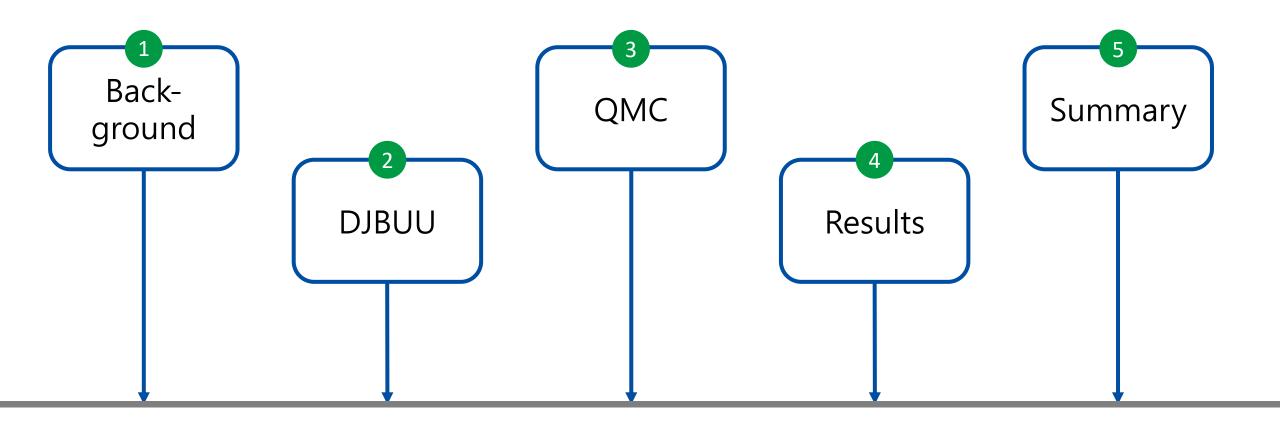
Heavy-Ion Collision Simulation using Quark-Meson Coupling Model

Dae Ik Kim¹

in collaboration with C.-H. Lee¹, S. Jeon², Y. Kim³, K. Kim⁴ and K. Tsushima⁵

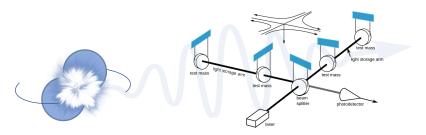
¹Department of Physics, Pusan National University, South Korea ²Department of Physics, McGill University, Canada ³Center of Exotic Nuclear Studies, Institute of Basic Science, South Korea ⁴Institute for Rare Isotope Science, Institute of Basic Science, South Korea ⁵Laboratório de Física Teórica e Computacional-LFTC, Programa de Pósgraduação em Astrofísica e Física Computacional, Universidade Cidade de São Paulo, 01506-000 São Paulo, SP, Brazil

2025. 05. 30.

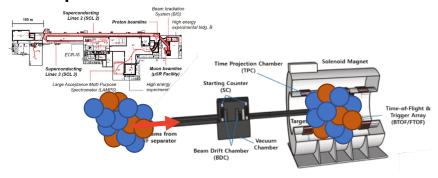


CONTENTS

1.Background



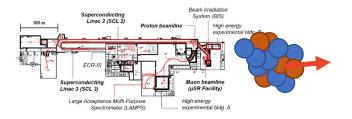
1

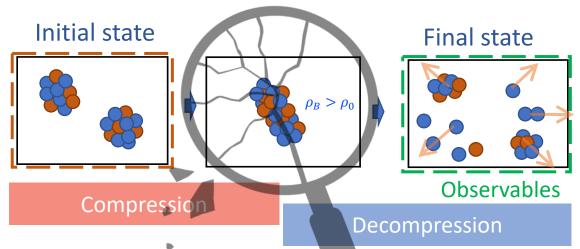

Nuclear matter: Why and How?

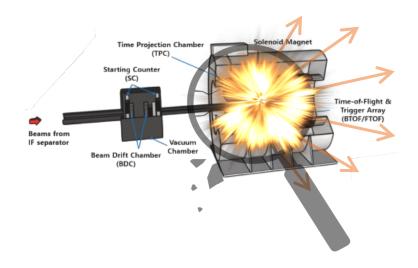
① Observations (ex. GW170817)

② Experiments (ex. HICs with RI)

- Studying nuclear matter is important for both astro- and nuclear physics
- Astrophysics : Neutron star, CCSN...
- Nuclear physics: Binding energy, Symmetry energy, GMR, Neutron skin...


