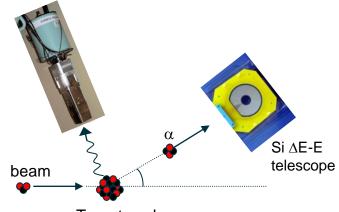


Constraining i-process nucleosynthesis with quasi-continuum nuclear data

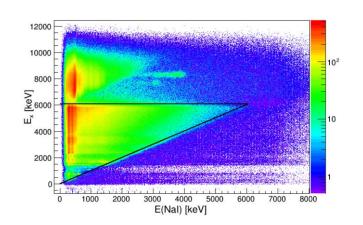
Mathis Wiedeking
Nuclear Science Division
mwiedeking@lbl.gov
https://nuclearscience.lbl.gov/

Supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contracts No. DE-AC02-05CH11231 and by the US Nuclear Data Program.

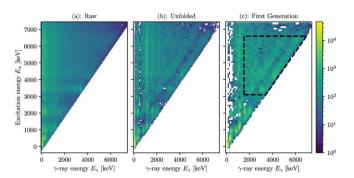
What are we trying to achieve?

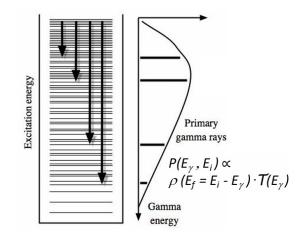


Direct $\sigma(n,\gamma)$ measurements away from stability generally not possible. Apply indirect techniques: Surrogate Method


Quasi-continuum data (PSF/NLD), e.g. ⁶⁶Ni(n,γ)

Measuring the PSF and/or NLD


- Photonuclear Reactions (>S_n)
- Primaries from n-capture (>S_n)
- Nuclear Resonance Fluorescence (<S_n)
- Two-step cascade, n/p capture (<S_n)
- Inelastic p scattering with polarized beam (<S_n and >S_n)
- Primaries from p-capture (>S_p and <S_n)
- Primaries from charged particle reactions (<S_n)
 - o Oslo, beta-Oslo, inverse Oslo Methods
 - Ratio/Shape Methods


Target nucleus

Oslo Methods

Ingeberg et al., Phys. Rev. C 106 054315 (2022).

Beta-Oslo method

First for NLDs and PSFs to be measured away from stability.

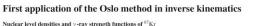
PRL 113, 232502 (2014)

PHYSICAL REVIEW LETTERS

5 DECEMBER 2014

Novel technique for Constraining r-Process (n, γ) Reaction Rates

A. Spyrou, ^{1,2,3,*} S. N. Liddick, ^{1,4,†} A. C. Larsen, ^{5,‡} M. Guttormsen, ⁵ K. Cooper, ^{1,4} A. C. Dombos, ^{1,2,3} D. J. Morrissey, ^{1,4} F. Naqvi, ¹ G. Perdikakis, ^{6,1,3} S. J. Quinn, ^{1,7,3} T. Renstrom, ⁵ J. A. Rodriguez, ¹ A. Simon, ^{1,8} C. S. Sumithrarachchi, ¹ and R. G. T. Zegers^{1,7,3}


Picture from: https://groups.nscl.msu.edu /SuN/SuN photos.php

Inverse-Oslo method

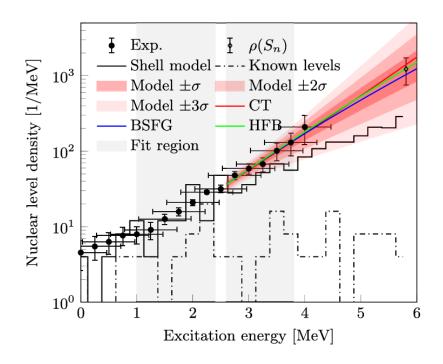
NLDs and PSFs from inversekinematic reactions. Applicable to stable and RIB facilities.

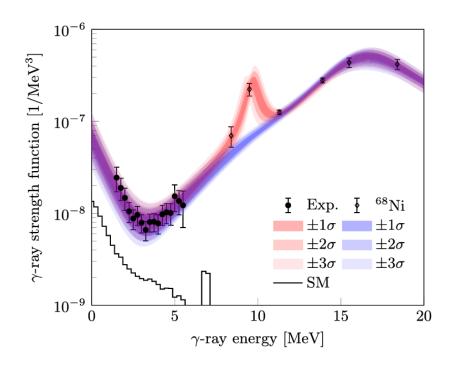
Eur. Phys. J. A (2020) 56:68 https://doi.org/10.1140/epia/s10050-020-00070-7 Regular Article - Experimental Physics

THE EUROPEAN PHYSICAL JOURNAL A

V. W. Ingeberg [12] S. Siem , M. Wiedeking , K. Sieja 3.4, D. L. Bleuel , C. P. Brits 2.6, T. D. Bucher , T. S. Dinoko , J. L. Easton^{2,7}, A. Görgen¹, M. Guttormsen¹, P. Jones², B. V. Kheswa^{2,8}, N. A. Khumalo², A. C. Larsen¹, E. A. Lawrie², J. J. Lawrie², S. N. T. Majola^{2,8,9}, K. L. Malatij^{2,6}, L. Makhathini^{2,6}, B. Maqabuka^{2,7}, D. Negi², S. P. Noncolela^{2,7}, P. Papka^{2,6}, E. Sahin¹, R. Schwengner¹⁰, G. M. Tveten¹, F. Zeiser¹, B. R. Zikhali^{2,7}

