The 29th International Nuclear Physics Conference (INPC 2025)

Contribution ID: 218

Type: Contributed Oral Presentation

The observation of a candidate for BEC-like state in 14C

Monday, 26 May 2025 14:40 (15 minutes)

In the framework of Tohsaki-Horiuchi-Schuck-Röpke (THSR) wave function approach, the 0_2^+ state at 7.65MeV in 12 C (Hoyle state) is recognized as featuring the Bose-Einstein Condensation (BEC)state [1]. When one α -particles in 12 C is replaced with 6 He, a system of three bosons can also be formed. And if all clusters are moving in relative s-wave, it represents a possible Hoyle-like configuration for 14 C[2].

Based on the above-mentioned anticipation, we conducted an experiment using ¹⁴C as the projectile which was excited to very high lying states followed by three-cluster decay. This experiment was carried out at the Radioactive Ion Beam Line at the Heavy Ion Research Facility in Lanzhou (HIRFL-RIBLL1). Special efforts were devoted to coincidently measure and identify three helium clusters at forward angles.

A prominent resonance above the 6 He + 2α threshold were firmly identified after selecting the 8 Be(g.s.) + 6 He decay channel. Analysis of angular correlation and decay suggests a spin-parity assignment of $J^{\pi}=0^+$. Our finding is further supported by the microscopic 3α +2n GCM model and Control neural network calculations, which provides a valuable insight into the structural and dynamic behavior of unstable nuclei.

 $[1]. \ FREER\,M, FYNBO\,H.\ Progress\ in\ Particle\ and\ Nuclear\ Physics, 2014, 78:\ 1.\ DOI:\ 10.1016/j.ppnp.2014.06.001.https://doi.org/10.1007/s41024-01588-x$

[2]K. Wei, Y. Ye and Z. Yang, "Clustering in nuclei: progress and perspectives", Nucl. Sci. Tech. 35, 216(2024), https://doi.org/10.1007/s41365-024-01588-x

Primary author: WEI, Kang (School of Physics, Peking University)

Co-author: YE, Yanlin (Peking University)

Presenter: WEI, Kang (School of Physics, Peking University)

Session Classification: Parallel Session

Track Classification: Nuclear Structure