1.Background

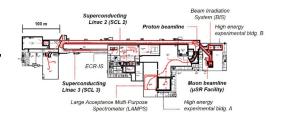

Heavy-ion Collisions (HICs)


- Can briefly generate dense nuclear matter
- Non-equilibrium process

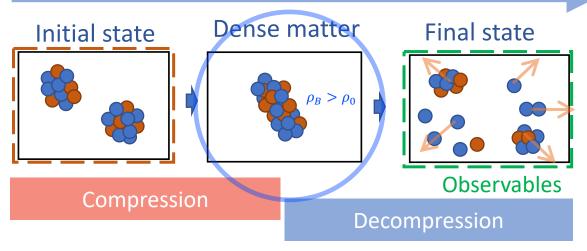
RI beam facilities, such as RAON

We can't measure this

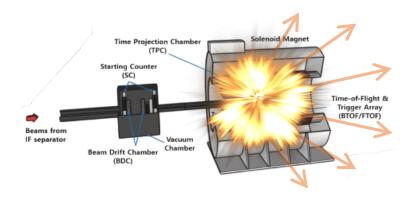
 To study nuclear matter from final states, we need a tool that bridges the EOS to observables

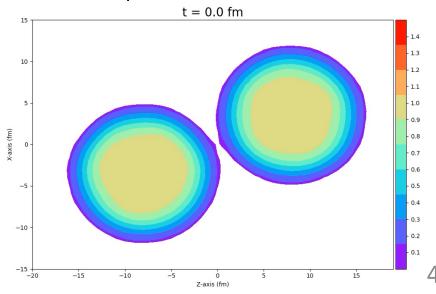

2

1


Heavy-ion Collisions (HICs)

- Can briefly generate dense nuclear matter
- Non-equilibrium process


RI beam facilities, such as RAON


Full-time evolution of Dynamics in Heavy-Ion Collision

Allow to study Nuclear EOS ~ HIC Observables

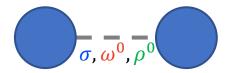
Transport model

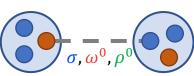
DaeJeon Boltzmann-Uehling-Ulenbeck (DJBUU) model

Is a relativistic BUU model based on the Boltzmann equation.

$$\frac{1}{p^{*0}} \left[p^{\mu} \partial_{\mu} - \left(p_{\mu} \mathcal{F}^{\mu i} - m^* \partial^i m^* \right) \frac{\partial}{\partial p^i} \right] f(\vec{x}, \vec{p}) = C(\vec{x}, \vec{p})$$

Test particles method


① Propagation


② Collision

Nuclear interaction from RMF theory (previous QHD)

With QMC, can we do sth that we couldn't before? This work: Replacing

-QHD (Hadron) → -QMC (Quark)

- m^* for other baryons $(\Delta, \Lambda, ...)$ from g_{σ}^q
- Quark contribution in low-energy HICs...?

$$C(\vec{x}, \vec{p}) = C_{NN \leftrightarrow NN} + C_{NN \leftrightarrow N\Delta} + \cdots$$

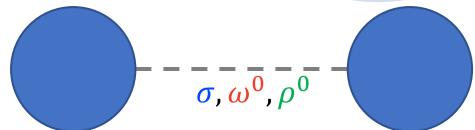
In-medium modification**: $\sigma_{NN\to N\Delta}(\rho_B) = \sigma_{NN\to N\Delta}(0) \times \exp\left(-C\frac{\rho_B}{c}\right)$

Does this still work with OMC?

$$= \sigma_{NN \to N\Delta}(0) \times \exp\left(-C\frac{\rho_B}{\rho_0}\right) \left(\frac{N}{Z}\right)_{\text{sys}}^{x \to \infty}$$
this still work
$$(C, x^+, x^0, x^-) = (2.5, 0, 0.5, 2)$$

Zhang and Ko, PRC, 2018, 98, 054614.

