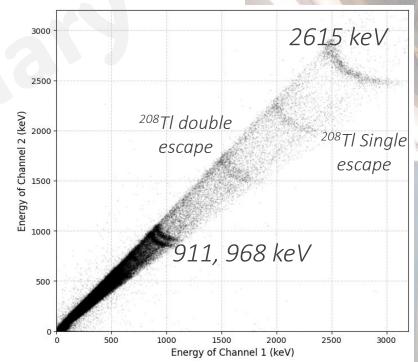
12000 10000

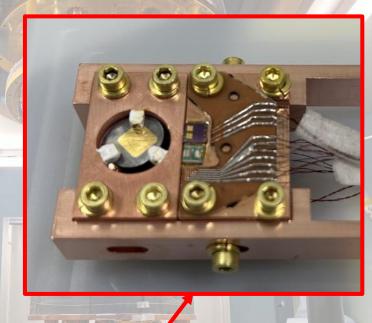

Amplitude of the two channels and 2.615MeV events

Dual phonon detectors

The summed amplitude spectrum from the two channels shows greater improvement compared to the energy spectrum of each individual channel.

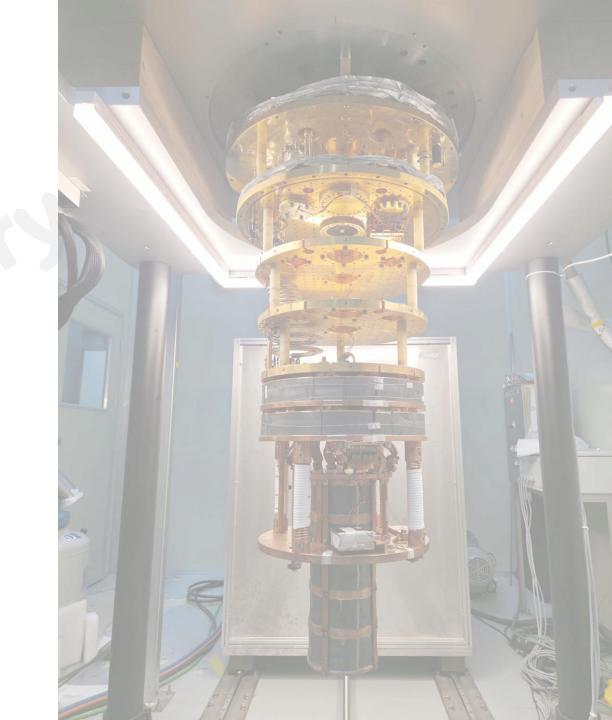

Energy (keV)


• Simply, correction about amplitude dependence with pulse shape parameter, energy resolution was improved.


FURTHER

- Enrichment of 180Ta
 - ^{180m}Ta is the rarest isotope (Natural abundance: 0.0123%)
 - Using thermal diffusion column -> 0.5% ~ 5% Enrichment (proposal)
- Optimization detector design
 - Geometry of absorber: considering the attenuation length (quasiparticle recombination) of Tantalum single crystal
 - Absorber thickness for enough detection efficiency (γ , IC): simulation
 - Energy resolution, threshold (Region Of Interest, ROI: 37.7, 39.5, 77.2 keV)
- A tantalum single crystal with 5N purity will be used in the next phase of the study.

Summary



- The R&D experiment investigating the decay of Ta-180 using a tantalum single crystal at cryogenic temperatures is currently ongoing.
- At the same time, we are also exploring alternative candidate absorber materials.

Back Up

Amount needed

_	-
•	~
_/	п.
	•

crystal	Enrich	Ta180	N_180	half-life	# of events	Bkg	DE	BG	sigma	Significance
g	%	g		year	/year	dru	keV	/year		
100	0.26	0.1994	6.6482E+20	1.00E+19	46.01	10	5	1825	42.7	1.08
100	0.5	0.3835	1.2785E+21	1.00E+19	88.47	10	5	1825	42.7	2.07
200	0.5	0.7671	2.557E+21	1.00E+19	176.94	2	5	730	27.0	6.55
732	0.012	0.0674	2.2461E+20	1.00E+18	155.43	2	5	2671.8	51.7	3.01

To discover 1x10¹⁹ year half-life, about 1 g with 0.5% enriched Ta -180 with 2 dru background is necessary.