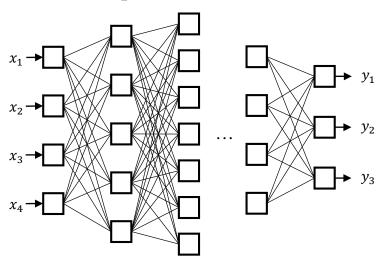
Reliable Deep Learning for Nuclear Physics

Addressing uncertainty quantification and extrapolation

Chanhee KIM (Ben)
SungKyunKwan Univ.
chkim@phys.kim

Strengths of deep learning for physics

Deep neural networks

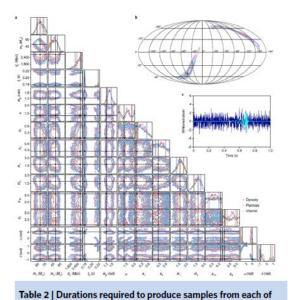


- Large number of parameters
- Complex entanglements with nonlinear functions
- → Flexibility
- \rightarrow Accuracy
- \rightarrow Speed

electron	Pile-up —— Prediction —— Original
proton proton	0.5
₫ MicroBooNE	
Simulation	Pile-up Prediction Original Original Original
	0.5
☐ 1st Category ☐ Muon instance ☐ 2nd Category ☐ Proton instance ☐ 3rd Category ☐ Proton instance ☐ Electron instance	0 2 4 0 2 4 Time (μs) (d) Time (μs)
(2019, PRD, C. Adams)	(2023, NIMA, C. H. Kim)

σ_{pre}		$\begin{array}{c} \text{LDM} \\ 2.462 \pm 0.023 \end{array}$	DZ 0.613 ± 0.007	WS4 0.302 ± 0.003	FRDM 0.599 ± 0.009
	RBF by Wang [11]	-	-	0.170	-
	KRR by Wu [40]	_	_	0.199	_
	RBFs by Ma [59]	_	_	0.130	0.209
Training set	LMNN by Zhang [39]	0.235	0.325	_	0.348
	BNN by Niu [27]	_	_	0.176	0.187
	RBFoe by Niu [41]	_	0.171	0.140	0.182
	NN by Utama [25]	0.466	0.274	_	0.342
	NN by Pastore [58]	_	0.324	_	_
	Trees by Carnini [44]	2.070	0.471	_	_
	LightGBM in this work	0.058 ± 0.011	0.066 ± 0.010	0.055 ± 0.011	0.077 ± 0.013
Test set	LMNN by Zhang	0.256	0.329	_	0.368
	BNN by Niu	_	_	0.212	0.252
	RBFoe by Niu	_	0.344	0.337	0.218
	NN by Utama	0.486	0.278	_	0.352
	NN by Pastore	_	0.358	_	-
	Trees by Carnini	2.881	0.569	_	_
	LightGBM in this work	0.234 ± 0.022	0.213 ± 0.018	0.170 ± 0.011	0.222 ± 0.016

(2021, Nucl. Sci. Tech, Z. Gao)



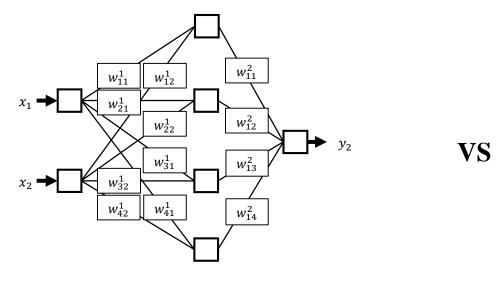
the sampling approaches Ratio VItamin Max. Median 261,268 2.2×10-6 21,564 45.607b 39,930 19,821 5.1 x 10-6 2,392 501,632 41,151.0 2.4×10-6 1.2×10-6 10,309 437,008

VItamin

(2022, Nat. Phys., H. Gabbard)