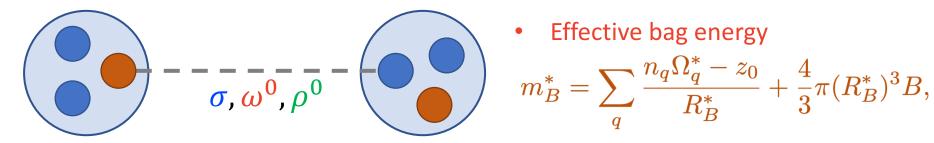
MK Kim et al, Universe, 2022, 8, 564.


QMC

Relativistic Mean-Field (RMF) theory

① Quantum hadro-dynamics (QHD)

$$\mathcal{L}_{N,\text{QHD}} = \bar{\psi}_N \left[i \gamma_\mu \partial^\mu - (m_N - g_\sigma \sigma) - g_\omega \gamma_0 \omega^0 - g_\rho \gamma_0 \, \tau_3 \rho^0 \right] \psi_N$$



Nucleon: Point particle

② Quark-meson coupling (QMC) *

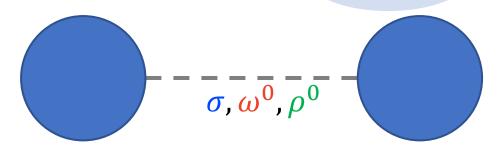
using the MIT bag model Nucleon: Bag containing quarks

$$\mathcal{L}_{\mathbf{q}} = \bar{\psi}_{\mathbf{q}} \left[i \gamma_{\mu} \partial^{\mu} - \left(m_{\mathbf{q}} - g_{\sigma}^{\mathbf{q}} \sigma \right) - g_{\omega}^{\mathbf{q}} \gamma_{0} \omega^{0} - g_{\rho}^{\mathbf{q}} \gamma_{0} \tau_{3} \rho^{0} \right] \psi_{\mathbf{q}} \Theta_{\text{Bag}}^{\mathbf{v}}$$

Effective bag energy

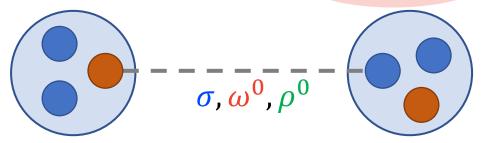
$$m_B^* = \sum_q \frac{n_q \Omega_q^* - z_0}{R_B^*} + \frac{4}{3} \pi (R_B^*)^3 B,$$

^{*} Guichon, Physics Letters B, 200, 3


3. QMC

Relativistic Mean-Field (RMF) theory

① Quantum hadro-dynamics (QHD)


$$\mathcal{L}_{N,\text{QHD}} = \bar{\psi}_N \left[i \gamma_\mu \partial^\mu - (m_N - g_\sigma \sigma) - g_\omega \gamma_0 \omega^0 - g_\rho \gamma_0 \tau_3 \rho^0 \right] \psi_N$$

② Quark-meson coupling (QMC) *

$$m_B^* = m_B - g_\sigma^N \sigma + \frac{a_B}{2} (g_\sigma^N \sigma)^2 + \cdots,$$

$$\mathcal{L}_{B,QMC} = \bar{\psi}_B \left[i \gamma_\mu \partial^\mu - (m_B - g_\sigma(\sigma)\sigma) - g_\omega \gamma_0 \omega^0 - g_\rho \gamma_0 \tau_3 \rho^0 \right] \psi_B,$$

$$3q_{\sigma}^{q}S(0) = g_{\sigma},$$
 $3g_{\omega}^{q} = g_{\omega},$ $S(\sigma) = \int_{Bag} \bar{\psi}_{q}(y)\psi_{q}(y)d^{3}y$ $g_{\rho}^{q} = g_{\rho},$

