

Contribution ID: 209

Type: Contributed Poster Presentation

Relaxation of shell effect in giant dipole resonance width away from magicity

The isovector giant dipole resonance (IVGDR) serves as a crucial tool for probing a wide range of phenomena, from r-process nucleosynthesis to the determination of the strength of gravitational waves. Generally, the width of the IVGDR (Γ_G) increases with temperature (T) in the range of 1 MeV lessimT

 $less sim 3\,\mathrm{MeV},$ with the possibility of saturation at higher temperatures [1]. However, in the low-temperature regime (T

less sim 1 MeV), studying Γ_G is particularly challenging due to the difficulty of achieving low excitation energies. Limited investigations in this regime suggest that the behavior of Γ_G is ambiguous, influenced by microscopic effects such as shell effects and pairing fluctuations, which hinder the expected thermal broadening of Γ_G [2, 3] .

Motivated by these challenges, we conducted a detailed study of Γ_G in the low-to-intermediate temperature range for nuclei near the N=Z=28 shell closure, where detailed analyses are currently lacking. Our work elucidates the relative importance of neutron-to-proton ratio (N/Z), shell closure, and thermal fluctuations in shaping the temperature dependence of Γ_G for nuclei near the doubly magic 56 Ni. To isolate these effects, we studied 62 Zn and 68 Zn nuclei, populated via α -induced fusion reactions. High-energy γ -rays ($E_{\gamma}>4$ MeV) emitted from IVGDR decay were detected using the Large Area Modular BaF $_2$ Detector Array (LAMBDA) [4]. The measured spectra were analyzed using statistical model calculations implemented in TALYS.

A contrasting thermal behavior of Γ_G was observed for the two nuclei. For 68 Zn, the width (Γ_G) increases monotonically with temperature from its ground-state value. In contrast, 62 Zn exhibited a suppressed width at low temperatures, consistent with the behavior of nearby nuclei with neutron and/or proton numbers close to 28. This suggests that the suppression of Γ_G at low temperatures is not a universal feature but is influenced by proximity to magic numbers, rather than N/Z asymmetry.

Primary author: SEN, Chandrani (Variable Energy Cyclotron Centre, Kolkata, India)

Co-authors: Mr MONDAL, Debasish (Variable Energy Cyclotron Centre, Kolkata, India); Mr PANDIT, Deepak (Variable Energy Cyclotron Centre, Kolkata, India); Mr BANERJEE, Gourab (Saha Institute of Nuclear Physics, Kolkata, India); Mr SADHUKHAN, Jhilam (Variable Energy Cyclotron Centre, Kolkata, India); Mr ROY, Pratap (Variable Energy Cyclotron Centre, Kolkata, India); Ms SADHUKHAN, Saumanti (Variable Energy Cyclotron Centre, Kolkata, India); Mr MUKHOPADHYAY, Supriya (Variable Energy Cyclotron Centre, Kolkata, India); Mr PAL, Surajit (Variable Energy Cyclotron Centre, Kolkata, India)

Presenter: SEN, Chandrani (Variable Energy Cyclotron Centre, Kolkata, India)

Session Classification: Poster Session

Track Classification: Nuclear Structure