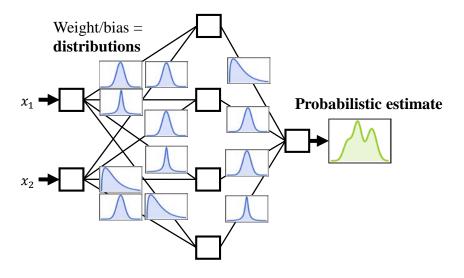
Uncertainty quantification

Conventional neural networks



- ⇒ The outputs are not expressive and only **plain single prediction**
- Test results do not reflect uncertainties in real applications
- Failure of predictions and **out-of-distribution data** cannot be detected

Probabilistic neural networks



- → It includes **numerous possible parameter sets**
- → **Model uncertainty** from parameters can be captured
- → Expressive predictions and **confidence levels** are provided

How to obtain probabilistic expressions for parameters from training data

2022, IEEE, L. Jospin 2024, PRC, C. H. Kim

Bayesian deep learning

Bayesian inference for network parameters using training data (Training = Inference)

$$p(\boldsymbol{\theta}|\boldsymbol{D_x}, \boldsymbol{D_y}) = \frac{p(\boldsymbol{D_y}|\boldsymbol{D_x}, \boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\boldsymbol{D_y}|\boldsymbol{D_x})}$$

Bayesian Marginalization

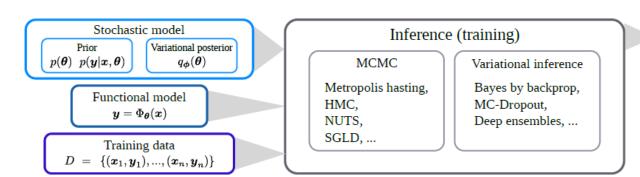
Conventional deep learning

- Optimization
- Find single best parameter set
 Consider all possible sets

Bayesian deep learning

- Marginalization

$$\frac{p(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{D})}{\uparrow} = \int_{\boldsymbol{\theta}} \frac{p(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{\theta'})}{\uparrow} \frac{p(\boldsymbol{\theta'}|\boldsymbol{D})}{\uparrow} d\boldsymbol{\theta'}$$
Predictive Likelihood Posterior distribution



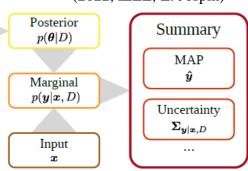
(Markov Chain) Monte Carlo

Because of countless parameters in complex structure, extremely expensive for modern deep neural networks (not scalable)

Variational inference

Use a variational distribution to approximate posterior Suitable for modern size of neural network (fast and scalable)

Optimization of KL-divergence (closeness of two distributions) between approximate distribution and posterior distribution



2020, NIPS, A. Wilson 2022, IEEE, L. Jospin

Methods for Bayesian deep learning

Monte Carlo Dropout (2016, PMLR, Y. Gal)

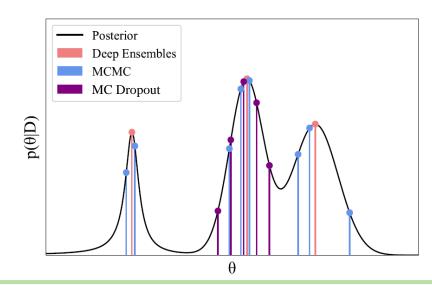
- **1**. Training with **dropout** and *L2* regularization
- ⇒ Minimization of the loss function (NLL) ~ Optimization of KL-divergence
- Approximation distribution for posterior: Bernoulli distribution (dropout)
- Prior: Gaussian (*L2* regularization)
- 2. Even after training, turn on dropout

Each forward pass will sample a parameter set from the approximated posterior.

$$p(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{D}) = \int_{\boldsymbol{\theta}} p(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{\theta'}) p(\boldsymbol{\theta'}|\boldsymbol{D}) d\boldsymbol{\theta'}$$

$$\approx \int_{\boldsymbol{\theta}} p(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{\theta'}) q_{\boldsymbol{\phi}}(\boldsymbol{\theta'}) d\boldsymbol{\theta'}$$

$$\approx \frac{1}{N_{\text{MC}}} \sum_{i=1}^{N_{\text{MC}}} p(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{\theta_n^*})$$