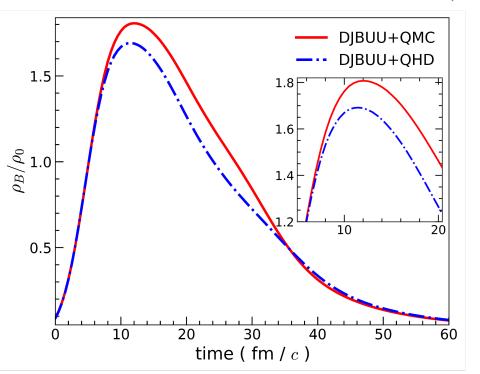
^{*} Guichon, Physics Letters B, 200, 3

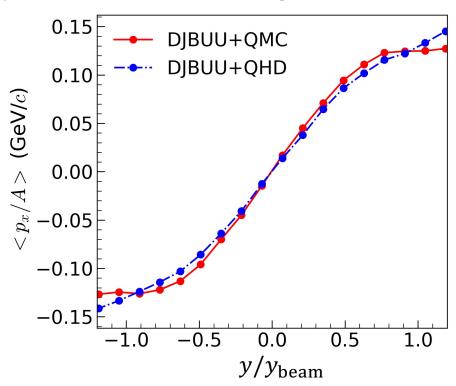
3. QMC

DJBUU+QMC project: implementing QMC in DJBUU

- ① Benchmarking DJBUU+QMC against DJBUU+QHD
- ② Benchmarking DJBUU+QMC comparing experimental data
- ③ Investigating pion production using DJBUU+QMC: Ongoing

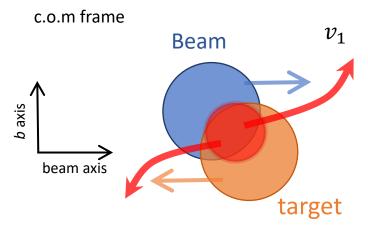
Present stage


Future plans

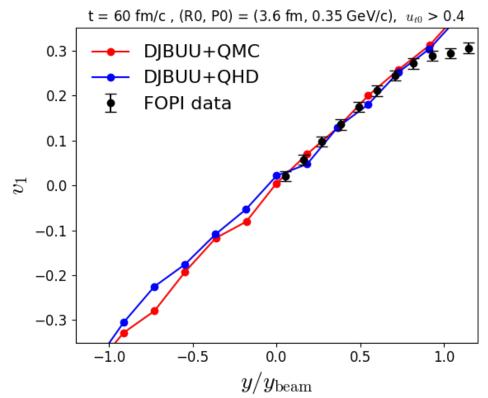

 Upgrading DJBUU for further application of QMC in HICs (e.g. adding hyperon and their channals to study hyperons in medium produced by HICs using QMC)

Central density and Transverse flow

 $- ^{197}$ Au $+ ^{197}$ Au, $E_{\text{beam}} = 400$ A MeV, $0.25 < b_0 < 0.45$ (FOPI)



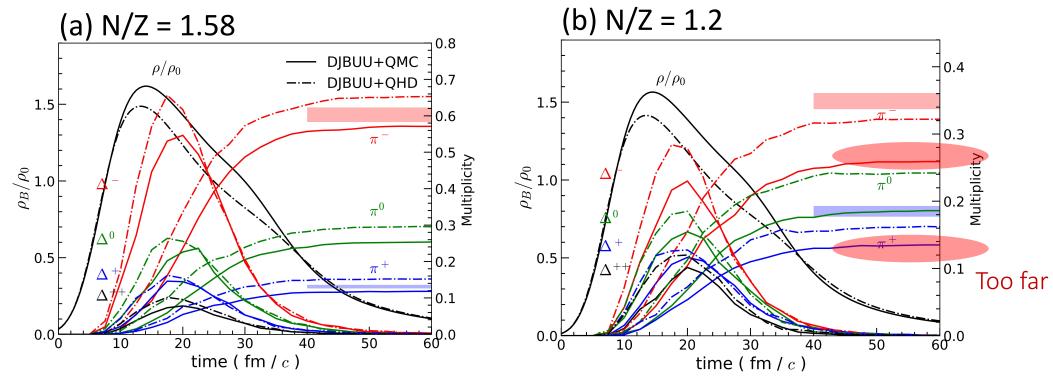
- QMC shows higher central density than QHD.
- Transverse flows are similar, but QMC result is slightly stiffer


Directed flow

 $- {}^{197}\text{Au} + {}^{197}\text{Au}$, $E_{\text{beam}} = 400 \text{ A MeV}$, $0.25 < b_0 < 0.45 \text{ (FOPI)}$

$$\frac{dN}{d\phi} = v_0 [1 + 2v_1 \cos(\phi) + \cdots],$$

$$v_1 = \left\langle \frac{p_x}{p_t} \right\rangle = \langle \cos(\phi) \rangle$$



- Directed flows show similar trend to transverse flows.
- Both match experimental data.