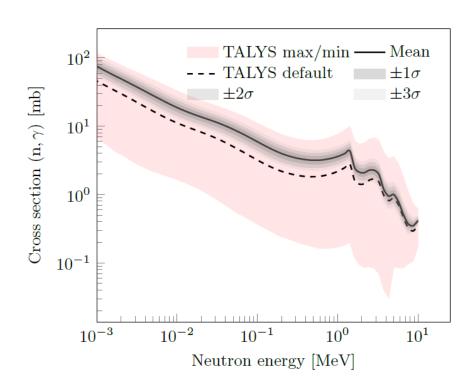
PSF and NLD from Inverse Kinematics at CERN HIE-ISOLDE

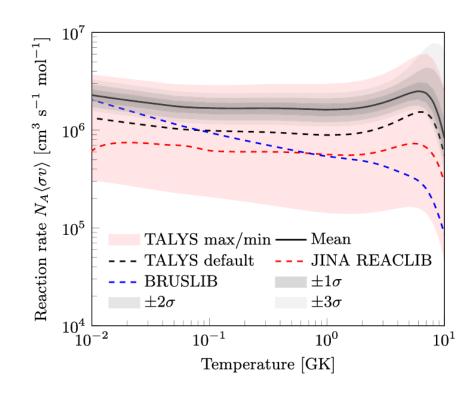

- d(⁶⁶Ni,p)⁶⁷Ni with 4.5 MeV/u
- CD target 0.7mg/cm²
- 3.5x10⁶ pps for 140 hours
- Miniball + LaBr + C-REX
- LaBr: ~320k p-γ, Miniball: ~1.1m p-γ

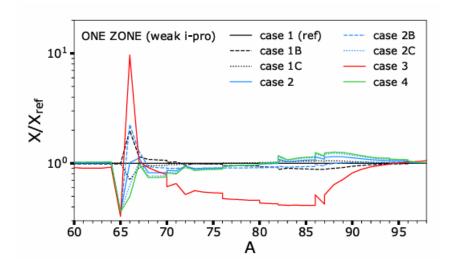

PHYSICAL REVIEW C 111, 015803 (2025)

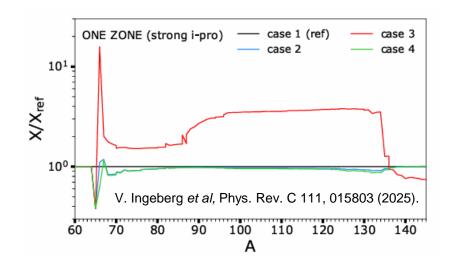
Nuclear level density and ν -ray strength function of ⁶⁷Ni and the impact on the *i* process

```
V. W. Ingeberg ©, <sup>1,2,*</sup> S. Siem ©, <sup>1,2,†</sup> M. Wiedeking ©, <sup>3,4,5</sup> A. Choplin ©, <sup>6</sup> S. Goriely, <sup>6</sup> L. Siess ©, <sup>6</sup> K. J. Abrahams ©, <sup>7</sup> K. Arnswald, <sup>8</sup> F. Bello Garrote ©, <sup>1</sup> D. L. Bleuel ©, <sup>9</sup> J. Cederkäll ©, <sup>10,11</sup> T. L. Christoffersen, <sup>1</sup> D. M. Cox ©, <sup>12,13</sup> H. De Witte ©, <sup>14</sup> L. P. Gaffney ©, <sup>11,‡</sup> A. Görgen ©, <sup>1,2</sup> C. Henrich, <sup>15</sup> A. Illana ©, <sup>14,8</sup> P. Jones ©, <sup>4</sup> B. V. Kheswa ©, <sup>1,1</sup> T. Kröll ©, <sup>15</sup> S. N. T. Majola ©, <sup>4,1</sup> K. L. Malatji ©, <sup>4,16</sup> J. Ojala, <sup>12,13</sup> J. Pakarinen ©, <sup>12,13</sup> G. Rainovski ©, <sup>17</sup> P. Reiter ©, <sup>8</sup> M. von Schmid ©, <sup>15</sup> M. Seidlitz, <sup>8</sup> G. M. Tveten, <sup>1</sup> N. Warr ©, <sup>8</sup> and F. Zeiser © <sup>1</sup> (The ISOLDE Collaboration)
```


⁶⁷Ni: PSF and NLD




V. Ingeberg et al, Phys. Rev. C 111, 015803 (2025).


$^{66}Ni(n,\gamma)$

⁶⁶Ni(n,γ) i-process nucleosynthesis (one-zone)

Low-metallicity, low-mass stars during the early thermally pulsating Asymptotic Giant Branch phase.

One zone model:

"The ⁶⁶Ni(n,γ) reaction is found to behave as a major bottleneck for the i-process nucleosynthesis."

McKay et al., MNRAS 491, 5179 (2020).

⁶⁶Ni(n,γ) i-process nucleosynthesis (multi-zone)

Low-metallicity, low-mass stars during the early thermally pulsating Asymptotic Giant Branch phase.

Impact is marginal in multi-zone low-mass, low-metallicity AGB stellar models experiencing i-process nucleosynthesis.

V. Ingeberg et al, Phys. Rev. C 111, 015803 (2025).

Summary

- Quasi-continuum Nuclear Data provide a tool to indirectly obtain (n,γ) cross sections away from stability.
- Majority of tools (experimental, analytical, detection) available
 - Many novel measurements now possible.
- i-process nucleosynthesis: (n,γ) cross sections for ⁶⁶Ni(n,γ)
 - Impact in one-zone calculations.
 - Negligible in multi-zone calculations.

Thank you!

Mathis Wiedeking
Nuclear Science Division
mwiedeking@lbl.gov
https://nuclearscience.lbl.gov/

Supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contracts No. DE-AC02-05CH11231 and by the US Nuclear Data Program.