<u>Deep Ensembles</u> (2017, NIPS, B. Lakshminarayanan)

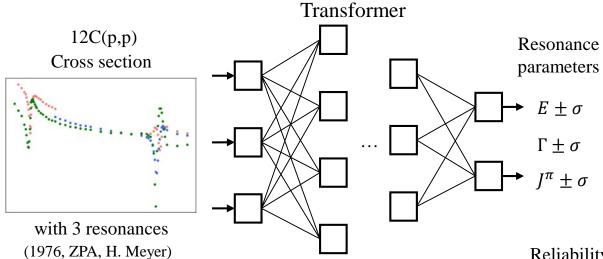
Approximation functions: mixture of delta functions

- **1. Training multiples models** with *L2* with different initial model parameters
- ⇒ Each model will **capture a mode in the posterior**
- **2**. **Combine** the multiple model predictions

$$p(\boldsymbol{\theta}|\boldsymbol{D}) \sim \frac{1}{N_{\mathrm{model}}} \sum_{p=1}^{N_{\mathrm{model}}} \delta(\boldsymbol{\theta} = \boldsymbol{\theta}_p)$$

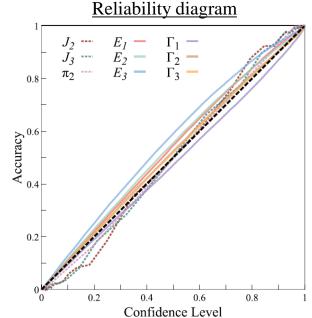
$$\Rightarrow \int_{\boldsymbol{\theta}} p(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{\theta'}) p(\boldsymbol{\theta'}|\boldsymbol{D}) d\boldsymbol{\theta'} \sim \frac{1}{N_{\text{model}}} \sum_{p=1}^{N_{\text{model}}} p(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{\theta}_p)$$

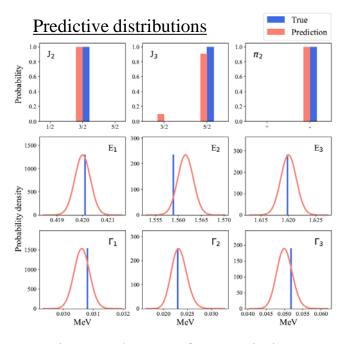
Deep Ensembles for R-matrix analysis



5 models trained with various 12C(p, p) data calculated using AZURE2 (2010, PRC, R. Azuma)

$$egin{aligned} p(m{ heta}|m{D}) &\sim rac{1}{N_{ ext{model}}} \sum_{p=1}^{N_{ ext{model}}} \delta(m{ heta} = m{ heta}_p) \ \\ &\Rightarrow \int_{m{ heta}} p(m{y}|m{x}, m{ heta}') p(m{ heta}'|m{D}) dm{ heta}' \, \sim \, rac{1}{N_{ ext{model}}} \sum_{n=1}^{N_{ ext{model}}} p(m{y}|m{x}, m{ heta}_p) \end{aligned}$$





