The 29th International Nuclear Physics Conference (INPC 2025)

Contribution ID: 230

Type: Contributed Oral Presentation

Superallowed Alpha Decay of 104Te

Tuesday, 27 May 2025 12:00 (15 minutes)

The double-magic nature of 100 Sn generates the island of α -emitters northeast of this N=Z=50 nucleus. The increase of energy-corrected α -decay probabilities was considered to be a signature of enhanced α particle preformation and led to the term "superallowed" α decay for nuclei in the region [1]. The N=Z=52 104 Te is predicted to be the fastest α emitter. Auranen et al. measured 104 Te and found that it is likely a very short-lived nucleus characterized by much-increased preformation, even compared to other nuclei in the region [2]. Due to the limited statistics, the authors could only place an upper limit on the half-life based on the measurement of the decay chain of 108 Xe. Here, we will report the results of the direct measurement of the 104 Te half-life. We used a fast-response, scintillator-based charged-particle detector to measure the decay of 108 Xe, which populates 104 Te. We utilized the projectile fragmentation of a high-intensity 124 Xe beam at RIKEN Radioactive Ion Beam Factory (RIBF) to produce the most 108 Xe nuclei to date. This work will present the experiment's results in the context of the numerous theoretical predictions for the decay of 104 Te.

- [1] R. Macfarlane and A. Siivola, Phys. Rev. Lett. 14, 144 (1965)
- [2] K. Auranen, et al. Phys. Rev. Lett. 121, 182501 (2018)

This work was supported by US DOE No. DE-FG02-96ER40983 and NNSA No. DE-NA0003899

Consent

Primary authors: COX, Ian (University of Tennessee, Knoxville); GRZYWACZ, Robert (University of Tennessee); GRZYWACZ, Robert. K (University of Tennessee, Knoxville, ORNL)

Co-authors: ESMAYLZADEH, A. (Institut für Kernphysik, Technische Universität Darmstadt); KORGUL, Agnieszka (University of Warsaw); AUGUSTYN, Aleksander (National Centre for Nuclear Research); SKRUCH, Aleksandra (University of Warsaw); KREIDER, Ben (University of Tennessee, Knoxville); MAZZOCCHI, Chiara (University of Warsaw); HOSKINS, Donnie (University of Tennessee, Knoxville); GARCIA DE LORENZO, Gabriel (Universidad Complutense de Madrid); ALLMOND, J. M. (ORNL); FISCHER, Julia (IKP); RYKACZEWSKI, K.P (ORNL); KOLOS, Kay (Lawrence Livermore National Laboratory); FUKUDA, N. (RIKEN Nishina Center); BRAUKMAN, Nico (University of Tennessee, Knoxville); IMAI, Nobu (Center for Nuclear Study, Univ. of Tokyo); KITAMURA, Noritaka (CNS, Univ. of Tokyo); YOKOYAMA, R. (Center for Nuclear Study, the University of Tokyo); GO, Shintaro (RIKEN); NISHIMURA, Shunji (RIKEN); HANAI, Shutaro (CNS, the University of Tokyo); KING, T.T (ORNL); RULAND, Thomas (ORNL); PHONG, V. H. (RIKEN Nishina Center); XU, Zhengyu (University of Tennessee, Knoxville); BRIONNET, pierre (Super heavy team, NISHINA Center, RIKEN)

Presenters: GRZYWACZ, Robert (University of Tennessee); GRZYWACZ, Robert. K (University of Tennessee, Knoxville, ORNL)

Session Classification: Parallel Session

Track Classification: Nuclear Structure