Central densities and π production

- Sn+Sn , E_{beam} = 270 A MeV, b = 3 fm (S π RIT)

- QMC shows higher central densities
- EOS dependence was washed out?
- but lower yields (due to modification; C = 2.5)

$$\sigma_{NN\to N\Delta}(\rho_B) = \sigma_{NN\to N\Delta}(0) \times \exp\left(-C\frac{\rho_B}{\rho_0}\right) \left(\frac{N}{Z}\right)_{\rm sys}^{x^{\pm,0}}$$
 We can't use same parameter set of in-medium cross-section

4

π production

$$DR = \frac{[Y(\pi^-)/Y(\pi^+)]_{132+124}}{[Y(\pi^-)/Y(\pi^+)]_{108+112}}.$$

(a) 132 Sn + 124 Sn ($N/Z = 1.56$)		(b) 108 Sn + 112 Sn ($N/Z = 1.2$)			DR	
$Y(\pi^-)$	$Y(\pi^+)$	SR	$Y(\pi^-)$	$Y(\pi^+)$	SR	
0.655(18)	0.153(10)	4.78(45)	0.322(8)	0.163(7)	2.04(9)	2.34(10)
0.573(15)	0.118(6)	5.14(31)	0.259(11)	0.136(10)	2.11(18)	2.44(10)
0.686(14)	0.152(10)	4.99(40)	0.328(13)	0.156(9)	2.23(15)	2.23(11)
0.603(20)	0.131(5)	4.60(11)	0.349(12)	0.186(8)	1.89(4)	2.44(10)
	$Y(\pi^{-})$ $0.655(18)$ $0.573(15)$ $0.686(14)$	$Y(\pi^{-})$ $Y(\pi^{+})$ $0.655(18)$ $0.153(10)$ $0.573(15)$ $0.118(6)$ $0.686(14)$ $0.152(10)$	$Y(\pi^{-})$ $Y(\pi^{+})$ SR 0.655(18) $0.153(10)$ $4.78(45)0.573(15)$ $0.118(6)$ $5.14(31)0.686(14)$ $0.152(10)$ $4.99(40)$	$Y(\pi^{-})$ $Y(\pi^{+})$ SR $Y(\pi^{-})$ 0.655(18) $0.153(10)$ $4.78(45)$ $0.322(8)0.573(15)$ $0.118(6)$ $5.14(31)$ $0.259(11)0.686(14)$ $0.152(10)$ $4.99(40)$ $0.328(13)$	$Y(\pi^{-})$ $Y(\pi^{+})$ SR $Y(\pi^{-})$ $Y(\pi^{+})$ 0.655(18) 0.153(10) 4.78(45) 0.322(8) 0.163(7) 0.573(15) 0.118(6) 5.14(31) 0.259(11) 0.136(10) 0.686(14) 0.152(10) 4.99(40) 0.328(13) 0.156(9)	$Y(\pi^-)$ $Y(\pi^+)$ SR $Y(\pi^-)$ $Y(\pi^+)$ SR $Y(\pi^-)$ $Y(\pi^+)$ SR $0.655(18)$ $0.153(10)$ $4.78(45)$ $0.322(8)$ $0.163(7)$ $2.04(9)$ $0.573(15)$ $0.118(6)$ $5.14(31)$ $0.259(11)$ $0.136(10)$ $2.11(18)$ $0.686(14)$ $0.152(10)$ $4.99(40)$ $0.328(13)$ $0.156(9)$ $2.23(15)$

- By reducing *C* from 2.5 to 2.2, yields are better matched, keeping consistency with the Double pion ratio (DR)
- Assignment: Can we get a universal in-medium modification that independently work for various EOSs(or other parameter sets)?
- Ongoing: Studying EOS dependence without any in-medium modification.

5. Summary

- The DJBUU model describes Heavy-Ion Collisions (HICs) using Relativistic BUU model, acting as a bridge between nuclear matter properties and HIC observables.
- The Quark-Meson Coupling model, quark-based RMF approach, incorporates nucleon-nucleon (NN) interactions through quark and meson coupling mechanisms.
- With DJBUU+QMC and the original DJBUU, we performed simulations of:
 - Au+Au systems, focusing on central density, transverse and directed flow, to verify the applicability of QMC to HIC simulation.
 - Sn+Sn systems, focusing on central density, π yields and their ratios.
 - → Matching yields and ratios with different parameter set of in-medium modification.
 - → Ongoing: studying pion production without in-medium effects on NN collision.