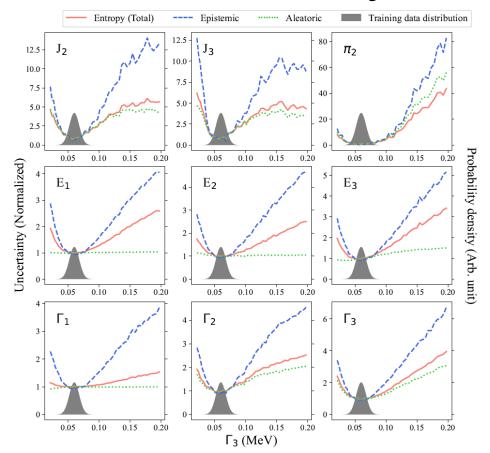
Disentanglement of uncertainties

Parameters	Total (Entropy)	Aleatoric	Epistemic
J_2	4.08×10^{-3}	$1.23{\times}10^{-4}$	$4.46{ imes}10^{-7}$
J_3	1.52×10^{-4}	$1.35{ imes}10^{-5}$	$3.34{ imes}10^{-8}$
π_2	$2.82{\times}10^{-3}$	$1.36{\times}10^{-4}$	$1.24{ imes}10^{-6}$
$\log E_1$	$4.44{ imes}10^{-4}$	$3.57{ imes}10^{-4}$	$2.64{\times}10^{-4}$
$\log E_2$	7.84×10^{-4}	$7.55{ imes}10^{-4}$	$2.11{\times}10^{-4}$
$\log E_3$	$4.94{ imes}10^{-4}$	$3.32{ imes}10^{-4}$	$3.66{ imes}10^{-4}$
$\log \Gamma_1$	8.05×10^{-3}	7.90×10^{-3}	$1.56{ imes}10^{-3}$
$\log \Gamma_2$	$1.42{\times}10^{-2}$	$1.38{\times}10^{-2}$	$3.43{ imes}10^{-3}$
$\log \Gamma_3$	1.49×10^{-2}	1.41×10^{-2}	4.65×10^{-3}

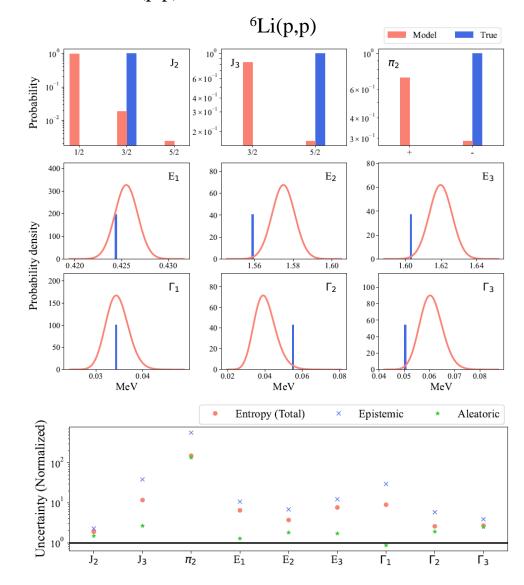
2024, PRC, C. H. Kim

Extrapolation issues

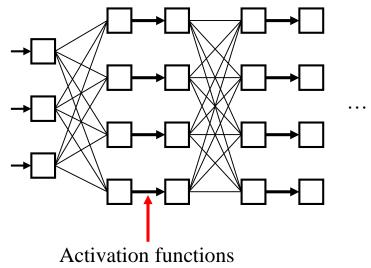
If 3rd resonance width varies outside training data distribution,



If it is not ${}^{12}C(p,p)$ reaction,

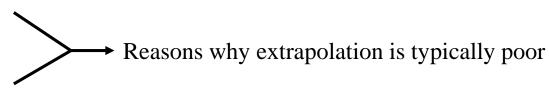


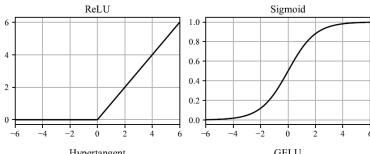
Features of conventional deep neural networks

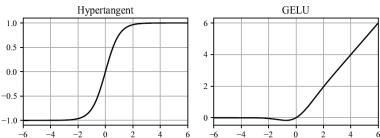


Countless parameters in complex structure, entangled with nonlinear functions

⇒ Prone to **over-parameterization** and **overfitting**







Empirically proven to give:

- Stable training
- Fast convergence
- High performance on computer vision, natural language processing, etc.

These features are **designed for computer science** applications

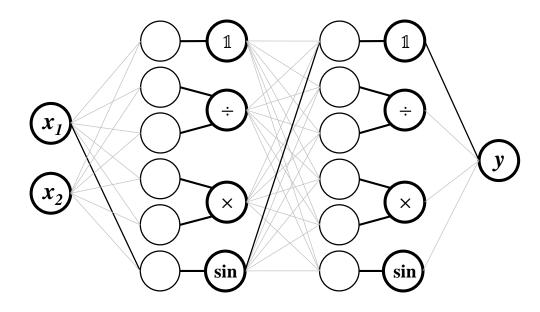
What if we design a network for physics applications?

2019, O'Reilly Media Inc., A. Geron 2022, MIT press, K. Murphy

Network designed for physics

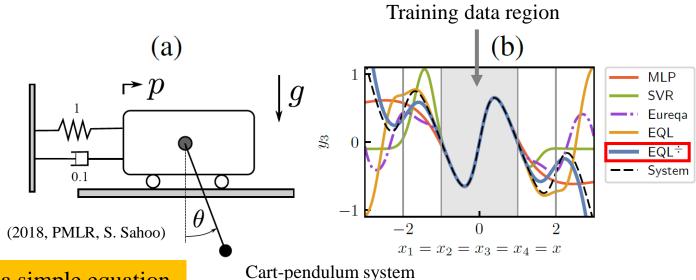
Finding the **true mathematical equation** underlying the data \Rightarrow Extrapolation issues will be naturally solved

Equation Learning: design a network to become the true mathematical equation underlying the data



Ex) $y = w_2 \sin(w_1 x_1 + b_1) + b_2$

- 1st. **Replace** activation functions with **scientific activation functions**
- 2nd. Use *L0* regularization to **prune unimportant parameters** (sparse learning)
- ⇒ Ideally, one can reconstruct a simple equation from the network



Most physics subjects might not be represented by a simple equation

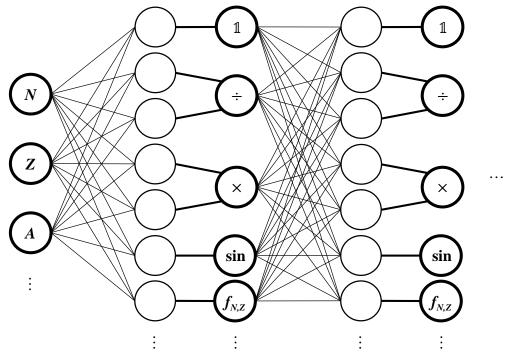
Strong regularization does not give the optimal performance

2017, ICLR, G. Martius 2018, PMLR, S. Sahoo

On nuclear mass predictions

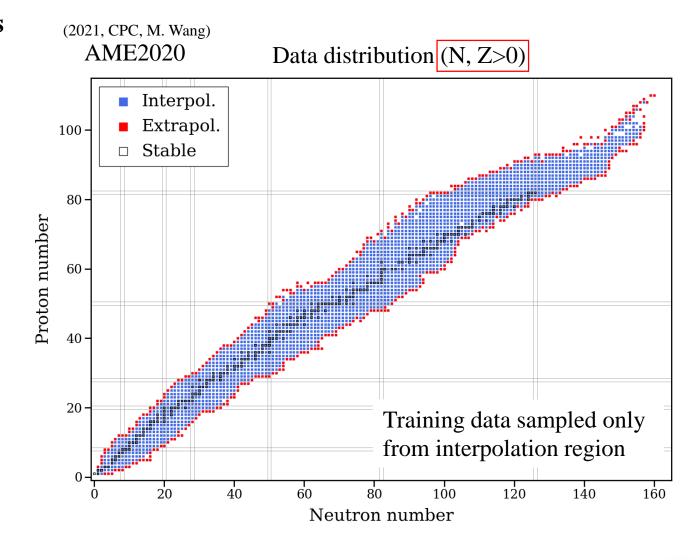
(PAF)

Network of physics-related activation functions



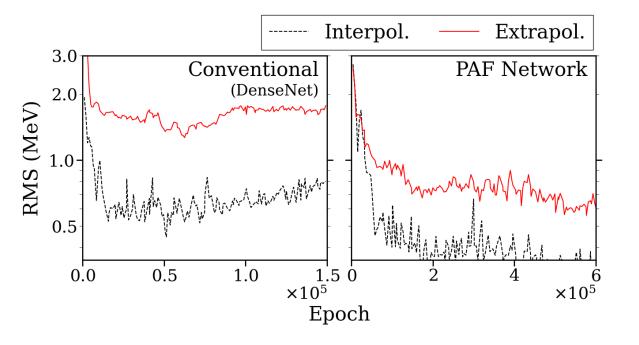
Activation functions

1 (identity)	×	÷
log	sin	ReLU
N ^x	$\mathbf{Z}^{\mathbf{x}}$	
$\mathbf{x}^{\mathbf{N}}$	$\mathbf{x}^{\mathbf{Z}}$	$((N-Z)/A)^x$



Improvements on extrapolation

Learning curves



Evaluation results

RMS $(N, Z \ge 8) / (N, Z > 0)$ (keV)

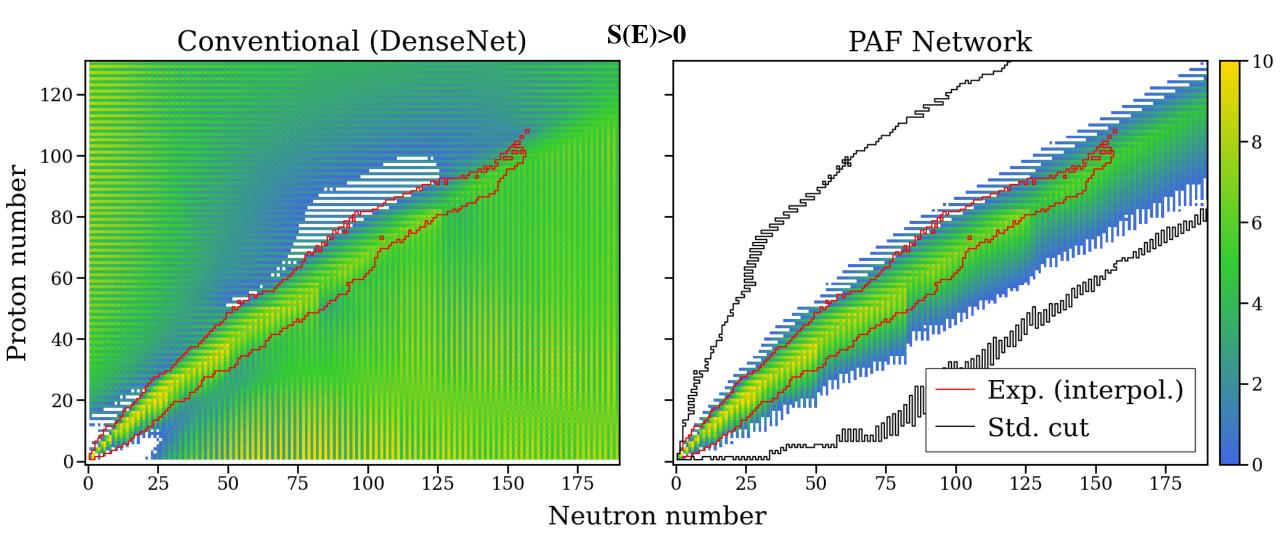
Model	Interpol.	Extrapol.	Total
PAF Network	207 / 255	308 / 396	258 / 328
DenseNet ConvNet	494 / 532 318 / 409	1048 / 1173 531 / 658	795 / 889 428 / 539
Duflo-Zuker [3] KTUY [32] WS4 [5] FRDM [6]	- - -	- - -	428 / - 733 / 743 ¹ 295 / - 606 / -

 $^{1}N,Z\geq 2$

(model selection done for the lowest RMS on extrapolation)

The existing global mass models fitted using the different AME versions. The total RMS error on the AME2020 data only presented.

Improvements on extrapolation



Conclusion

- ✓ Representative challenges of deep learning for physics are uncertainty quantification and extrapolation
- ✓ Bayesian deep learning can be the solution for the uncertainty quantification
- ✓ We showed a deep learning application for R-matrix analysis along with uncertainty quantification
- ✓ Replacing conventional activation functions with physics-related activation functions (PAF) could be the solution for the extrapolation
- ✓ We successfully implemented the PAF network for nuclear masses, showcasing the extrapolation performance.

R-matrix application (Bayesian deep learning): C. H. Kim et al., PRC, 2024, DOI: 10.1103/PhysRevC.110.054609

Nuclear mass application (PAF network): C. H. Kim et al., arXiv:2505.15363